Problem Definition: Establishing Functions (Ch. 6)

- Design Specifications (Sec. 6.3.1 through Sec. 6.3.3)
- House of Quality (Sec. 6.3.4)

House of Quality (Sec. 6.3.4)

		Hows vs. Hows	
	Who (Stakeholders)	Hows 6 (Measures, Metrics)	Now 4
Whats (Objectives,	Who vs. 3	What vs. 7	Now 5 vs.
functions)	Whats How Muches	Hows Hows vs.	What
	(Targets)	How Muches	

- Quality Function Deployment (QFD)
- House of Quality (HoQ or Hoq)

Quality Function Deployment (QFD)

- Historical Background
 - o Initiated by Dr. Mizuno, Tokyo Institute of Technology
 - First application at Kobe Shipyard, 1972
 - o Implemented by Toyota for a mini-van production, 1976
 - First introduction to North America in 1984, by Xerox
 - The standard practice of most leading organizations who in turn require it of their suppliers

Benefits of QFD

- Reduce product development time. For example, in 1980s-90s, it would take 5 years for North American automakers to put a product on the market, but the Japanese counterparts took 2.5 to 3 years to do the same.
- When implemented correctly, it improves engineering knowledge, productivity and quality. It reduces costs, product development time, and engineering changes.

Features of QFD?

- o It is a disciplined approach to product design, engineering, and production.
- o It provides in-depth evaluation of a product.
- It is a tool used to fulfill customer expectations.
- Customer driven as reflected by a set of specific (i.e., not abstract and generic) customer requirements.
- Reduce implementation time due to fewer engineering changes.

Features of QFD (cont'd)

- Promoting teamwork within an organization from marketing to engineering to production to sales (a.k.a. horizontal sharing of information)
- Providing documentation because tools for QFD serve as data base for future design and improvement, and as training tools for new engineers.
- Flexible when new information is introduced or things have to be changed.

What does HoQ do:

- It captures the features of QFD in a single diagram
- It translates the voice of the customer into design requirements (objectives, functions, constraints) that meet specific target values;
- It matches the voice of the customer against how an organization will meet those requirements.
- It is the primary planning tool for many managers and engineers when they plan for quality.
- The HoQ is a "house" of many rooms plus a roof, each containing valuable information. Fig. 6.6 shows a "layout" of the house.
- We focus on the "revised layout" with room numbering.
- o Room numbering also indicated the steps taken to complete construction of the house.
- o Information in each room and roof, and the main task involved:
- Who (Stakeholders): Customers Identify who they are
- Whats: Customer requirements
 Determine what the customers want
- 3. Who vs. Whats: Importance of customer requirements

 Determine the ranking or weighting for each requirement

These 3 rooms together are to record the "voice of the customer" (Room 1-3)

- 4. Now: Competitors Identify competitions
- 5. Now vs. Whats: How well do competitors do?

 Evaluate competitors against customer requirements to find out how satisfied the customers are now

- Hows: Engineering characteristics
 Determine how customer requirements will be met
- 7. Whats vs. Hows: Correlation between customer requirements and engineering characteristics
 Use the Hows to measure the Whats
- 8. Hows vs. Hows: Interactions between engineering characteristics

 Determine if the Hows are dependent on each other

These three rooms together are to record the "voice of the organization/company" (Room 6-8)

How Muches, and Hows vs. How Muches: Engineering targets/specifications
 Set targets (How Muches) for engineering characteristics, and measure competitions against targets

Room 1 – Who are the Customers?

There are a few classes of customers. They include, for example

- The end users or consumers
- Production customers
- Marketing/sales customers
- Service customers
- The regulators (government and technical)

Room 2 – What do customers want?

For end users or consumers

A product that:

- Works as it should (this is *Performance*)
- Lasts a long time (this is *Durability*)
- Is easy to maintain
- Looks attractive
- Has many features, and
- Incorporates the latest technology

For production customers

A product that:

- Is easy to produce (both manufacture and assemble)
- Uses available resources (human, equipment, materials)
- Uses standard parts and methods
- Uses existing facilities
- Produces minimum waste/scraps

For marketing/sales customers

A product that

- Meets consumers' requirements
- Is easy to package, store and transport
- Is attractive
- Displays well on shelves

How to find out what customers want?

- Observations
- Surveys
- Focus groups

Room 3 – Relative Importance of Customer Requirements

Steps

- Objective trees (one for each class of customer)
- PCC for ranked requirements; or
- Weighted objective tree for weighted requirements

Rooms 1 through 3 – Voice of the customer

Example:

A company wants to expand its product lines by producing water guard (Splashguard). This product will primarily be used by the so-called dual-use riders who ride off-road and for commute.

Ranked importance:

- PCC
- Scale 1-some integer (say 10)
- 1 being most important or being least important no consistent rules

Weighted Importance:

• Similar to weighted objective tree

Ranked Importance:

		End Users	Marketing	Service	Score * Decimal Weight	Weight (%)
Functional	Keeps water off rider	3	8	8	#	17%
performance	Fast to attach	2	5	6	#	11%
	Fast to detach	1	4	3	#	7%
Interface	Good fit	7	6	7	#	19%
with bike	Nor marring	4	3	4	#	10%
	Color matching	5	1	2	#	8%
Light weight		6	2	5	#	12%
Low cost		8	7	1	#	16%
		0.4	0.3	0.3	36	100

Ranking from 1 (least important) to 8 (most important)

		Weight (%)
Functional	Keeps water off rider	11
performance	Fast to attach	12
	Fast to detach	7
Interface	Good fit	20
with bike	Nor marring	11
	Color matching	9
Light weight		13
Low cost		17

Room 4 – Who are the competitors?

Room 5 – How satisfied are the customers now?

Two purposes:

- Awareness of what already exists
- Identifying opportunities to improve on what already exists

How to evaluate competitors against customer's requirements (known as competition benchmarking)?

- Subjective evaluation based on customer's opinions (objective evaluation in Room 9)
- Scale of 1 to 5:
 - 1. Does not meet the requirement at all
 - 2. Meets the requirement slightly
 - 3. Meets the requirement somewhat

- 4. Meets the requirement mostly
- 5. Fulfills the requirement completely

		Weight (%)	Room 6	Product A	Product B	Product C
Functional	Keeps water off rider			1	4	2
performance	Fast to attach			1	4	2
	Fast to detach			2	4	3
Interface	Good fit			3	2	4
with bike	Nor marring		Room 7	3	1	4
	Color matching			3	2	2
Light weight				3	3	4
Low cost				2	3	1

Room 6 – How customer requirements will be met?

The goal is to develop a set of engineering characteristics that cast the design problem in terms of measures/metrics that have target values.

Room 7 – Relating customer's requirements to engineering characteristics

- Each cell represents how an engineering characteristic relates to a specific customer's requirement
- Such relationship can be strong, moderate, weak or no relationship at all.

9: strong relationship

3: medium/moderate relationship

1: weak relationship

Blank: no/little relationship

Engineering Characteristics vs. Customers Requirements

		Weight (%)	Water Hitting Rider	Time to attach	Time to detach	Number of parts	Weight	Bikes that fit	Available colors	Sale price	Force to detach
Functional	Keeps water off rider		9								
performance	Fast to attach			9		3	1				
	Fast to detach				9	3	1				
Interface with bike	Good fit							9			
	Not marring										3
	Color matching								9		
Light weight						1	9				
Low cost										9	

Reading Assignments:

S 6.3.4