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This is no longer applicable (EA is no longer constant)
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k = 32.568 - 10° (N/m)

By integral approach:

Using A,,:
k =30.7125- 10° (N/m)



2.3.3 General Combination

The system has various springs, translational and/or torsional. The i-th spring has potential energy
(1/2)k;x?, where k; and x; should be interpreted in the general sense.

Total potential energy in the system is:

V =%(1/2)kix?

For the equivalent spring k., the generalized coordinate is x. Each x; is assumed directly proportional

to x. Then:

V= (1/2)keqx2
Therefore

keqx? = Thix{
And

keq = 2 ()’

Note: each x;/x is a constant
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(2) keg in terms of 6

V= (%) (3000)x2 + (%) (1000)y?
= (5) et
keq = 52.5 (N -m/rad)
2.4 Other sources of potential energy
2.4.1 Gravity
It is a conservative force
V due to gravity is:
V =mgh

Where h is the positive if the particle relative to the datum. h is positive if the particle is positioned
above the datum, and h is negative if positioned below.

Example 2.6 (A pendulum, 3 choices of datum)
V due to spring force as well as gravity:
V= Vspring + Vgravity

As an example, a mass (i.e. a particle) is suspended from a spring (Figure 2.15)
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e |f datum is located at the static equilibrium position:

1
V= (§> k(Ag: + x)? —mgx
e The work done (by spring force and gravity, on the particle) from 0 to x is:
U1—>2 = V1 - V2
e The principle of energy conservation can be more conveniently expressed as:
T1 + V1 = T2 + V2

1 2
- T1 - T2 = _U1_>2 = (5) kx

As long as x is measured from the static equilibrium position.
Note: Static deflection is not always by A;;= mg/k, see for example, Example 2.8 and Problem 2.18.
2.4.2 Buoyancy

If a floating or submerged object has constant cross-section, buoyancy functions very much like the
linear translational spring.

p: mass density of fluid per unit volume, in kg/m3
A: cross-sectional area of the object

Then spring constant is:
k =pgA

The work done by buoyancy and gravity on the object is:

Ui, = — (1> kx?
2
Where x is measured from the static equilibrium position.
Note: static deflection is not by Ag;= mg/k when buoyancy is involved.
2.5 Viscous Damping

Viscous damping force has a magnitude that is directly proportional to the velocity.



F = cv: c is the (translational) damping coefficient;
Figure 2.20; eq. (2.37)

Or,

M = ¢,0: c, is the (torsional) damping coefficient;
Figure 2.21; eq. (2.42)

Direction of viscous damping force: opposite to v or 6

Schematic representation:

¢,Ct

—3}—

Devices to achieve viscous damping: the dashpot (Figure 2.19); the piston-cylinder damper (Figure 2.20);
the torsional viscous damper (Figure 2.21).

Example 2.9



2.6 Energy Dissipated by Viscous Damping
Viscous damping force is non-conservative.

The dissipated energy is measured by work done, see eq. (2.44)
- L 4 m
—> %, X, X
¢X l
4 o

Energy dissipated by a system of dampers: eq. (2.45)

Ko .
Usz =2 | —GHd%
0

Equivalent damping coefficient c,, in terms of generalized coordinate x:

e x and x, are directly proportional to each other (i.e., % = constant = y,)

Xi
f —CiJ.Ci dxl-
0

Consider:
X; =V %
Xp=Yi*Xx

X X
= [ —atn- 00 = | - dx
0 0
e Energy dissipation
Xi X
Uz = Zf —C X dx; = Zf —cyf xdx
0 0
X

U1_>2 = f _Ceqx dx
0
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Solution:

—r0, y=(2)r

X =710, y—(z)r

c=r6, y=(2)r0

et 9= ()

Ceq in terms of x:

=(3)x v=(3)s
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X 3 3 X

S Uy, = f —(400)(—)5cd<—x)+ f —(200) dx
0 2 2 0

X, 3600 ,
U1—>2 = f <—T - 200) x dx
0
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Ceq in terms of 6:
o 3y . /3 6 .
Upy = J (—400) (—) ré d(—re) + j (=200)r6 d(r6)
0 2 2 0
o 9 .
Upsp = f - (400 -Zrz + 200r2) 6 do
0
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2.7 Inertia Elements
2.7.1 Equivalent mass

The kinetic energy of a system of rigid bodies is

T = Z( m;v; +1Iw)

2
Note:
(i) Table 2.1 for centroidal moments of inertia
(ii) If v; and w; are directly proportional to a generalized coordinate x, the kinetic energy is then,

eg. (2.50)

1 -
T = (E) Mg X
(iii) Or eq. (2.51) if the generalized coordinate is 4.

1 -
T = (§> quG

Example 2.11
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2.7.2 Inertia effects of springs
In reality, springs are structural components. They have mass.

When the mass of a spring is small but not negligible, the mass of the spring is typically added to that of
the particle or rigid body.

1, 1 .2
T=Ts+ S MUS = 5 MegX
Figure 2.26
t £,20 —
k, Ms X p =mass density per unit length
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~dT, = %(p dz)[u(2)]?



