Example 2.4 (d)

$$x = \frac{FL}{EA}$$
This is no longer applicable (EA is no longer constant)

$$\therefore x = \int_0^l \frac{F}{EA(z)} \ dz$$

By integral approach:

$$k = 32.568 \cdot 10^6 \, (N/m)$$

Using A_{av} :

$$k = 30.7125 \cdot 10^6 \, (N/m)$$

2.3.3 General Combination

The system has various springs, translational and/or torsional. The i-th spring has potential energy $(1/2)k_ix_i^2$, where k_i and x_i should be interpreted in the general sense.

Total potential energy in the system is:

$$V = \sum_{i} (1/2) k_i x_i^2$$

For the equivalent spring k_{eq} , the generalized coordinate is x. Each x_i is assumed directly proportional to x. Then:

$$V = (1/2)k_{eq}x^2$$

Therefore

$$k_{eq}x^2 = \sum k_i x_i^2$$

And

$$k_{eq} = \sum k_i \left(\frac{x_i}{x}\right)^2$$

Note: each x_i/x is a constant

Example 2.5

On a horizontal plane

Determine:

- (1) k_{eq} in terms of x
- (2) k_{eq} in terms of θ

Solution:

$$\therefore x = r\theta$$

$$y = \left(\frac{3}{2}\right)r\theta$$

$$y = \left(\frac{3}{2}\right)x$$

(1) k_{eq} in terms of x

$$V = \left(\frac{1}{2}\right) (3000)x^2 + \left(\frac{1}{2}\right) (1000)y^2$$

$$= \left(\frac{1}{2}\right) (3000)x^2 + \left(\frac{1}{2}\right) (1000) \left(\frac{9}{4}\right)x^2$$

$$= \left(\frac{1}{2}\right) \left(3000 + \frac{9}{4} \cdot 1000\right)x^2$$

$$\therefore k_{eq} = 5,250 (N/m)$$

(2) k_{eq} in terms of θ

$$V = \left(\frac{1}{2}\right)(3000)x^{2} + \left(\frac{1}{2}\right)(1000)y^{2}$$
$$= \left(\frac{1}{2}\right)k_{eq}\theta^{2}$$
$$k_{eq} = 52.5 (N \cdot m/rad)$$

2.4 Other sources of potential energy

2.4.1 Gravity

It is a conservative force

V due to gravity is:

$$V = mgh$$

Where h is the positive if the particle relative to the datum. h is positive if the particle is positioned above the datum, and h is negative if positioned below.

Example 2.6 (A pendulum, 3 choices of datum)

V due to spring force as well as gravity:

$$V = V_{spring} + V_{gravity}$$

As an example, a mass (i.e. a particle) is suspended from a spring (Figure 2.15)

• If datum is located at the static equilibrium position:

$$V = \left(\frac{1}{2}\right)k(\Delta_{st} + x)^2 - mgx$$

• The work done (by spring force and gravity, on the particle) from 0 to x is:

$$U_{1\to 2} = V_1 - V_2$$

• The principle of energy conservation can be more conveniently expressed as:

$$T_1 + V_1 = T_2 + V_2$$

 $\to T_1 - T_2 = -U_{1 \to 2} = \left(\frac{1}{2}\right) kx^2$

As long as x is measured from the static equilibrium position.

Note: Static deflection is <u>not</u> always by $\Delta_{st} = mg/k$, see for example, Example 2.8 and Problem 2.18.

2.4.2 Buoyancy

If a floating or submerged object has constant cross-section, buoyancy functions very much like the linear translational spring.

ho: mass density of fluid per unit volume, in kg/m^3

A: cross-sectional area of the object

Then spring constant is:

$$k = \rho g A$$

The work done by buoyancy and gravity on the object is:

$$U_{1\to 2} = -\left(\frac{1}{2}\right)kx^2$$

Where x is measured from the static equilibrium position.

Note: static deflection is <u>not</u> by $\Delta_{st} = mg/k$ when buoyancy is involved.

2.5 Viscous Damping

Viscous damping force has a magnitude that is directly proportional to the velocity.

F = cv: c is the (translational) damping coefficient; Figure 2.20; eq. (2.37)

Or,

 $M=c_t\dot{\theta}$: c_t is the (torsional) damping coefficient; Figure 2.21; eq. (2.42)

Direction of viscous damping force: opposite to v or $\dot{\theta}$

Schematic representation:

Devices to achieve viscous damping: the dashpot (Figure 2.19); the piston-cylinder damper (Figure 2.20); the torsional viscous damper (Figure 2.21).

Example 2.9

2.6 Energy Dissipated by Viscous Damping

Viscous damping force is non-conservative.

The dissipated energy is measured by work done, see eq. (2.44)

$$c\dot{x} \xrightarrow{} x, \dot{x}, \ddot{x}$$

$$u_{1+2} = \int_{0}^{x} -c\dot{x} dx$$

Energy dissipated by a system of dampers: eq. (2.45)

$$U_{1\rightarrow 2} = \sum_{i=0}^{x_i} -c_i \dot{x}_i \, dx_i$$

Equivalent damping coefficient c_{eq} in terms of generalized coordinate x:

• \dot{x} and $\dot{x_i}$ are directly proportional to each other (i.e., $\frac{\dot{x_i}}{\dot{x}} = constant = \gamma_y$)

$$\int_0^{x_i} -c_i \dot{x}_i \ dx_i$$

Consider:

$$\dot{x}_i = \gamma_i \cdot \dot{x}$$

$$x_i = \gamma_i \cdot x$$

$$= \int_0^x -c_i(\gamma_i \cdot \dot{x}) d(\gamma_i \cdot x) = \int_0^x -c_i \gamma_i^2 \dot{x} dx$$

Energy dissipation

$$\begin{split} U_{1\to 2} &= \sum \int_0^{x_i} -c_i \, \dot{x}_i \, dx_i = \sum \int_0^x -c_i \gamma_i^2 \, \dot{x} dx \\ U_{1\to 2} &= \int_0^x -c_{eq} \dot{x} \, dx \end{split}$$

Solution:

$$x = r\theta, \quad y = \left(\frac{3}{2}\right)r\theta$$

 $\dot{x} = r\dot{\theta}, \quad \dot{y} = \left(\frac{3}{2}\right)r\dot{\theta}$

 C_{eq} in terms of x:

$$y = \left(\frac{3}{2}\right)x, \quad \dot{y} = \left(\frac{3}{2}\right)\dot{x}$$

 c_{eq} in terms of heta:

$$U_{1\to 2} = \int_0^{\theta} (-400) \left(\frac{3}{2}\right) r \dot{\theta} \ d\left(\frac{3}{2}r\theta\right) + \int_0^{\theta} (-200) r \dot{\theta} \ d(r\theta)$$

$$U_{1\to 2} = \int_0^{\theta} -\left(400 \cdot \frac{9}{4}r^2 + 200r^2\right) \theta \ d\theta$$

2.7 Inertia Elements

2.7.1 Equivalent mass

The kinetic energy of a system of rigid bodies is

$$T = \sum \left(\frac{1}{2}m_i v_i^2 + \frac{1}{2}I_i \omega_i^2\right)$$

Note:

- (i) Table 2.1 for centroidal moments of inertia
- (ii) If v_i and ω_i are directly proportional to a generalized coordinate x, the kinetic energy is then, eq. (2.50)

$$T = \left(\frac{1}{2}\right) m_{eq} \dot{x^2}$$

(iii) Or eq. (2.51) if the generalized coordinate is θ .

$$T = \left(\frac{1}{2}\right) I_{eq} \dot{\theta}^2$$

Example 2.11

Solution:

x in terms of y θ in terms of y

And
$$m_{eq}=\frac{11}{3}(kg)$$

2.7.2 Inertia effects of springs

In reality, springs are structural components. They have mass.

When the mass of a spring is small but not negligible, the mass of the spring is typically added to that of the particle or rigid body.

$$T = T_s + \frac{1}{2}mv^2 = \frac{1}{2}m_{eq}\dot{x}^2$$

$$\frac{z}{l}x = u(z)$$