
Example 2.4 (d) 

 

𝑥 =
𝐹𝐿

𝐸𝐴
 

This is no longer applicable (𝐸𝐴 is no longer constant) 

 

∴ 𝑥 = ∫
𝐹

𝐸𝐴(𝑧)
 𝑑𝑧

𝑙

0

 

By integral approach: 

𝑘 = 32.568 ∙ 106 (𝑁/𝑚) 

Using 𝐴𝑎𝑣: 

𝑘 = 30.7125 ∙ 106 (𝑁/𝑚) 

  



2.3.3 General Combination 

The system has various springs, translational and/or torsional. The 𝑖-th spring has potential energy 

(1/2)𝑘𝑖𝑥𝑖
2, where 𝑘𝑖 and 𝑥𝑖 should be interpreted in the general sense. 

Total potential energy in the system is: 

𝑉 = ∑(1 2⁄ )𝑘𝑖𝑥𝑖
2 

For the equivalent spring 𝑘𝑒𝑞, the generalized coordinate is 𝑥. Each 𝑥𝑖 is assumed directly proportional 

to 𝑥. Then: 

𝑉 = (1 2⁄ )𝑘𝑒𝑞𝑥2 

Therefore 

𝑘𝑒𝑞𝑥2 = ∑𝑘𝑖𝑥𝑖
2 

And 

𝑘𝑒𝑞 = ∑𝑘𝑖 (
𝑥𝑖

𝑥
)

2

 

Note: each 𝑥𝑖/𝑥 is a constant 

Example 2.5 

On a horizontal plane 

 

 

Determine: 

(1) 𝑘𝑒𝑞 in terms of 𝑥 

(2) 𝑘𝑒𝑞 in terms of 𝜃  

 



Solution: 

∴ 𝑛𝑜 𝑠𝑙𝑖𝑝𝑠 

∴ 𝑥 = 𝑟𝜃 

𝑦 = (
3

2
) 𝑟𝜃 

𝑦 = (
3

2
) 𝑥 

(1) 𝑘𝑒𝑞 in terms of 𝑥 

𝑉 = (
1

2
) (3000)𝑥2 + (

1

2
) (1000)𝑦2 

= (
1

2
) (3000)𝑥2 + (

1

2
) (1000) (

9

4
) 𝑥2 

= (
1

2
) (3000 +

9

4
∙ 1000) 𝑥2 

∴ 𝑘𝑒𝑞 = 5,250 (𝑁/𝑚) 

(2) 𝑘𝑒𝑞 in terms of 𝜃 

𝑉 = (
1

2
) (3000)𝑥2 + (

1

2
) (1000)𝑦2 

= (
1

2
) 𝑘𝑒𝑞𝜃2 

𝑘𝑒𝑞 = 52.5 (𝑁 ∙ 𝑚/𝑟𝑎𝑑) 

2.4 Other sources of potential energy 

2.4.1 Gravity 

It is a conservative force 

𝑉 due to gravity is: 

𝑉 = 𝑚𝑔ℎ 

Where ℎ is the positive if the particle relative to the datum. ℎ is positive if the particle is positioned 

above the datum, and ℎ is negative if positioned below. 

Example 2.6 (A pendulum, 3 choices of datum) 

𝑉 due to spring force as well as gravity: 

𝑉 = 𝑉𝑠𝑝𝑟𝑖𝑛𝑔 + 𝑉𝑔𝑟𝑎𝑣𝑖𝑡𝑦 

As an example, a mass (i.e. a particle) is suspended from a spring (Figure 2.15) 



 

• If datum is located at the static equilibrium position: 

𝑉 = (
1

2
) 𝑘(∆𝑠𝑡 + 𝑥)2 − 𝑚𝑔𝑥 

• The work done (by spring force and gravity, on the particle) from 0 to 𝑥 is: 

𝑈1→2 = 𝑉1 − 𝑉2 

• The principle of energy conservation can be more conveniently expressed as: 

𝑇1 + 𝑉1 = 𝑇2 + 𝑉2 

→ 𝑇1 − 𝑇2 = −𝑈1→2 = (
1

2
) 𝑘𝑥2 

As long as 𝑥 is measured from the static equilibrium position. 

Note: Static deflection is not always by ∆𝑠𝑡= 𝑚𝑔/𝑘, see for example, Example 2.8 and Problem 2.18. 

2.4.2 Buoyancy 

If a floating or submerged object has constant cross-section, buoyancy functions very much like the 

linear translational spring. 

𝜌: mass density of fluid per unit volume, in 𝑘𝑔/𝑚3 

𝐴: cross-sectional area of the object 

Then spring constant is:  

𝑘 = 𝜌𝑔𝐴 

The work done by buoyancy and gravity on the object is: 

𝑈1→2 = − (
1

2
) 𝑘𝑥2 

Where 𝑥 is measured from the static equilibrium position. 

Note: static deflection is not by ∆𝑠𝑡= 𝑚𝑔/𝑘 when buoyancy is involved.  

2.5 Viscous Damping 

Viscous damping force has a magnitude that is directly proportional to the velocity. 



𝐹 = 𝑐𝑣: 𝑐 is the (translational) damping coefficient;  

Figure 2.20; eq. (2.37) 

Or, 

𝑀 = 𝑐𝑡𝜃̇:  𝑐𝑡 is the (torsional) damping coefficient; 

Figure 2.21; eq. (2.42) 

Direction of viscous damping force: opposite to 𝑣 or 𝜃̇ 

Schematic representation: 

 

Devices to achieve viscous damping: the dashpot (Figure 2.19); the piston-cylinder damper (Figure 2.20); 

the torsional viscous damper (Figure 2.21). 

Example 2.9 

  



2.6 Energy Dissipated by Viscous Damping 

Viscous damping force is non-conservative. 

The dissipated energy is measured by work done, see eq. (2.44) 

 

Energy dissipated by a system of dampers: eq. (2.45) 

 

Equivalent damping coefficient 𝑐𝑒𝑞 in terms of generalized coordinate 𝑥: 

• 𝑥̇ and 𝑥𝑖̇ are directly proportional to each other (i.e., 
𝑥̇𝑖

𝑥̇
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝛾𝑦) 

∫ −𝑐𝑖𝑥̇𝑖 𝑑𝑥𝑖

𝑥𝑖

0

 

Consider: 

𝑥̇𝑖 = 𝛾𝑖 ∙ 𝑥̇ 

𝑥𝑖 = 𝛾𝑖 ∙ 𝑥 

= ∫ −𝑐𝑖(𝛾𝑖 ∙ 𝑥̇)𝑑(𝛾𝑖 ∙ 𝑥)
𝑥

0

= ∫ −𝑐𝑖𝛾𝑖
2𝑥̇ 𝑑𝑥

𝑥

0

 

• Energy dissipation 

𝑈1→2 = ∑ ∫ −𝑐𝑖

𝑥𝑖

0

𝑥̇𝑖 𝑑𝑥𝑖 = ∑ ∫ −𝑐𝑖𝛾𝑖
2 𝑥̇𝑑𝑥

𝑥

0

 

𝑈1→2 = ∫ −𝑐𝑒𝑞𝑥̇ 𝑑𝑥
𝑥

0

 

 

 

 

 

 

 

 



Example 2.10 

 

 

Solution: 

𝑥 = 𝑟𝜃,     𝑦 = (
3

2
) 𝑟𝜃 

𝑥̇ = 𝑟𝜃̇,     𝑦̇ = (
3

2
) 𝑟𝜃̇ 

𝐶𝑒𝑞 in terms of 𝑥: 

𝑦 = (
3

2
) 𝑥,     𝑦̇ = (

3

2
) 𝑥̇ 

∴ 𝑈1→2 = ∫ −(400) (
3

2
) 𝑥̇ 𝑑 (

3

2
𝑥) +

𝑥

0

∫ −(200)𝑥̇ 𝑑𝑥
𝑥

0

 

∴ 𝑈1→2 = ∫ (−
3600

4
− 200) 𝑥̇ 𝑑𝑥

𝑥

0

 

 

𝑐𝑒𝑞 in terms of 𝜃: 

𝑈1→2 = ∫ (−400) (
3

2
) 𝑟𝜃̇ 𝑑 (

3

2
𝑟𝜃) +

𝜃

0

∫ (−200)𝑟𝜃̇ 𝑑(𝑟𝜃)
𝜃

0

 

𝑈1→2 = ∫ − (400 ∙
9

4
𝑟2 + 200𝑟2) 𝜃 𝑑𝜃̇

𝜃

0

 

 



2.7 Inertia Elements 

2.7.1 Equivalent mass 

The kinetic energy of a system of rigid bodies is 

𝑇 = ∑ (
1

2
𝑚𝑖𝑣𝑖

2 +
1

2
𝐼𝑖𝜔𝑖

2) 

Note: 

(i) Table 2.1 for centroidal moments of inertia  

(ii) If 𝑣𝑖 and 𝜔𝑖 are directly proportional to a generalized coordinate 𝑥, the kinetic energy is then, 

eq. (2.50) 

𝑇 = (
1

2
) 𝑚𝑒𝑞𝑥2̇ 

(iii) Or eq. (2.51) if the generalized coordinate is 𝜃. 

𝑇 = (
1

2
) 𝐼𝑒𝑞𝜃̇2 

Example 2.11

 

 

 

 

 



Solution:  

𝑥 in terms of 𝑦 

𝜃 in terms of 𝑦 

∴ 𝑥̇ =
2

3
𝑦̇     ;      𝜃̇ =

2

3𝑟
𝑦̇ 

𝑇 = (
1

2
) (2)𝑥̇2 + (

1

2
) (1)𝑦̇2 + (

1

2
) (0.04)𝜃2̇ 

𝑇 = (
1

2
) (2) (

4

9
) 𝑦̇2 + (

1

2
) (1)𝑦2̇ + (

1

2
) (0.04) (

4

9𝑟2
) 𝑦2̇ 

𝑇 = (
1

2
) [

8

9
+ 1 +

0.16

9(0.1)2] 𝑦̇2 

And 𝑚𝑒𝑞 =
11

3
(𝑘𝑔) 

2.7.2 Inertia effects of springs 

In reality, springs are structural components. They have mass. 

When the mass of a spring is small but not negligible, the mass of the spring is typically added to that of 

the particle or rigid body. 

𝑇 = 𝑇𝑠 +
1

2
𝑚𝑣2 =

1

2
𝑚𝑒𝑞𝑥̇2 

Figure 2.26 

𝜌 =mass density per unit length 

𝜌 ∙ 𝑙 = 𝑚𝑠 

 

 

at 𝑧, displacement is: 
𝑧

𝑙
𝑥 = 𝑢(𝑧) 

 

 

∴ 𝑑𝑇𝑠 =
1

2
(𝜌 𝑑𝑧)[𝑢̇(𝑧)]2 

∴ 𝑇𝑠 = ∫
𝜌

2

𝑙

0

 (
𝑥

𝑙
𝑧
̇

)
2

𝑑𝑧 

𝑇𝑠 =
1

2
(

𝑚𝑠

3
) ∙ 𝑥̇2 

∴ 𝑇 =
1

2
(

𝑚𝑠

2
) 𝑥̇2 + (

1

2
) 𝑚𝑥̇2 

𝑇 =
1

2
(𝑚 +

𝑚𝑠

3
) 𝑥̇2 


