
Bifurcation Diagram by Analytical Ways 

Bifurcation and bifurcation diagram 

For a dynamic system defined by 𝒙̈ = 𝑭(𝒙, 𝒙̇, 𝑡; 𝑐), the number of its equilibrium points and the stability 

of such points change as the system’s parameter 𝑐 is varied. This phenomenon is known as the 

bifurcation. 

Bifurcation diagram is a widely used technique for examining the pre- or post-chaotic changes in a 

dynamic system under parameter variations. 

Bifurcation diagrams can be drawn through analytical ways or by computation. 

Bifurcation diagram by the analytical ways 

Focusing on autonomous dynamic systems defined by first order ODEs 𝒙̇ = 𝒇(𝒙; 𝑐); 

The existence and uniqueness of theorem 
Detail of the existence and uniqueness theorem can be found form Boyce et al, Theorem 2.4.2 and Theorem 2.8.1, for example. 

The essence of the theorem governing the existence and uniqueness of the solutions to first order ODEs 

𝒙̇ = 𝒇(𝒙; 𝑐) is, 

If the functions 𝒇 and their first order partial derivatives are continuous over a certain domain for 𝑥 and 

𝑡, then there exists a unique solution of the system of ODEs that satisfied the initial condition. 

The equilibrium points (or critical points) 

They are those that meet the condition of 𝒙̇ = 𝟎, or 𝒇(𝒙𝒆; 𝑐) = 𝟎, with 𝒙𝒆 denoting the equilibrium 

points. 

Definition of stability  

There is not a universally agreed upon definition. But the most fundamental definition is attributed to 

Lyapunov. 

Let 𝒙𝒆 ∈ 𝑅𝑛 be an equilibrium point, 

(1) 𝒙𝒆 is stable if, for any ℎ > 0, there is a 𝛿 > 0  

such that if a solution 𝒙(𝑡) satisfies||𝒙(0) − 𝒙𝑒|| < 𝛿, then: 

||𝒙(𝑡) − 𝒙𝒆|| < ℎ, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0  

(2) 𝑥𝑒 is asymptotically stable is there is a 𝛿 > 0  

such that if a solution 𝑥(𝑡) satisfies||𝒙(0) − 𝒙𝑒|| < 𝛿, then: 

lim
𝑡→∞

𝒙(𝑡) = 𝒙𝒆; 

(3) 𝒙𝒆 is monotonically stable if it is asymptotically stable and ||𝒙(𝑡) − 𝒙𝒆|| decreases monotonically 

with time; 

 

(4) 𝒙𝒆 is globally asymptotically stable if it is asymptotically stable and 𝒙(𝑡) → 𝟎  𝑎𝑛𝑑 𝑡 → ∞ for all 

𝒙(0); and 

 

(5) 𝒙𝒆 is unstable if it is not stable as defined above in (1). 



 

Parts (1), (2) and (5) of the definition appear often in the literature. 
Detail of (1), (2) and (5) can be found from Boyce et al, Sec. 9.2 for example. 

Linearization of nonlinear ODEs 

For ODEs 𝑥 = 𝑓(𝑥; 𝑐), its Jacobian matrix 𝐽 evaluated at 𝑥𝑒, is: 

𝑱(𝒙𝒆; 𝑐) = 𝑨(𝒙𝒆; 𝑐) =

[
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

…
𝜕𝑓1
𝜕𝑥𝑛

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

…
𝜕𝑓2
𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑥1

𝜕𝑓𝑛
𝜕𝑥2

…
𝜕𝑓𝑛
𝜕𝑥𝑛]

 
 
 
 
 
 
 

𝒙𝒆

 

Taking the Taylor expansion of 𝒇(𝒙; 𝑐) at 𝒙𝒆 and keeping terms up to the linear, 

𝑥̇ = 𝒇(𝒙; 𝑐) ≈ 𝒇(𝒙𝒆; 𝑐) + 𝑱(𝒙 − 𝒙𝒆) 

Defining 𝒖 = 𝒙 − 𝒙𝒆, and noting that 𝒇(𝒙𝒆; 𝑐) = 0 and 𝒙̇𝒆 = 𝟎 , then linearized ODEs at 𝒙𝒆 is: 

𝒖̇ = 𝑱 ∙ 𝒖 

In other words, 𝒙𝒆 is the “reference”, 𝒖 is the growth or shrinkage from the reference. 

Classification of equilibrium point 

Earlier and in a not-too-specific way, equilibrium point, or stability, is classified as: 

• Centers or stable equilibrium points 

• Saddle points/nodes or unstable equilibrium points. 

A few terminologies are in order. 

Linear stability: 

• The stability of a system of linear ODEs 

• The stability of a system of nonlinear ODEs which is linearized as 𝒖̇ = 𝑱 ∙ 𝒖  

The latter is also known as the local stability. 

Non-linear stability: 

The stability of a system of nonlinear ODEs, typically by making use of the Lyapunov function. 

Proper nodes and improper nodes: 

When 𝑱 has identical eigenvalues, if the corresponding eigenvectors are independent of each other, the 

node is proper; otherwise it is improper. 

The more specific classification: 

If the eigenvalues associated with 𝑱 evaluated at 𝒙𝒆 are, 𝜆1, … , 𝜆𝑛, 

 



𝑛 = 2: 

𝝀𝟏 and 𝝀𝟐 Classification Linear Stability 

Both real and positive Source Unstable 

Both real and negative Sink Asymptotically stable 

Both real, one positive, one 
negative 

Saddle Unstable 

Identical, real and positive Improper Node Unstable 

Identical, real and negative Improper Node Asymptotically stable 

Complex, with positive real part Outward spiral Unstable 

Both imaginary* Center Stable 

* Stability is indeterminate if local stability is concerned. 

Detail can be found from Boyce et al, Theorem 9.3.3 and Table 9.3.1, for example. 

𝑛 > 2: 

All eigenvalues have negative real parts, then 𝒙𝒆 is a stable equilibrium point; 

If at least one of the eigenvalues has a positive real part, then 𝒙𝒆 is an unstable equilibrium point. 

For other cases, nonlinear stability analysis is required. 

Classification of bifurcation 

Saddle point bifurcation or fold bifurcation (two equilibrium points move towards each other, collide, 

and become one; or the opposite) 

Tranncritical bifurcation (a pair of equilibrium points exchange stability; i.e., one point goes from stable 

to unstable while the other does the opposite; but the change takes place at the same parameter value) 

Pitchfork bifurcation (equilibrium points go from one to three, or the opposite; the former is known as 

supercritical pitchfork bifurcation and the latter subcritical pitchfork bifurcation) 

Andronov-Hopf bifurcation or simply Hopf bifurcation (bifurcation from periodic solutions; e.g., the 

creation or destruction of a limit cycle) 

Saddle point Bifurcation 

Consider: 

𝑥̇ = 𝑎 − 𝑥2 

where 𝑥 and 𝑎 are real 

The equilibrium points: 

𝑥 = {
0            𝑎 ≤ 0

±√𝑎     𝑎 > 0
 

The Jacobian at 𝒙𝒆: 

𝐽 = {

[0]                      𝑥𝑒 = 0

[−2√𝑎]          𝑥𝑒 = √𝑎

[2√𝑎]         𝑥𝑒 = −√𝑎

 



Eigenvalues: 

𝜆 = {

[0]                      𝑥𝑒 = 0

[−2√𝑎]          𝑥𝑒 = √𝑎

[2√𝑎]         𝑥𝑒 = −√𝑎

 

The solution to 𝒖̇ = 𝑱 ∙ 𝒖: 

𝒖(𝑡) = {

𝛼𝑒0∙𝑡                     𝑥𝑒 = 0

𝛼𝑒−2√𝑎∙𝑡           𝑥𝑒 = √𝑎

𝛼𝑒2√𝑎∙𝑡         𝑥𝑒 = −√𝑎

 

The bifurcation diagram is: 

 

Transcritical Bifurcation 

Consider: 

𝑥̇ = 𝑎𝑥 − 𝑏𝑥2 

where 𝑥, 𝑎 and 𝑏 are real, 𝑎 ≠ 0, 𝑏 > 0. The parameter is 𝑎/𝑏. 

The equilibrium points: 

𝑥𝑒 = 0 and 
𝑎

𝑏
 

The Jabocian at 𝑥𝑒: 

𝑱 = {
[𝑎]        𝑥𝑒 = 0

[−𝑎]    𝑥𝑒 =
𝑎

𝑏

 

Eigenvalues: 

𝜆 = {
𝑎        𝑥𝑒 = 0

−𝑎     𝑥𝑒 =
𝑎

𝑏

 

The solution to 𝒖̇ = 𝑱𝒖: 

𝑢(𝑡) = {
𝛼𝑒𝑎𝑡        𝑥𝑒 = 0

𝛼𝑒−𝑎𝑡     𝑥𝑒 =
𝑎

𝑏

 

The bifurcation diagram is: 

 



Pitchfork bifurcation 

Consider: 

𝑥̇ = 𝑎𝑥 − 𝑏𝑥3 

Where 𝑥, 𝑎 and 𝑏 are real, 𝑎 ≠ 0, 𝑏 > 0. The parameter is 𝑎/𝑏. 

The equilibrium points: 

𝑥𝑒 = {

0            𝑎𝑛𝑦 𝑎

±√
𝑎

𝑏
     𝑎 > 0

 

The Jabocian at 𝑥𝑒: 

𝑱 = {

[𝑎]        𝑥𝑒 = 0

[−2𝑎]         𝑥𝑒 = ±√
𝑎

𝑏

 

Eigenvalues: 

𝜆 = {

𝑎        𝑥𝑒 = 0

 −2𝑎       𝑥𝑒 = ±√
𝑎

𝑏

 

The solution to 𝒖̇ = 𝑱𝒖: 

𝑢(𝑡) = {

𝛼𝑒𝑎𝑡        𝑥𝑒 = 0

𝛼𝑒−2𝑎𝑡          𝑥𝑒 = ±√
𝑎

𝑏

 

The bifurcation is:  

 
  



Unforced and Undamped Duffing Oscillator: 

𝑥̈ + 𝑎𝑥 + 𝛽𝑥3 = 0 

𝛽 > 0 or hardening: 

• 𝑂 is a center, or a stable equilibrium point. 

 

𝛽 < 0 or softening: 

• Saddle points (or nodes) and separatrices: 

Saddle points (or nodes) are unstable equilibrium points. 

Separatrix refers to the boundary separating different modes of vibrations 

 
• The two situations: 

1) Continuous, or closed curves inside the separatrices; or 

2) Curves “running off” to infinity outside the separatrices 

 



Softened Duffing oscillator: 

𝑥̇ + 𝑎𝑥 + 𝛽𝑥3 = 0,     where 𝛼 ≥ 0, 𝛽 < 0  

Define: 

𝑥 = {
𝑥
𝑥̇
} = {

𝑥
𝑦} 

The first order ODEs 

𝑥 = {
𝑥̇
𝑦̇
} = {

𝑦

−𝛼𝑥 − 𝛽𝑥3} 

The equilibrium points: 

𝒙𝒆 = {
0
0
} , 𝒙𝒆 = {√

𝛼

𝛽

0

} , 𝒙𝒆 = {
−√

𝛼

𝛽
 

0

} 

Jacobians: 

𝑱 = [
0 1

−𝛼 − 3𝛽𝑥2 0
] 

∴ 𝑱 = [
0 1

−𝛼 0
] , 𝑱 = [

0 1
2𝛼 0

] , 𝑱 = [
0 1
2𝛼 0

] 

Eigenvalues: 

𝜆 = {
−√𝛼𝑗

√𝛼𝑗
} , 𝜆 = {

−√2𝛼𝑗

√2𝛼𝑗
} , 𝜆 = {

−√𝛼2𝑗

√2𝛼𝑗
}  

 

 

Classification: 

𝒙𝒆 = {
0
0
}      Center 

𝒙𝒆 = {√
𝛼

𝛽

0

} , 𝒙𝒆 = {
−√

𝛼

𝛽
 

0

}      Saddle Points 

 

 

 

 

 


