
What can be revealed by Poincaré Maps? 

Some math/definitions/explanations first. 

Mathematically speaking, a Poincaré Map is a mapping 𝑥𝑘+1 = 𝑃(𝑥𝑘), 𝑥𝑘 , 𝑥𝑘+1 ∈ 𝑃, 𝑘 = 1, 2, 3, … 

1) 𝑥 is a fixed point is 𝑥 = 𝑃(𝑥). 

 
Courtesy of Practical Numerical Algorithms for Chaotic Systems, Parker & Chua, 1989 

 

2) The set of sampled points {𝑥1, 𝑥2, … , 𝑥𝑘} is a period−𝐾 closed orbit, if 𝑥𝑘+1 = 𝑃(𝑥𝑘)  

for 𝑘 = 1, 2, … , 𝐾 − 1 and 𝑥1 − 𝑃(𝑥𝐾) 

 

3) Quasi-periodic solution is the sum of finite numbers of periodic solutions, each having a frequency 

that is an integer combination of frequencies taken from a finite base set. 

For example, 𝑥(𝑡) = 𝐴𝑐𝑜𝑠(2𝑡) + 𝐵𝑐𝑜𝑠(√2𝑡) is quasiperiodic. So is 𝑥(𝑡) = 𝐴𝑐𝑜𝑠(𝑡) + 𝐵𝑐𝑜𝑠(3√2𝑡), 

as 𝜔1/𝜔2 is an irrational number. Quasi-periodic is not periodic.  

4) Attractor is a set of values that a dynamic system tends to evolve toward. Examples of attractor 

include, but not limited to, a fixed point, a finite number of points, and a limit cycle. 

 

5) Strange attractor is a set of values showing fractal structure. 

 

6) Cantor set refers to the embedding structure within structure, usually appearing at finer and finer 

scales. 

Classification of Poincaré Maps (non-autonomous DEs): 

• A fixed point on the Poincaré map indicates a period-1 solution (periodic solution, only 1 point!) 

• 𝐾 distinct points on the map, indicates a 𝐾 − 𝑡ℎ subharmonic 

• One or more closed curves on the map indicate a quasi-periodic solution. 

• Fractal collection of points, strange attractor, or Cantor set indicate chaos. 



Poincaré Map Examples 

 
Multiple closed curves indicate a quasiperiodic solution 

 

3rd subharmonic (left) and Fractal collection of points (right) 

  

Many points indicating chaos (left) and another example of chaos (right) 

 



 

 

 

Cantor set (infinitely embedding structure) 

  



Poincaré Maps for Autonomous DEs 

 

As an example, consider the cases where the state variables are 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡). In this state space, 

a Poincaré section is a plane defined by: 

𝑛1𝑥 + 𝑛2𝑦 + 𝑛3𝑧 − 𝑐 = 0 

Where 𝑐 is a constant. The normal to the plane is 

𝒏 = ± {

𝑛1

𝑛2

𝑛3

} 

𝒏 will take either the positive or negative sign.  

The Poincaré map will then consist of points (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘) (𝑘 = 1, 2, 3, …) that meet eq. (1). In addition, if 

𝒔𝒌 represents the tangential vector to the trajectory at (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘) 𝒔𝒌 ∙ 𝒏 must have the same sign. 

The classification of Poincaré maps of autonomous DEs follows that for non-autonomous DEs. That is, 

• A fixed point on the Poincaré map indicates a period-1 solution (periodic solution, only 1 point!) 

• 𝐾 distinct points on the map, indicates a 𝐾 − 𝑡ℎ subharmonic 

• One or more closed curves on the map indicate a quasi-periodic solution. 

• Fractal collection of points, strange attractor, or Cantor set indicate chaos. 

Example: The Lorenz attractor is 

𝑥̇ = 𝜎(𝑦 − 𝑥) 

𝑦̇ = 𝜌𝑥 − 𝑦 − 𝑥𝑧 

𝑧̇ = 𝑥𝑦 − 𝛽𝑧 

Chaos is observed when 𝜎 = 10, and 𝜌 = 28, 𝛽 = 8/3. 

Dimension of phase space: 𝑛 = 6; 

The Poincaré section: 𝑧 = 0; 



Collected “points”: 2,699 (from negative to positive; down from 20,001 for time history computation); 

Poincaré maps are 5-dimensional plots. 

For example, 

 

 

 

 

 

 

 



More Examples 

If 𝑥 = 0 (negative to positive), 567 points 

 

If 𝑦 = 0 (negative to positive), 987 points 

 

If 𝑧 = 40 (less than to greater than), 369 points 

 

  



Lyapunov Exponents and Fractal Dimensions 

Organization of the Wolf et al.’s paper 

The paper shows that the Lyapunov exponents can be determined from a set of first-order ODEs or from 

a time series. Recorded experimental data are a time series, for example. 

Sec. 1: Introduction 

Sec. 2: Definition 

Sec. 3: Computational Aspect 
Sec. 4 – 7: Time Series (Experimental Data) 

Sec. 8: Results 
Sec. 9: Conclusions 

Appendix A: Fortran Code (Lyapunov Spectrum from computation) 
Appendix B: Fortran Code (Lyapunov Spectrum from time series) 
 

Lyapunov Exponents, the Theory 

Considering a chaotic oscillator. Due to its sensitivity on initial conditions, one can image that any two 

trajectories close to another in the 𝑛 −dimensional phase space will move exponentially away from (or 

towards) each other. 

Let 𝑑0 be a measure of the distance between the two trajectories at 𝑡0. At 𝑡,  a later time (keeping in 

mind 𝑡 − 𝑡0 should be small), the distance will grow (or shrink) following a base-2 exponential relation. 

𝑑(𝑡) = 𝑑02𝜆(𝑡−𝑡0) 

The constant 𝜆 is called the Lyapunov exponent. 

 

Similarly, areas, spheres, and hyper-spheres in the phase space may stretch or shrink. As a result, there 

are respective Lyapunov exponents to measure the extents to which the principal axes of the areas, 

spheres, and hyper-spheres, are stretched/shrunk. 



The set of Lyapunov exponents {𝜆1, 𝜆2, … , 𝜆𝑛}, where 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛 is called the Lyapunov 

spectrum. Note that 𝑛 is the dimension of the dynamic system. 

A positive Lyapunov exponent is an indicator of chaos. 

 

Lyapunov Exponents, the Computation 

How to determine the Lyapunov exponents from a set of first-order ODEs is explained in Sec. 3 of Wolf 

et al’s paper. 

One Lyapunov Exponent 

Assuming the vector 𝑿∗(𝑡) represents solutions of the first-order ODEs. They are known as the 

reference trajectory. To compute the Lyapunov exponents, small variations from the trajectory are 

given, and how the variations grow or shrink is computed.  

The small variations are denoted at 𝜹(𝑡) (a vector), and the rate of growth or shrinkage of 𝜹 is 

determined by: 

𝜹̇ ≈ 𝑱(𝑿∗)𝜹 

Where 𝑱(𝑿∗) is the Jacobian evaluated at the reference trajectory. 

Numerically, 𝑿∗ and 𝜹 are solved by ODE solver at the same time. That is, in addition to the first-order 

ODEs, the Jacobian needs to be coded and included in the “function”. 

One 𝜹(𝑡) is determined, the Lyapunov exponent is by: 

𝜆(𝑡𝑀) =
1

𝑡𝑀 − 𝑡0
∑ log2

|𝜹(𝑡𝑘+1)|

|𝜹(𝑡𝑘)|

𝑀

𝑘=1

 

The above equation has two key messages. (1) 𝜆 is a function of time, as 𝑀 gets larger and larger; (2) 

Averaging over a long period of time, or over large expanse of the phase space will give rise to a 

relatively stable 𝜆. 

Lyapunov Spectrum 



To find the Lyapunov spectrum, 𝑛 sets of 𝛿(𝑡) will be needed. They are orthonormal to each other. Or 

they are the base vectors of an 𝑛 −dimensional linear space. 

GSR (Gram-Schmidt Reorthonormalization) is employed to ensure that the 𝑛 sets of 𝛿(t) remain 

orthonormal to each other, as time evolves. Without the GSR, the 𝜆𝑖’s will become indistinguishable as 

time evolves. In other words, only the largest Lyapunov exponent (LLE) will be meaningfully computed. 

GSR can be performed at a certain fixed time interval, say, every time-step, or every 10 time-steps. 

Additionally, the 𝑛 small variation vectors are normalized (to unit vectors) at the beginning of each time 

step, to avoid overflow during the computation. 

 



ODEs and Jacobians, Examples 

The Rossler attractor: 

𝑥̇ = −(𝑦 + 𝑧) 

𝑦̇ = 𝑥 + 𝑎𝑦 

𝑧̇ = 𝑏 + 𝑧(𝑥 − 𝑐) 

The Jacobian is: 

𝐽 = [
0 −1 −1
1 𝑎 0
𝑧 0 𝑥 − 𝑐

] 

Next, the Mathieu’s equation. 

𝑥̈ + [𝑎 − 2𝑞𝑐𝑜𝑠(2𝜔𝑡)]𝑥 = 0 

Where 𝑎 and 𝑞 are constants. 

Set  

𝑥1 = 𝑥 

𝑥2 = 𝑥̇   

𝑥3 = 𝜔𝑡 

 The first-order ODEs are: 

𝑥̇1 = 𝑥2  

𝑥̇2̇ = [2𝑞𝑐𝑜𝑠(2𝑥3)𝑥 − 𝑎]𝑥1 

𝑥̇3 = 𝜔 

The Jacobian is: 

𝐽 = [
0 1 0

2𝑞𝑐𝑜𝑠(2𝑥3) − 𝑎 0 −4𝑞𝑠𝑖𝑛(2𝑥3)
0 0 0

] 

What are the ODEs needed for computing the Lyapunov spectrum? 

If 𝑛 is the number of first-order ODEs, the total number of ODEs for the spectrum is, 𝑛(𝑛 + 1). 

For the systems above, 𝑛 = 3, so 12 ODEs are needed, or 3 sets of ODEs with 3 ODEs in each set. 

For example, the first-order ODEs (for the Mathieu’s equation) 

𝑥̇1 = 𝑥2 

𝑥̇2 = [2𝑞𝑐𝑜𝑠(2𝑥3) − 𝑎]𝑥1 

𝑥̇3 = 𝜔 

Are to compute the reference trajectory 𝑿∗(𝑡). The other 𝑛 sets are to determine the three 𝜹’s by: 

𝜹̇ = 𝑱(𝑿∗)𝜹 

 

 



With 

𝛿 = [

𝑥4 𝑥7 𝑥10

𝑥5 𝑥8 𝑥11

𝑥6 𝑥9 𝑥12

] 

The initial conditions for the 𝛿′𝑠 are: 

𝛿(0) = [
1 0 0
0 1 0
0 0 1

] 

Fractal Dimensions 

Fractal dimension refers to a non-integer dimension. The idea originates from the observations that 

chaotic oscillators occupy regions of the phase space. 

Fractal dimension is used to measure the extent to which trajectories fill up a certain subspace.  

A non-integer dimension is a hallmark of a strange attractor and implies the existence of chaos. 

There are several definitions of fractal dimensions, for example, pointwise dimension, capacity 

dimension, correlation dimension, information dimension, and so on. 

Information dimension can be easily determined once the Lyapunov spectrum is known, see Eqs. (2) and 

(3) in the paper by Wolf et al. 

 

 

 


