
Review of Terminologies 

Oscillation, vibration 
An oscillation is a periodic fluctuation between two ‘things’ – it’s a general term that can refer to 

anything from a person’s decision-making process, tides, or the pendulum of a clock. 

Vibrations are oscillations of a mechanical or structural system about an equilibrium position. 

Distributed model, lumped-parameter model; or Continuous model, discrete model 
A lumped-parameter model is a system where all dependent variables are a function of time. This 

generally means solving a set of ordinary differential equations – you could also consider this to be a 

discrete model. 

On the other hand, a distributed model is a system where the dependent variables are a function of 

time and one (or more) additional spatial variables – you could also consider this to be an analog model. 

 

Degrees-of-freedom (DOFs) 
The number of degrees of freedom for a system is the number of kinematically independent variables 

necessary to completely describe the motion of every particle in the system. 

(Simple) Harmonic Motion, periodic motion 
This is a ‘all squares are rectangles, but not all rectangles are squares’ scenario. Periodic motion is 

motion repeated in equal intervals of time – consider a rocking chair, a bounding ball, or a tuning fork. 

The undamped motion of a SDOF system is known as simple harmonic motion – that is, simple harmonic 

motion is a special case of periodic motion where the restoring force on the moving object is directly 

proportional to the object’s displacement magnitude and acts towards to object’s equilibrium position, 

resulting in an oscillation that continues indefinitely (so long as it is uninhibited by friction or other 

means of dissipating energy)  

Amplitude, period, circular frequency (or frequency) 
The amplitude of a vibration is the maximum displacement from equilibrium. The period is the time 

required to execute one cycle – it’s usually measured in seconds.  

The reciprocal of the period is the frequency and is the number of cycles executed in one second. The 

units for frequency are cycles/second, or more accurately the inverse of a second, which is known as 



Hertz (Hz). Don’t confuse this with the circular frequency, which is also referred to as frequency. The 

circular frequency (or angular frequency) is the rate at which an angle is changing and is measured in 

rad/s or revolutions per minute (rpm). 

Damping coefficient, damping ratio, critical damping, logarithmic decrement 
The damping coefficient of a system is a measure of how quickly it returns to rest as the frictional force 

dissipates its oscillation energy.  

The damping ratio, 𝜁, describes how 

oscillations in a system decay after a 

disturbance – it’s defined as the ratio of 

the damping coefficient of the system’s 

differential equation to the critical 

damping coefficient. There are four 

different cases that are represented by 

the damping ratio:  

𝜁 = 0: undamped 

𝜁 < 1: underdamped 

𝜁 = 1: critically damped 

𝜁 > 1: overdamped 

Critical damping exists between the overdamped and underdamped cases, where the system returns to 

equilibrium in the minimum amount of time – the system fails to overshoot and not a single oscillation is 

made. 

Logarithmic decrement, 𝛿, is defined for underdamped free vibrations as the natural logarithm of the 

ratio of the amplitudes of vibration on successive cycles. Which doesn’t read very well, but if you have a 

vibration with decreasing amplitudes, it’s the natural log of the ratio at which the amplitudes are 

decreasing. 

Free vibration, forced vibration, self-excited vibration 
If the vibrations are initiated by an initial energy present in the system and no other source is present, 

the resulting vibrations are called free vibrations. That is, it’s a term that’s generally used to indicate 

that the vibrations present in a system are only due to the initial conditions of the system, and not from 

external sources. 

Conversely, if the vibrations are caused by external forces or motion, then the vibrations are called 

forced vibrations. 

Self-excited vibration is a little more complicated – consider systems where the exciting force is a 

function of the motion variables (displacement, velocity, or acceleration) and thus varies with the 

motion it produces (this is called coupling) – this is known as self-excited vibration. This is a wordy 

definition, but consider examples like friction-induced vibration in vehicle clutches and brakes, or flow-

induced vibration in circular saws and CDs. 

 



Transient response, steady state response 

The behavior of the system as time gets very large (read: infinite) is called the steady state response. It’s 

independent of the initial position and velocity of the mass. The behavior of the system while it is 

approaching the steady state is called the transient response. 

Time domain, frequency/spectrum domain 

A time domain graph shows how a signal changes over time, whereas a frequency-domain graph shows 

how much of the signal lies within each given frequency band over a range of frequencies. The 

‘spectrum’ of frequency components is the frequency-domain representation of the signal. 

State, state variables, state space model 
A state space model is a representation of the dynamics of an 𝑁𝑡ℎ order system as a first order 

differential equation in an 𝑁 −vector. This 𝑁 −vector is called the state, and the variables contained 

within the state space model are the state variables. 

Phase Portrait 
A phase portrait is a geometric representation of the trajectories of a dynamical system in the phase 

plane.  

For example, consider this phase portrait for a pendulum – where the x-axis corresponds to the angle of 

the pendulum, and the y-axis corresponds to the angular velocity. 

 

(Amplitude) Resonance 
Resonance refers to the phenomenon when a quantity (or a state) becomes large. 

In addition to amplitude resonance, there are also velocity resonance or phase resonance, and energy 

resonance, and so on. 

FFT, Nyquist Frequency 
Nyquist frequency is the minimum sampling frequency without introducing errors. It should be (at least) 

twice the highest frequency present in the signal. 



Chapter 1 – Introduction 

1.3 Generalized Coordinates 
They are a set of coordinates (𝑞1, 𝑞2, 𝑞3, … ) that describe the configuration (or positions) of a dynamic 

system. 

For any given system, the choice of generalized coordinates is not unique, but the number of 

independent coordinates is unique. 

The number of independent coordinates equals the Degrees-of-Freedom (DOFs) needed/used to 

completely specify the configuration of the system. 

When determining degrees of freedom, check if both ends of a ‘device’ would have the same 

displacement. If they don’t, then it’s a new degree of freedom – such as when slip exists or a spring. 

Example 1.1 

(TODO) 

Figure 1.5  

 

(1) Cables are inextensible and no slips between pulley and cables 

(2) Cables are inextensible with slips between pulley and cables 

(3) Cables are extensible (modeled as springs) and no slips 

(4) Cables are extensible with slips 

Parts (1) and (2) belong to (a) 

Parts (3) and (4) belong to (b) 



 

Determine DOF and 𝑞𝑖 (coordinates) of the cases above. 

(1) DOF = 1 ; 𝑥 or 𝑦 or 𝜃 

(2) DOF = 3; 𝑥, 𝑦, 𝜃 or 𝑢1, 𝑢2, 𝜃 

(3) DOF = 3; 𝑥, 𝑦, 𝜃 

(4) DOF = 5; 𝑥, 𝑦, 𝜃, 𝑢1, 𝑢2 (where 𝑢𝑖 is typically used for slip) 

1.7 Review of Dynamics 
1.7.1 Kinematics 

Rigid bodies in general motion 

1.7.2 Kinetics 

Newton’s 2nd law of motion 

For a particle, eq. (1.32) 

∑𝐹 = 𝑚𝑎 

For a rigid body in general motion, eqs. (1.33), (1.34) 

∑𝐹 = 𝑚𝑎̅      |    ∑𝑀𝐺 = 𝐼𝛼̅  

For a rigid body in fixed-axis rotation, eqs. (1.33), (1.35) 

∑𝐹 = 𝑚𝑎̅      |     ∑𝑀𝑜 = 𝐼𝑜𝛼 

The difference between (1.34) and (1.35): 

∑𝑀𝐺 is for a rigid body undergoing planar motion – 𝐺 is the mass center of the rigid body, and 𝐼  ̅is the 

mass moment of inertia about an axis parallel to the z-axis that passes through the mass center. 

∑𝑀𝑜 is used when the axis of rotation is fixed, and 𝐼𝑜 is the moment of inertia about the axis of rotation. 

1.7.3 Principle of Work and Energy 

• Kinetic Energy T: 

For a rigid body, eq. (1.38); use the first term for a particle (there are 2 terms, one for translation and 1 

for rotation) 

𝑇 + (
1

2
) 𝑚𝑣̅2 + (

1

2
) 𝐼𝜔̅2 

For a rigid body in fixed-axis rotation, eq. (1.39) 

𝑇 = 𝐼𝑜𝜔2 

• Work done by a force 𝑈𝐴→𝐵: 

On a particle or a rigid body: eq. (1.40) 

𝑈𝐴→𝐵 = ∫ 𝐹 𝑑𝜏
𝜏𝐵

𝜏𝐴

 

 



• Work done by a moment 𝑈𝐴→𝐵: 

On a rigid body: eq. (1.41) 

𝑈𝐴→𝐵 = ∫ 𝑀 𝑑𝜃
𝜃𝐵

𝜃𝐴

 

 

• Conservative Forces and Non-Conservative Forces: 

Conservative forces store and release energy. 

Typical conservative forces include spring forces (linear or nonlinear; but must be elastic), gravitational 

forces, and central forces. 

The work done by such forces is independent of the path taken from A to B. 

 

Non-conservative forces dissipate energy. 

Samples include friction and air resistance. 

The work done by such forces is dependent of the path taken from A to B. 

Potential energy function 𝑉 

𝑉 is related to conservative forces, and the work done by such forces. 

For example: 

The potential energy of a gravitational force is 𝑉 = 𝑚𝑔ℎ, where ℎ is positive if above the datum. 

The potential energy of a linear spring is, 𝑉 = (1/2)𝑘𝑥2, where 𝑥 is the elongation or compression from 

the natural length of the spring. 



• Conservative force in terms of 𝑉: 

𝐹⃗ = −∇𝑉 = − (
𝛿

𝛿𝑥
𝑖 +

𝛿

𝛿𝑦
𝑗 +

𝛿

𝛿𝑧
𝑘⃗⃗) 𝑉 

• Work done by a conservative force: 

𝑈𝐴→𝐵 = 𝑉𝐴 − 𝑉𝐵 

• The principle of energy conservation, eq. (1.45) 

𝑇𝐴 + 𝑉𝐴 = 𝑇𝐵 + 𝑉𝐵 

• The principle of work and energy, eq. (1.47) 

𝑇𝐴 + 𝑉𝐴 + 𝑈𝐴→𝐵,𝑁𝐶 = 𝑇𝐵 + 𝑉𝐵 

Where 𝑈𝐴→𝐵,𝑁𝐶  is the work done by non-conservative forces from 𝐴 to 𝐵. 

In general, friction contributes to 𝑈𝐴→𝐵,𝑁𝐶. However, for cases of rolling without slip, friction does no 

work. 

Examples 1.4, 1.5, and 1.6 

(TODO) 

1.7.4 Principle of Impulse and Momentum 

Definition of linear impulse 𝐼1→2 (a vector): eq. (1.48) 

𝐼𝐴→𝐵 =  ∫ 𝐹 𝑑𝑡
𝑡2

𝑡1

 

Definition of angular impulse about O, 𝐽𝑂,1→2: eq. (1.49) 

𝐽𝑜1→2
= ∫ ∑𝑀𝑜 𝑑𝑡

𝑡2

𝑡1

 

Definition of linear momentum 𝐿 (a vector): eq. (1.50) 

𝐿 = 𝑚𝑣̅ 

Definition of angular momentum about G, 𝐻𝐺: eq. (1.51) 

𝐻𝐺 = 𝐼𝜔̅ 

The principle of linear momentum: eq. (1.52) 

𝐿1 + 𝐼1→2 = 𝐿2 

 

The principle of angular momentum: eq. (1.53) 

𝐻𝐺1
+ 𝐽𝐺1→2

= 𝐻𝐺2
 



1. 8 Two Benchmark Examples  
Problem 1.18 

(TODO) 

Problem 1.20 (changed the applied force) 

(TODO) 

Problem 1.22 

(TODO)  

 



Chapter 2 Modeling of SDOF Systems 

2.1 Introduction 
Key components in a SDOF system: 

Inertia element that has mass and stores kinetic energy; 

Stiffness element that stores and releases potential energy; 

Damping element that dissipates energy. 

And source of work or energy (i.e., the excitation) 

The chapter cover the principles behind the determination of the key components in a SDOF system, 

with the objective of modeling a SDOF system with equivalent mass, equivalent stiffness, equivalent 

damping, and equivalent excitation. 

Principles reviewed in Ch. 1: Newton’s laws; Work & energy; and Impulse & Momentum. 

Topics covered: 

2.2-2.4: stiffness 

2.5-2.6: damping 

2.7: inertia/mass 

2.8: external sources 

2.9: FBD method (or Newton’s 2nd law) 

2.12: equivalent system method 

2.14: further examples 

Additional topics: 

2.10: static deflection & gravity 

2.13: benchmark example 

2.15: chapter summary 

2.2 Springs 

2.2.1 Introduction 
1. translational springs 

𝐹 = 𝑓(𝑥): spring force 

Where 𝑥 is the stretch or compression from the natural length. 

For spring materials having the same properties in tension and under compression, 𝑓(𝑥) is an odd 

function. 

Or: 𝑓(−𝑥) = −𝑓(𝑥) 

Taylor expansion of 𝑓(𝑥) about 𝑥 = 0, then 

𝐹 = 𝑓(𝑥) ≈ 𝑘1𝑥 + 𝑘3𝑥3 + 𝑘5𝑥5 + ⋯        (2.3) 

re. Eq. (2.3): 

i) All springs are inherently nonlinear; and 

ii) Linear springs result from the assumption of small 𝑥 



For linear springs, 

𝐹 = 𝑓(𝑥) ≈ 𝑘1𝑥      (2.4) 

2. work and energy for translational springs 

A particle is attached to a spring. The work done by the spring force, on the particle, when the particle 

moves from 𝑥1 to 𝑥2 (for the particle) is: 

𝑈1→2 = (
1

2
) 𝑘𝑥2

2 − (
1

2
) 𝑘𝑥1

2        (2.5) 

Consider: 

 

 

 

𝑈1→2 = ∫ −𝑓(𝑥) 𝑑𝑥
𝑥2

𝑥1

 

If 𝑓(𝑥) = 𝑘1𝑥 + 𝑘3𝑥3 

If 𝑓(𝑥) = 𝑘𝑥, then 𝑈1→2 is by Eq. (2.5) 

The potential function 𝑉 (for the spring) is: 

𝑉(𝑥) = (
1

2
) 𝑘𝑥2     (2.6) 

Eqs. (2.5) and (2.6): for linear translational springs only. 

3. torsional springs 

Eqs. (2.7) and (2.8): for linear torsional springs only. 

 

𝑀 = 𝑘𝑡𝜃            (2.7) 

        𝑉 =
1

2
𝑘𝑡𝜃2            (2.8) 

2.2.2 Helical coil springs 

Eq. (2.11) relates spring constant 𝑘 to coil spring material and dimensions. 

                       𝑘 =
𝐺𝐷4

64𝑁𝑟3                      (2.11) 

It is a formula commonly seen in machine design texts. 

2.2.3 Elastic elements as springs 

This sub-section deals with spring constant (or stiffness) when the spring is, for example, an axially 

loaded rod, a straight member in torsion, a simply supported beam, and so on. 

Stiffness of axially loaded members: Figure 2.3: 

 



Stiffness of beams and frames: 

i) k = F/∆: ∆ must be the deflection in the same direction of 𝐹, and at the point of application of 

𝐹; 

ii) Generalized interpretation of 𝑘 = 𝐹/∆: 𝐹 can be replaced by moment 𝑀; ∆ represents the 

angular deflection at the point of application of 𝑀 and in the same sense of 𝑀; 

iii) Eqs. (2.19) and (2.20): both involve 𝜔(𝑧) which is the deflection due to a unit load at 𝑧; and  

iv) Table 𝐷. 2.: list of 𝜔(𝑧), given as 𝑦(𝑧) on Table D.2 

 

 

 

 

Stiffness of circular shafts: 

i) See top portion of p. 62 

2.2.4 Static deflection 

p. 61 Figure 2.5, Eq. (2.23) 

2.3.1 Parallel combination 

 

 

2.3.2 Series combination 

 

 

Notes on Table D.2 

Table D.2 (uniform beam, unit concentrated load at 𝓏 = 𝑎) 

𝑦(𝓏) =
1

𝐸𝐼
[
1

6
(𝓏 − 𝑎)3𝑢(𝓏 − 𝑎) +

1

6
∑ 𝑅𝑖(𝓏 − 𝓏𝑖)3

𝑛

𝑖=1

𝑢(𝓏 − 𝓏𝑖) + 𝐶1

𝓏3

6
+ 𝐶2

𝓏2

2
+ 𝐶3𝓏 + 𝐶4]  

Referring to Figure D.1 

 𝓏𝑖  is the 𝑧 −coordinate of the 𝑖 −th support (excluding the first of the left support) 

𝑢(𝓏 − 𝑎) is the unit step; i.e. 

𝑢(𝓏 − 𝑎) = {
1      𝓏 > 𝑎
0      𝓏 ≤ 𝑎

 

 

 

  



Example 2.4 

 

 

 

𝑘𝑏 =? 

𝑘𝑏 =
1

𝜔(𝑎)
 

𝐸 = 210 𝐺𝑃𝑎 

𝐼 = 5 ∙ 10−4 𝑚4 

Using Table D.2 

Case 6: 

𝑎 = 2 

𝓏1 = 3 

And: 

𝑅1 = −
2

3
 

𝐶1 = −
1

3
 

𝐶2 = 𝐶4 = 0 

𝐶3 = − (1 −
𝑎

𝓏1
)

𝓏1
2

6
[(1 −

𝑎

𝓏1
)

2

∙ 𝑢(𝓏1 − 𝑎) − 1] 

∴ 𝑢(3 − 2) = 𝑢(1) = 1 

∴ 𝐶3 = (
4

9
) 

∴ 𝑦(𝓏) =
1

𝐸𝐼
[
1

6
(𝓏 − 2)3𝑢(𝓏 − 2) +

1

6
(−

2

3
) (𝓏 − 3)2𝑢(𝓏 − 3) + (−

1

3
)

𝓏3

6
+ 0 + (

4

9
) 𝓏 + 0] 

Now 𝓏 = 𝑎 = 2 (terms highlighted turn to zero) 

∴ 𝑦(𝓏) =
1

𝐸𝐼
[
1

6
(0)3𝑢(0) +

1

6
(−

2

3
) (−1)2𝑢(−1) + (−

1

3
)

(2)3

6
+ 0 + (

4

9
) (2) + 0] 

∴ 𝜔(𝓏) = 𝑦(𝓏) =
1

𝐸𝐼
[0 + 0 −

4

9
+ 0 +

8

9
+ 0] 

∴
4

9𝐸𝐼
 

𝑘𝑏 =
1

𝜔(2)
=

9𝐸𝐼

4
= 2.3625 ∙ 108  (

𝑁

𝑚
) 

Choose 

𝑘 = 1 ∙ 108  (
𝑁

𝑚
) 

Then 

𝑘𝑒𝑞 = (
1

𝑘𝑏
+

1

𝑘
)

−1

= 0.7026 ∙ 108 (𝑁/𝑚) 



Example 2.4 (d) 

 

𝑥 =
𝐹𝐿

𝐸𝐴
 

This is no longer applicable (𝐸𝐴 is no longer constant) 

 

∴ 𝑥 = ∫
𝐹

𝐸𝐴(𝑧)
 𝑑𝑧

𝑙

0

 

By integral approach: 

𝑘 = 32.568 ∙ 106 (𝑁/𝑚) 

Using 𝐴𝑎𝑣: 

𝑘 = 30.7125 ∙ 106 (𝑁/𝑚) 

  



2.3.3 General Combination 

The system has various springs, translational and/or torsional. The 𝑖-th spring has potential energy 

(1/2)𝑘𝑖𝑥𝑖
2, where 𝑘𝑖 and 𝑥𝑖 should be interpreted in the general sense. 

Total potential energy in the system is: 

𝑉 = ∑(1 2⁄ )𝑘𝑖𝑥𝑖
2 

For the equivalent spring 𝑘𝑒𝑞, the generalized coordinate is 𝑥. Each 𝑥𝑖 is assumed directly proportional 

to 𝑥. Then: 

𝑉 = (1 2⁄ )𝑘𝑒𝑞𝑥2 

Therefore 

𝑘𝑒𝑞𝑥2 = ∑𝑘𝑖𝑥𝑖
2 

And 

𝑘𝑒𝑞 = ∑𝑘𝑖 (
𝑥𝑖

𝑥
)

2

 

Note: each 𝑥𝑖/𝑥 is a constant 

Example 2.5 

On a horizontal plane 

 

 

Determine: 

(1) 𝑘𝑒𝑞 in terms of 𝑥 

(2) 𝑘𝑒𝑞 in terms of 𝜃  

 



Solution: 

∴ 𝑛𝑜 𝑠𝑙𝑖𝑝𝑠 

∴ 𝑥 = 𝑟𝜃 

𝑦 = (
3

2
) 𝑟𝜃 

𝑦 = (
3

2
) 𝑥 

(1) 𝑘𝑒𝑞 in terms of 𝑥 

𝑉 = (
1

2
) (3000)𝑥2 + (

1

2
) (1000)𝑦2 

= (
1

2
) (3000)𝑥2 + (

1

2
) (1000) (

9

4
) 𝑥2 

= (
1

2
) (3000 +

9

4
∙ 1000) 𝑥2 

∴ 𝑘𝑒𝑞 = 5,250 (𝑁/𝑚) 

(2) 𝑘𝑒𝑞 in terms of 𝜃 

𝑉 = (
1

2
) (3000)𝑥2 + (

1

2
) (1000)𝑦2 

= (
1

2
) 𝑘𝑒𝑞𝜃2 

𝑘𝑒𝑞 = 52.5 (𝑁 ∙ 𝑚/𝑟𝑎𝑑) 

2.4 Other sources of potential energy 

2.4.1 Gravity 

It is a conservative force 

𝑉 due to gravity is: 

𝑉 = 𝑚𝑔ℎ 

Where ℎ is the positive if the particle relative to the datum. ℎ is positive if the particle is positioned 

above the datum, and ℎ is negative if positioned below. 

Example 2.6 (A pendulum, 3 choices of datum) 

𝑉 due to spring force as well as gravity: 

𝑉 = 𝑉𝑠𝑝𝑟𝑖𝑛𝑔 + 𝑉𝑔𝑟𝑎𝑣𝑖𝑡𝑦 

As an example, a mass (i.e. a particle) is suspended from a spring (Figure 2.15) 



 

• If datum is located at the static equilibrium position: 

𝑉 = (
1

2
) 𝑘(∆𝑠𝑡 + 𝑥)2 − 𝑚𝑔𝑥 

• The work done (by spring force and gravity, on the particle) from 0 to 𝑥 is: 

𝑈1→2 = 𝑉1 − 𝑉2 

• The principle of energy conservation can be more conveniently expressed as: 

𝑇1 + 𝑉1 = 𝑇2 + 𝑉2 

→ 𝑇1 − 𝑇2 = −𝑈1→2 = (
1

2
) 𝑘𝑥2 

As long as 𝑥 is measured from the static equilibrium position. 

Note: Static deflection is not always by ∆𝑠𝑡= 𝑚𝑔/𝑘, see for example, Example 2.8 and Problem 2.18. 

2.4.2 Buoyancy 

If a floating or submerged object has constant cross-section, buoyancy functions very much like the 

linear translational spring. 

𝜌: mass density of fluid per unit volume, in 𝑘𝑔/𝑚3 

𝐴: cross-sectional area of the object 

Then spring constant is:  

𝑘 = 𝜌𝑔𝐴 

The work done by buoyancy and gravity on the object is: 

𝑈1→2 = − (
1

2
) 𝑘𝑥2 

Where 𝑥 is measured from the static equilibrium position. 

Note: static deflection is not by ∆𝑠𝑡= 𝑚𝑔/𝑘 when buoyancy is involved.  

2.5 Viscous Damping 

Viscous damping force has a magnitude that is directly proportional to the velocity. 



𝐹 = 𝑐𝑣: 𝑐 is the (translational) damping coefficient;  

Figure 2.20; eq. (2.37) 

Or, 

𝑀 = 𝑐𝑡𝜃̇:  𝑐𝑡 is the (torsional) damping coefficient; 

Figure 2.21; eq. (2.42) 

Direction of viscous damping force: opposite to 𝑣 or 𝜃̇ 

Schematic representation: 

 

Devices to achieve viscous damping: the dashpot (Figure 2.19); the piston-cylinder damper (Figure 2.20); 

the torsional viscous damper (Figure 2.21). 

Example 2.9 

  



2.6 Energy Dissipated by Viscous Damping 

Viscous damping force is non-conservative. 

The dissipated energy is measured by work done, see eq. (2.44) 

 

Energy dissipated by a system of dampers: eq. (2.45) 

 

Equivalent damping coefficient 𝑐𝑒𝑞 in terms of generalized coordinate 𝑥: 

• 𝑥̇ and 𝑥𝑖̇ are directly proportional to each other (i.e., 
𝑥̇𝑖

𝑥̇
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝛾𝑦) 

∫ −𝑐𝑖𝑥̇𝑖 𝑑𝑥𝑖

𝑥𝑖

0

 

Consider: 

𝑥̇𝑖 = 𝛾𝑖 ∙ 𝑥̇ 

𝑥𝑖 = 𝛾𝑖 ∙ 𝑥 

= ∫ −𝑐𝑖(𝛾𝑖 ∙ 𝑥̇)𝑑(𝛾𝑖 ∙ 𝑥)
𝑥

0

= ∫ −𝑐𝑖𝛾𝑖
2𝑥̇ 𝑑𝑥

𝑥

0

 

• Energy dissipation 

𝑈1→2 = ∑ ∫ −𝑐𝑖

𝑥𝑖

0

𝑥̇𝑖 𝑑𝑥𝑖 = ∑ ∫ −𝑐𝑖𝛾𝑖
2 𝑥̇𝑑𝑥

𝑥

0

 

𝑈1→2 = ∫ −𝑐𝑒𝑞𝑥̇ 𝑑𝑥
𝑥

0

 

 

 

 

 

 

 

 



Example 2.10 

 

 

Solution: 

𝑥 = 𝑟𝜃,     𝑦 = (
3

2
) 𝑟𝜃 

𝑥̇ = 𝑟𝜃̇,     𝑦̇ = (
3

2
) 𝑟𝜃̇ 

𝐶𝑒𝑞 in terms of 𝑥: 

𝑦 = (
3

2
) 𝑥,     𝑦̇ = (

3

2
) 𝑥̇ 

∴ 𝑈1→2 = ∫ −(400) (
3

2
) 𝑥̇ 𝑑 (

3

2
𝑥) +

𝑥

0

∫ −(200)𝑥̇ 𝑑𝑥
𝑥

0

 

∴ 𝑈1→2 = ∫ (−
3600

4
− 200) 𝑥̇ 𝑑𝑥

𝑥

0

 

 

𝑐𝑒𝑞 in terms of 𝜃: 

𝑈1→2 = ∫ (−400) (
3

2
) 𝑟𝜃̇ 𝑑 (

3

2
𝑟𝜃) +

𝜃

0

∫ (−200)𝑟𝜃̇ 𝑑(𝑟𝜃)
𝜃

0

 

𝑈1→2 = ∫ − (400 ∙
9

4
𝑟2 + 200𝑟2) 𝜃 𝑑𝜃̇

𝜃

0

 

 



2.7 Inertia Elements 

2.7.1 Equivalent mass 

The kinetic energy of a system of rigid bodies is 

𝑇 = ∑ (
1

2
𝑚𝑖𝑣𝑖

2 +
1

2
𝐼𝑖𝜔𝑖

2) 

Note: 

(i) Table 2.1 for centroidal moments of inertia  

(ii) If 𝑣𝑖 and 𝜔𝑖 are directly proportional to a generalized coordinate 𝑥, the kinetic energy is then, 

eq. (2.50) 

𝑇 = (
1

2
) 𝑚𝑒𝑞𝑥2̇ 

(iii) Or eq. (2.51) if the generalized coordinate is 𝜃. 

𝑇 = (
1

2
) 𝐼𝑒𝑞𝜃̇2 

Example 2.11

 

 

 

 

 



Solution:  

𝑥 in terms of 𝑦 

𝜃 in terms of 𝑦 

∴ 𝑥̇ =
2

3
𝑦̇     ;      𝜃̇ =

2

3𝑟
𝑦̇ 

𝑇 = (
1

2
) (2)𝑥̇2 + (

1

2
) (1)𝑦̇2 + (

1

2
) (0.04)𝜃2̇ 

𝑇 = (
1

2
) (2) (

4

9
) 𝑦̇2 + (

1

2
) (1)𝑦2̇ + (

1

2
) (0.04) (

4

9𝑟2
) 𝑦2̇ 

𝑇 = (
1

2
) [

8

9
+ 1 +

0.16

9(0.1)2] 𝑦̇2 

And 𝑚𝑒𝑞 =
11

3
(𝑘𝑔) 

2.7.2 Inertia effects of springs 

In reality, springs are structural components. They have mass. 

When the mass of a spring is small but not negligible, the mass of the spring is typically added to that of 

the particle or rigid body. 

𝑇 = 𝑇𝑠 +
1

2
𝑚𝑣2 =

1

2
𝑚𝑒𝑞𝑥̇2 

Figure 2.26 

𝜌 =mass density per unit length 

𝜌 ∙ 𝑙 = 𝑚𝑠 

 

 

at 𝑧, displacement is: 
𝑧

𝑙
𝑥 = 𝑢(𝑧) 

 

 

∴ 𝑑𝑇𝑠 =
1

2
(𝜌 𝑑𝑧)[𝑢̇(𝑧)]2 

∴ 𝑇𝑠 = ∫
𝜌

2

𝑙

0

 (
𝑥

𝑙
𝑧
̇

)
2

𝑑𝑧 

𝑇𝑠 =
1

2
(

𝑚𝑠

3
) ∙ 𝑥̇2 

∴ 𝑇 =
1

2
(

𝑚𝑠

2
) 𝑥̇2 + (

1

2
) 𝑚𝑥̇2 

𝑇 =
1

2
(𝑚 +

𝑚𝑠

3
) 𝑥̇2 



Example 2.13 (a beam as a spring) 

Example: Evaluate the equivalent stiffness and equivalent mass of the system shown in Figure P2.20, 

where the beam has a mass of 75 𝑘𝑔. 

 

Solution:  

𝑘𝑏: stiffness of the beam 

 

 

 

 

Table D.2, Case 1 

𝐶1 = −1 

𝐶2 = 𝑎 = 𝑙 = 3 

𝐶3 = 𝐶4 = 0 

𝑦(𝑧) =
1

6𝐸𝐼
(9. 𝑧2 − 𝑧3) 

𝜔(𝑎) = 𝑦(𝑎) = 𝑦(3) =
9

𝐸𝐼
 

∴ 𝑘𝑏 =
𝐸𝐼

9
= 19133 (𝑁/𝑚) 

𝑎𝑛𝑑 𝑘𝑒𝑞 = 𝑘 + 𝑘𝑏 = 24133 (𝑁/𝑚) 

Now, 

𝑚𝑒𝑞 = 𝑚1 + 𝑚𝑏 

Where, 

Assume 𝜌 being the mass density per unit length, such that 𝑚2 = 𝜌 ∙ 𝑙 

Dynamic deflection, in terms of (𝑧, 𝑡) 

𝑋(𝑧, 𝑡) = 𝑥(𝑡) ∙ 𝑌(𝑧) 



Where:  

𝑥(𝑡) is the response of the system 

𝑌(𝑧) is chosen as the static deflection meeting the requirement of 𝑌(𝑎) = 1. 

∴ scaling 𝑦(𝑧) such that at the tip, the static deflection is unity. 

∴ 𝑌(𝑧) = 𝑘𝑏 ∙ 𝑦(𝑧) =
1

54
(9𝑧2 − 𝑧3) 

𝑑𝑧 → 𝜌𝑑𝑧 

      [ → at 𝑧, 𝑑𝑚 has velocity of 
𝑑

𝑑𝑡
 𝑋(𝑧, 𝑡) = 𝑥̇ ∙ 𝑌(𝑧) ] 

∴ 𝑇𝑏 =
1

2
∫ 𝜌𝑌2(𝑧)

𝑙

0
𝑥̇2 𝑑𝑧 

=
𝜌𝑥̇2

2
∫ 𝑌2(𝑧) 𝑑𝑧

𝑙

0

 

=
1

2
(0.23571 ∙ 𝜌 ∙ 𝑙)𝑥̇2 

 

∴ 𝑚𝑏 = 17.679 (𝑘𝑔) 

∴ 𝑚𝑒𝑞 = 167.7 (𝑘𝑔) 

2.7.3 Added mass 

If the particle is submerged in an inviscid fluid, the movement of the particle causes movement of the 

surrounding fluid, see figure 2.29. The added mass is to include the inertia effect of the fluid. 

 

Kinetic energy of the system is: 

𝑇 = 𝑇𝑚 + 𝑇𝑓 

𝑇𝑓, the kinetic energy of the fluid, is: 

𝑇𝑓 =
1

2
𝑚𝑎𝑥̇2 

Or,  

𝑇𝑓 = (
1

2
) 𝐼𝑎𝜔2 

See Table 2.2 or 𝑚𝑎, or Table 2.3 for 𝐼𝑎. 



The equivalent mass is then 𝑚𝑒𝑞 = 𝑚 + 𝑚𝑎 or 𝐼𝑒𝑞 = 𝐼 + 𝐼𝑎.  

2.8 External Sources 

Excitation can be a force (or moment), or a motion input. 

Work done by a force moment is, eq.( 2.63) 

𝑈1→2 = ∫ 𝐹(𝑡) 𝑑𝑥
𝑥2

𝑥1

= ∫ 𝐹(𝑡)𝑥̇ 𝑑𝑡
𝑡2

𝑡1

 

Work done by a number of forces/moments is, eq. (2.64) 

𝑈1→2 = ∑ ∫ 𝐹𝑖(𝑡) ∙ 𝑥̇𝑖  𝑑𝑡
𝑡2

𝑡1

 

Assume 𝑥̇𝑖 and 𝑥̇ are directly proportional to each other 
𝑥̇𝑖

𝑥̇
= 𝛾𝑖 

= ∑ ∫ 𝐹𝑖(𝑡) ∙ 𝛾 ∙ 𝑥̇ 𝑑𝑡
𝑡2

𝑡1

 

The equivalent force is, 

∑ ∫ 𝐹𝑖(𝑡) ∙ 𝛾𝑖 ∙ 𝑥̇ 𝑑𝑡
𝑡2

𝑡1

 

∫ 𝐹𝑒𝑞(𝑡) ∙ 𝑥̇ 𝑑𝑡
𝑡2

𝑡1

 

Examples 2.14 and 2.15 

 

Summary of principles behind equivalent stiffness, damping, mass, and excitation: 

Equivalent stiffness: potential energy of the original system = potential energy of the equivalent stiffness 

Equivalent damping: energy dissipated in the original system = energy dissipated by the equivalent 

damper. 

Equivalent mass: kinetic energy of the original system= kinetic energy of the equivalent mass 

Equivalent excitation: work done by external forces (excitations) in the original system = work done by 

the equivalent excitation 

  



2.9 FBD Method 

This method combines FBD and Newton’s Laws of motion. It is the fundamental way of arriving at the 

equation of motion, or the E.O.M. 

Advantages: universal; able to deal with most engineering systems; able to determine reaction 

forces/moments in terms of the generalized coordinate. 

Disadvantages: tedious, involving many equations when dealing with a system of rigid bodies. 

 

2.12 Equivalent Systems Method 

It is based on the general form of the principle of work and energy: 

𝑇1 + 𝑉1 + 𝑈1→2 = 𝑇2 + 𝑉2 

Note that 𝑈1→2,𝑁𝐶  is usually how it’s written, where NC is non-conservative 

Where 𝑈1→2 includes the work done by the viscous damping forces and the excitation forces. 

State 1: pertaining to a specific or known configuration, for example, the static equilibrium 

configuration. That is, 

𝑇1 = 𝑐𝑜𝑛𝑠𝑡.   ;    𝑉1 = 𝑐𝑜𝑛𝑠𝑡. 

State 2: pertaining to an arbitrary configuration. That is, 

𝑇2 = 𝑇(𝑡)  ;    𝑉2 = 𝑉(𝑡) 

Then, 

𝑇1 + 𝑉1 + 𝑈1→2 = 𝑇 + 𝑉 

And 

𝑑

𝑑𝑡
(𝑇 + 𝑉) =

𝑑

𝑑𝑡
(𝑈1→2) 



𝑇 =
1

2
𝑚𝑒𝑞𝑥̇2 

𝑑𝑇

𝑑𝑡
=

1

2
𝑚𝑒𝑞2𝑥̇𝑥̈ 

Following the few steps shown in eqs. (2.78) through (2.83), eq. (2.84) which is the equation of motion, 

is then obtained: 

𝑚𝑒𝑞𝑥 + 𝑐𝑒𝑞𝑥̇ + 𝑘𝑥 = 𝐹𝑒𝑞(𝑡) 

Or Eq. (2.85) if the generalized coordinate is an angle. 

Examples 2.25~2.29 

(TODO) 

Static deflection and gravity (for Section 2.9 and Section 2.12) 

 

 

 

(a) Rolling without slip 

2.12 𝑚𝑒𝑞: need 𝑇 

𝑇 =
1

2
𝑚𝑥̇2 +

1

2
𝐼𝜃̇̅2 



𝑇 =
1

2
𝑚𝑥̇2 +

1

2
𝐼 ̅(

1

2
𝑚𝑅2) (

𝑥̇

𝑅
)

2

 

𝑇 =
1

2
(

3

2
𝑚) 𝑥̇2 

∴ 𝑚𝑒𝑞 =
3

2
𝑚 

∴ 𝑚𝑒𝑞𝑥̈ + 𝑐𝑒𝑞𝑥̇ + 𝑘𝑒𝑞𝑥 = 0 

 

 



2.11 Small Angle or Displacement Assumption 
Structural element (shaft, rod, beam, etc.) as a spring: 

If the material is metal, the linear spring assumption is valid. 

What if the material is, say, plastic or composites, or others? The linear assumption needs to be 

thoroughly explained. For example, plastic is nonlinear even when deformation is small. 

Example 2.23 

(a pendulum) 

 

Without any assumption, the E.O.M. is: 

𝜃̈ =
𝑔

𝐿
sin 𝜃 = 0 

Which is nonlinear. The Taylor expansion on sin 𝜃 is: 

sin 𝜃 = 𝜃 −
1

6
𝜃3 +

1

120
𝜃5 … 

If the first two terms are kept, the result is the softened Duffing oscillator. 

Figure 2.42 

 

𝐿: length of the bar 

𝑙: natural length of the spring 

Under small angle assumption, the deformation of the spring is 𝛿 = 𝐿𝜃. 

If 𝜃 is large, then the deformation will be: 

𝛿 = √(𝐿 − Lcos 𝜃)2 + (𝑙 + 𝐿𝑠𝑖𝑛𝜃)2 − 𝑙  

 



Textbook Corrections (for this Chapter) 

A2 

Table D.2, case 5 

𝐶2 =
𝑧1

2
(1 −

𝑎

𝑧1
) [1 − (1 −

𝑎

𝑧1
)

2

𝑢(𝑧1 − 𝑎)] 

 

 

𝐸. 𝑂. 𝑀 is: 

(
𝐼

𝑅2
+ 𝑚) 𝑥̈ + 3𝑐𝑥̇ + 2𝑘 (1 +

𝑟

𝑅
)

2

𝑥 = 0 

(c) is correct 

Rolling w/ slip 

Spring force is:  

2𝑘(𝑥 + 𝑟𝜃) 

And: 

𝜃 ≠ 𝑥/𝑅 

Friction is 𝑓 = ±𝜇𝑚𝑔 

∴ it’s a 2 DOF system; DOFs are 𝑥 and 𝜃 

{

𝑚𝑥̈ + 2𝑐𝑥̇ + 2𝑘𝑥 + 2𝑘𝑟𝜃 = ±𝜇𝑚𝑔
1

2
𝑚𝑅2𝜃̈ + 2𝑘(𝑥 + 𝑟𝜃)𝑟 = ±𝜇𝑚𝑔𝑅

 

Rolling w/ slip but keeping SDOF. 



Rolling w/ slip but keeping SDOF 

Spring force is: 

2𝑘 (1 +
𝑟

𝑅
) 𝑥 

∴ 𝑚𝑥̈ + 2𝑐𝑥̇ + 2𝑘𝑥 + 2𝑘 (1 +
𝑟

𝑟𝑅
) 𝑥 = ±𝜇𝑚𝑔𝑅 

Then: 

1

2
𝑚𝑅2𝜃̈ = −2𝑘𝑟 (1 +

𝑟

𝑅
) 𝑥 ± 𝜇𝑚𝑔𝑅 

 

(g) should read: 

35𝑥̈ + 2000𝑥̇ + 3.422(105)𝑥 

= {
−85.84     ;      𝑥̇ > 0
+85.84     ;      𝑥̇ < 0

 

  



The following presentation is based on Chaotic vibrations An Introduction for Applied Scientists and 

Engineers, F.C. Moon, Wiley, 2004. 

Definition of chaos 

Chaos is one of the scientific concepts that enter the popular culture. 

In the non-scientific world, chaos means without pattern, out of control.  

In the scientific world, there is no universally agreed definition of chaos. 

However, a widely accepted working definition is: 

Chaos is the aperiodic time-asymptotic behavior in a deterministic system which exhibits 

sensitive dependence on initial conditions. 

Misconceptions 

• Is chaotic vibration a random vibration? 

Random vibration means that the true values of input forces and/or systems parameters are unknown. 

In other words, probability and its distribution are needed for solving random motion. 

Example: earthquakes, environmental sounds 

Chaotic vibration is a deterministic phenomenon. The key characteristics is the sensitivities. 

• What is the necessary condition for chaotic motions? 

Nonlinearity in the system. 

However, not all nonlinear systems will be chaotic. 

• Is chaotic motion associated with high-dimension, and/or high-order differential equations (DEs)? 

Not necessarily. 

For example, the three well-studied chaotic systems are, 

Duffing oscillator: 

𝑥̈ + 2𝛾𝑥̇ + 𝛼𝑥 + 𝛽𝑥3 = 𝑓(𝑥) 

van der Pol (VDP) oscillator: 

𝑥̈ − 𝛾𝑥̇(1 − 𝛽𝑥2) + 𝛼𝑥 = 𝑓(𝑡) 

Lorenz attractor: 

𝑥̇ = 𝜎(𝑦 − 𝑥) 

𝑦̇ = 𝜌𝑥 − 𝑦 − 𝑥𝑧 

𝑧̇ = 𝑥𝑦 − 𝛽𝑧  

These well-known systems will be examined later during the course of this course (EMEC 5671 FC). 

 



Three main elements in the working definition of chaos 

1. Aperiodic time-asymptotic behavior. This implies the existence of phase-space trajectories that do 

not settle down to fixed points or periodic orbits. 

 

Courtesy of Chaotic vibrations An Introduction for Applied Scientists and Engineers, F.C. Moon  

(Figure 2.10) 

2. Deterministic. This implies that the equations of motion of the system possess no random inputs or 

parameters. As a result, the irregular behavior of the system arises from non-linear dynamics. 

 

3. Sensitive dependence on initial conditions. This implies that nearby trajectories in phase-space 

separate exponentially fast in time: i.e., that the system has a positive Lyapunov exponent. 

 

There are systems whose dynamic responses are sensitive to parametric changes in system parameters. 

Bifurcation is a means to investigate the effects of parametric changes on a system’s dynamics, and if 

parametric changes lead to chaos. 



What is bifurcation? The definition will be given later. 

But as a simple example, lets consider the roots of a quadratic equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 

(𝑤ℎ𝑒𝑟𝑒 𝑎 ≠ 0) 

(1) Two identical roots, if √𝑏2 − 4𝑎𝑐 = 0 

(2) Two distinct real roots, if √𝑏2 − 4𝑎𝑐 > 0 

and 

(3) Two complex roots, if √𝑏2 − 4𝑎𝑐 < 0 

Let 𝑎 = 1, 𝑏 = 2, 𝑐 = [−5, 5] 

𝑐 < 1, two distinct real roots 

𝑐 = 1, two identical real roots 

𝑐 > 1, two complex roots 

Bifurcation diagram: 

 

Cascade bifurcation: 

 

Courtesy of Chaos and Its computing paradigm, D. Kuo, IEEE Potentials, April/May 2005, pp. 13-15 



Why should engineers study chaos? 

To know the source of chaos. Chaos can arise in low-order deterministic nonlinear systems. 

To learn the tools within the chaos theory to (1) detect chaotic vibrations in physical systems, and (2) to 

quantify the chaos. 

The know the flipped side of chaos suppression. Chaos can be suppressed, but some feedback control 

forces are known to cause chaos. 

To incorporate chaos in design. Engineers have been using factor of safety to account for unknowns in 

engineering design. The unknowns can be caused by noises which in turn can lead to long term 

unpredictability. 

Why the title nonlinear vibrations and chaos? 

The necessary condition for chaotic vibration is nonlinearity in the system. 

However, not all nonlinear vibration is chaotic. 

Why linear vibrations first? 

Linear vibrations are the foundation for nonlinear vibrations. 

The emphasis has been on the modeling of SDOF linear vibration systems; i.e., the mass, spring, damper, 

and excitation. Another emphasis was the use of energy (kinetic, potential, …) and work done (by non-

conservative forces in particular) in problem-solving. 

It is also important to understand the simplifications or assumptions made to obtain linear systems. 

Examples of Nonlinear Vibrations 

1. Duffing Oscillator 

 

Revised from Chaotic vibrations An introduction for Applied Scientists and Engineers, Moon 

Starting with the classical mass-spring damper oscillator subject to a periodic force, the equation of 

motion is, after normalization, 

𝑥̈ + 𝛿𝑥̈ + 𝛼𝑥 = 𝑓(𝑡) 

Now considering a cubic (hence nonlinear) spring, 

𝑥̈ + 𝛿𝑥̇ + 𝛼𝑥 + 𝛽𝑥3 = 𝑓(𝑡) 

It then becomes the Duffing oscillator, and the E.O.M. is known as the Duffing equation. 



Duffing equation is often used in structural analysis involving nonlinear restoring forces. 

1.1 Unforced and Undamped Duffing Oscillator 

𝑥̈ + 𝛼𝑥 + 𝛽𝑥3 = 0 

• Frequency of vibration depends on amplitude of vibration. (This is true for other nonlinear 

oscillators.) 

• Approximate solutions of period  (or frequency) are available. 

• Exact solutions of period (or frequency) is only available for a few special cases, typically in the form 

of elliptic integrals. 

 

1.1.1  𝛽 > 0 or hardening: 

• Phase portraits show continuous, closed curves surrounding the origin 𝑂. 

• 𝑂 is a center, or a stable equilibrium point. 

1.1.2  𝛽 < 0 or softening: 

Two situations may arise depending on the amplitude of vibration: 

• Saddle points (or nodes) and separatrices: 

 



Saddle points (or nodes) are unstable equilibrium points. 

Separatrix refers to the boundary separating different modes of vibration. 

• The two situations: 

1) Continuous, closed curves inside the separatrices; or 

2) Curves “running off” to infinity outside the separatrices. 

 

1.2 Forced Duffing Oscillator 

𝑥̈ + 𝛿𝑥̇ + 𝛼𝑥 + 𝛽𝑥3 = 𝑓0 cos(𝜔𝑡) 

In addition to having nonlinear restoring forces, the forces Duffing oscillators are often used when the 

system demonstrates hysteresis (or the state variables’ dependence of history) 

The amplitude-frequency relation if 𝑓(𝑡) = 𝑓0 cos(𝜔𝑡): 

• The jump phenomenon  

• The upsweep and downsweep paths 

 

1.3 Typical Analytical Approaches for Duffing Oscillator 

Perturbation methods (straightforward expansion, Lindstedt-Poincare method, …) 

Harmonic balance method 

Averaging method 

… 



1.2  Forced Duffing Oscillator 

𝑥̈ + 𝛿𝑥̇ + 𝛼𝑥 + 𝛽𝑥3 = 𝑓0 cos(𝜔𝑡) 

In addition to having nonlinear restoring forces, the forced Duffing oscillators are often used when the 

system demonstrates hysteresis (or the state variables’ dependence of history) 

The amplitude-frequency relation if 𝑓(𝑡) = 𝑓0 cos(𝜔𝑡): 

• The jump phenomenon 

• The upsweep and downsweep paths 

 

Revised from Chaotic Vibrations An Introduction for Applied Scientists and Engineers, Moon 
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Revised from Chaotic Vibrations An Introduction for Applied Scientists and Engineers, Moon 

 

Plot of duffing oscillator with excitation, but damping is zero. Backbone can be drawn from the natural 

frequency and seems to become the asymptote. 

 



 

Plot of duffing oscillator where we have damping. The curve intersects the backbone at some point, 

then turns back. 

 

 

1.3  Typical Analytic Approaches for Duffing Oscillator 

Perturbation methods (straightforward expansion, Lindstedt-Poincare method, …) 

Harmonic balance method 

Averaging method 

… 



 

The red arrows indicate the upsweep path, and the blue arrows indicate the downsweep path. Notice 

the ‘Jump,’ and thus physically the dashed portion does not exist – however it is needed 

computationally. The hatched area indicates the hysteresis (the entire area enclosed by the curves). 

 

Again, the red arrow indicates the upsweep path, and the blue arrow indicates the downsweep path. 

The dashed portion doesn’t exist, and the enclosed hatched area is the hysteresis.  

Equilibrium points, and Energy Curves 

𝑥̈ + 𝛼𝑥 + 𝛽𝑥3 = 0 

𝑥̈ − 𝑓(𝑥) = 0 

 

 



Total energy 𝐸(𝑥, 𝑦) = 𝐻(𝑥, 𝑦) 

Where 𝐻 is the Hamiltonian 

=
1

2
𝑦2 + (

1

2
𝛼𝑥2 +

1

4
𝛽𝑥4) 

Then:  

𝑥̇ =
𝜕𝐻

𝜕𝑦
= 𝑦 

𝑦̇ = −
𝜕𝐻

𝜕𝑥
= −𝛼𝑥 − 𝛽𝑥3 

Equilibrium points: 

{
𝑥̇ = 0 → 𝑦 = 0               

𝑦̇ = 0 → 𝛼𝑥 + 𝛽𝑥3 = 0
 

𝐻 values at equilibrium points: 

𝐻(0,0) = 0 

⋮ 

Separatrices: 

∫
𝜕𝐻

𝜕𝑦
𝑑𝑦 +

𝜕𝐻

𝜕𝑥
𝑑𝑥 = 𝐻 

                                                                                         ↑  𝑎𝑡 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑖𝑟𝑢𝑚 𝑝𝑜𝑖𝑛𝑡𝑠 ↓ 

                                                                                                                                             𝐹(𝑥, 𝑦) = 𝐻 

Other energy curves: 

𝐹(𝑥, 𝑦) = 𝐶 ← 𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑒𝑣𝑒𝑙 

 

 



4.2  van der Pol Oscillator 

Back to the linear oscillator, 

 

This time the damping is non-linear. This results in the so-called van der Pol oscillator: 

𝑥̈ − 𝛿𝑥̇(1 − 𝛾𝑥2) + 𝛼𝑥 = 𝑓(𝑡) 

Van der Pol oscillators are used when the so-called stick-slip phenomena, aero-elastic flutter, and 

biological phenomena are involved. 

4.2.1 Unforced van der Pol Oscillator 

𝑥̈ − 𝛿𝑥̇(1 − 𝛾𝑥2) + 𝛼𝑥 = 0 

Similar to Duffing oscillator, frequency of vibration depends on amplitude of vibration. 

 



Two situations to focus on: limit cycle and relaxation oscillator. 

They occur as long as one initial condition (the initial displacement or initial velocity) is not zero. 

They are periodic response of the oscillator, signifying sustained vibration. 

Differences? 

- Limit cycle takes place when 𝛿/√𝛼 is small 

- Relaxation oscillation occurs when 𝛿/√𝛼 is large 

 

Simulations from Dr. M. Liu (for reference): 

     

 



 

4.2.2 Forced van der Pol Oscillator 

𝑥̈ − 𝛿𝑥̇(1 − 𝛾𝑥2) + 𝛼𝑥 = 𝑓0 cos(𝜔𝑡) 

If the forcing is strong, and the forcing frequency and limit cycle are close to each other, the excitation 

entrains or enslaves the limit cycle. This phenomenon is known as entrainment. 

  
Free vibration showing the limit cycle (left) and Forced vibration showing entrainment (right) 

 



 

Simulations from Dr. M. Liu (for reference): 

 

4.2.3 Typical analytic Approaches for van der Pol Oscillator: 

The method of averaging 

Perturbation methods (Lindstedt-Poincare methods, multiple time scales, …) 

Harmonic balance method 

…  



Checklist for Identifying Chaotic Vibrations 

• Identify nonlinear elements in the system 

• Check for (so as to rule out) random inputs 

• Observe the time history of a system variable 

• Examine the phase portraits 

• Examine the Fourier spectrum of system variables 

• Examine the Poincare map of a state variable 

Just a single item from the checklist is not sufficient for conclusively identifying chaos. Typically, a 

combination is required. 

There are more advanced techniques or measures, such as bifurcation diagram, Lyapunov exponents 

and fractal dimension. 

Nonlinear elements 

• Nonlinear elasticity, such a nonlinear springs, contact between elastic objects, and so on 

• Nonlinear damping, such as stick-slip (dry friction) 

• Most systems with fluids 

• Nonlinear boundary conditions 

• Backlash, play, or bilinear springs 

What’s a bilinear spring? 

 

 

 

 

 

 

 

 

 

Where have chaotic vibrations been observed? 

• Vibrations of buckles elastic structures 

• Mechanical systems with play or backlash 

• Aeroelastic problems 

• Wheel-rail dynamics 

• Large-amplitude vibrations of structures such as beams, plates, and shells 

• Systems with sliding friction 

• Rotation and gyroscopic force 

• Feedback control devices 



The common thread is strong non-linearity. Other factors include electric magnetic and fluid related 

forces, and nonlinear boundary conditions. 

Random inputs 

In experiments and real-life: noise is always present 

Numerical simulation: numerical noise exists 

Checking for random inputs means to make sure that large non-periodic response does not arise from 

small input noise. 



Random Inputs 

In experiments and real-life: noise is always present 

Numerical simulation: numerical noise exists 

Checking for random inputs means to make sure that large non-periodic response does not arise from 

small input noise. 

Time History 

Usually the first clue of chaotic vibrations is that the 𝑥(𝑡) − 𝑡 plot (or the 𝑣(𝑡) − 𝑡 plot) shows no visible 

pattern or periodicity. 

Time history test is not foolproof. 

The system may exhibit transient chaos or intermittent chaos. 

 
Figure 2-20 Sketch of the time history for intermittent-type chaos. 

Courtesy of Chaotic vibrations An Introduction for Applied Scientists and Engineers, Moon, 2004. 

Phase Portrait 

Trajectory: the curve traded out by points 𝑥(𝑡), 𝑣(𝑡). 

Periodic vibrations: the trajectory is a closed curve. 

Chaotic vibrations: the trajectory never closes or repeats, eventually filling up a section of the plane. 

Again, the phase portrait alone is not foolproof. 

In fact, it is believed that the Poincare map, considered by some the modified phase portrait, should be 

used instead of the phase portrait, as the Poincare map yields more relevant information. 

Pseudo-phase Portrait 

In physical experiments or real-life observations, there are times when only one measurement (i.e., one 

signal) s available. A time-delayed pseudo-phase portrait can be used as an alternative. 

For a SDOF system with the signal 𝑥(𝑡), one plots the following pairs, 𝑥(𝑡), 𝑥(𝑡 + 𝜎), where 𝜎 is a fixed 

time constant. 

Typically, for the same system, the phase portrait and the pseudo-phase portrait will reveal the same 

characteristics. Specifically, if the system has a periodic vibration, then both portraits will show closed 

trajectories. If the system’s motion is chaotic, the portraits will show trajectories that do not close or 

repeat. 

The choice of 𝜎 is not crucial, expect to avoid the natural or forcing period. 



When state variables are more than three, high dimensional pseudo-phase portrait can be constructed 

using multiple delays. For example, points such as 𝑥(𝑡), 𝑥(𝑡 + 2𝜎) may be plotted in a 3D pseudo-phase 

portrait. 

Fourier Spectrum 

One clue of chaotic vibrations is the appearance of broad spectrum of frequencies when the input is of a 

single frequency. 

This broad band spectrum characteristic is more prevalent in low dimension system with degrees of 

freedom of up to three. 

Fourier spectrum is also useful in detecting subharmonics which are a precursor to chaos. 

Subharmonic: if 𝜔 is the dominant frequency, then 𝜔/𝑛 (𝑛 is an integer) is a subharmonic. 

For example, Duffing oscillator 

𝑥 + 𝛿𝑥 + 𝛼𝑥 + 𝛽𝑥3 = 𝑓0 cos(𝜔𝑡) 

With 𝛿 = 0.18, 𝛼 = 𝛽 = 1, 𝜔 = 0.8, and 𝑓0 = 19, 22 and 22.5 

Note that the forcing frequency is 0.127 𝐻𝑧. 

  
Phase portrait (left) and phase portrait with transient removed (right) 

Harmonics: 

 



Differential Equations (DEs) and Maps 

Flows refer to the differential equations (Des). They are the responses of a dynamic system in 

continuous time, as represented by the trajectories in phase space.  

Maps are algebraic rules for completing the next state of a dynamic system in discrete time. 

For example, the ode45 solver in MATLAB is a set of algebraic rules: an explicit Runge-Kutta (4,5) 

formula with the Dormand-Prince pair. 

Therefore, phase portraits that are based on computational responses and plotted as points instead of 

curves/lines, are in fact maps, or solution maps, to be precise. 

Example: The logistic DE is: 

𝑥̇ = 𝑥(1 − 𝑥) 

Using the Euler’s method to solve the DE, one has: 

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑥𝑛(1 − 𝑥𝑛) = 𝜆𝑥𝑛(1 − 𝑥𝑛) 

With ℎ being the time-step size, and 𝜆 = 1 + ℎ. The logistic map is then, 

𝑥𝑛+1 = 𝜆𝑥𝑛(1 − 𝑥𝑛) 

 

      

 

Next-Return Maps; Next-Amplitude Maps 

The rules for next-return maps are, for example, 

• Position is zero 

• Velocity is zero 

• Position of 𝑥 is zero and velocity of 𝑦 is zero, or  

• When the excitation has a phase angle of, say, 𝜔𝑡 = 2𝑛𝜋 + 𝜋/2, or 90°, 450°, 810°, … 

Poincare map is a next-return map. 



Next-amplitude maps employ rules such as a state variable reaches maximum (or minimum for that 

matter). 

Next-amplitude maps were owing to Lorenz (of the Loren attractor fame). He intuitively constructed the 

first next-amplitude map, it is believed. 

Example: The Lorenz attractor is: 

𝑥̇ = 𝜎(𝑦 − 𝑥) 

𝑦̇ = 𝜌𝑥 − 𝑦 − 𝑥𝑧 

𝑧̇ = 𝑥𝑦 − 𝛽𝑧 

Chaos is observed when 𝜎 = 10, 𝜌 = 28, 𝛽 = 8/3. 

Time History (run it for a while, remove transient – which could just be the beginning of the signal): 

 

Strong indication of chaos because there is no discernable pattern by inspection. 

Next-Maximum and Next-Minimum Map 

 

 



Another set of parameters – Chaos is observed when 𝜎 = 28, 𝜌 = 46.92, and 𝛽 = 4. 

 

      

Autonomous DEs and Non-autonomous DEs 

• An autonomous differential equation (DE) is one such that 𝑥̈ = 𝑓(𝑥, 𝑥̇). 

• A non-autonomous DE is one such that 𝑥̈ = 𝑓(𝑥, 𝑥̇, 𝑡) 

Basically, whether the function depends on time is the difference between autonomous and non-

autonomous DEs. 

NOTE: 

(1) Although a non-autonomous DE indicated forced oscillation, an autonomous DE does not suggest 

free oscillation, because the excitation may be a constant force, for example. 

(2) For non-autonomous DEs, 𝑡 is a state variable, in addition to position and velocity. 

(3) Therefore, the dimension of the state space, 𝑛, of 𝑥̈ = 𝑓(𝑥, 𝑥̇) is 2; but it is 3 for 𝑥̈ = 𝑓(𝑥, 𝑥̇, 𝑡), 

where 𝑥 is a scalar. 

 

 



Poincare Maps 

Poincare map is a classical technique for analyzing dynamic systems, conceived by Poincare. When an 

𝑛 −dimensional continuous-time system is replaced with an (𝑛 − 1) − dimensional discrete-time map, 

the result is the so-called Poincare map. 

In other words, the continuous-time response is sampled according to certain rules. The rules are such 

that the dimension of the map is one less the dimension of the DE. 

The rules can be reflected upon by the Poincare section, the choice of which is different for autonomous 

and non-autonomous DEs. 

 

 

 

 

 



Poincare Maps for Non-Autonomous DEs 

Since 𝑡 is a dimension, a convenient chouce of Poincare section would be 𝑡 = 𝑘𝑇 + 𝑡0, where 𝑇 is the 

forcing/driving period, and 𝑡0 < 𝑇 is an arbitrary time. 

In other words, of every driving period 𝑇, one discrete point is sampled and plotted. The collection of 

such discrete points forms the Poincare map of the oscillator represented by non-autonomous DEs. 

  

Consider the forced vibration of an oscillator given by the following ODEs, where 𝑦 = 𝑥̇ 

𝑥̇ = 𝑦 

𝑦̇ = 𝐹(𝑥, 𝑦) + 𝑓0 cos(𝜔𝑡 + Φ0) 

By introducing a variable 𝑧 = 𝜔𝑡 + Φ0, the first-order ODEs for the non-autonomous system is, 

𝑥̇ = 𝑦  

𝑦̇ = 𝐹(𝑥, 𝑦) + 𝑓0 cos(𝑧)  

𝑧̇ = 𝜔 

The samples for the Poincare map may then be collected at 𝑧 = 0, or Φ0, or any angle within 360°. 

 

 



What can be revealed by Poincaré Maps? 

Some math/definitions/explanations first. 

Mathematically speaking, a Poincaré Map is a mapping 𝑥𝑘+1 = 𝑃(𝑥𝑘), 𝑥𝑘 , 𝑥𝑘+1 ∈ 𝑃, 𝑘 = 1, 2, 3, … 

1) 𝑥 is a fixed point is 𝑥 = 𝑃(𝑥). 

 
Courtesy of Practical Numerical Algorithms for Chaotic Systems, Parker & Chua, 1989 

 

2) The set of sampled points {𝑥1, 𝑥2, … , 𝑥𝑘} is a period−𝐾 closed orbit, if 𝑥𝑘+1 = 𝑃(𝑥𝑘)  

for 𝑘 = 1, 2, … , 𝐾 − 1 and 𝑥1 − 𝑃(𝑥𝐾) 

 

3) Quasi-periodic solution is the sum of finite numbers of periodic solutions, each having a frequency 

that is an integer combination of frequencies taken from a finite base set. 

For example, 𝑥(𝑡) = 𝐴𝑐𝑜𝑠(2𝑡) + 𝐵𝑐𝑜𝑠(√2𝑡) is quasiperiodic. So is 𝑥(𝑡) = 𝐴𝑐𝑜𝑠(𝑡) + 𝐵𝑐𝑜𝑠(3√2𝑡), 

as 𝜔1/𝜔2 is an irrational number. Quasi-periodic is not periodic.  

4) Attractor is a set of values that a dynamic system tends to evolve toward. Examples of attractor 

include, but not limited to, a fixed point, a finite number of points, and a limit cycle. 

 

5) Strange attractor is a set of values showing fractal structure. 

 

6) Cantor set refers to the embedding structure within structure, usually appearing at finer and finer 

scales. 

Classification of Poincaré Maps (non-autonomous DEs): 

• A fixed point on the Poincaré map indicates a period-1 solution (periodic solution, only 1 point!) 

• 𝐾 distinct points on the map, indicates a 𝐾 − 𝑡ℎ subharmonic 

• One or more closed curves on the map indicate a quasi-periodic solution. 

• Fractal collection of points, strange attractor, or Cantor set indicate chaos. 



Poincaré Map Examples 

 
Multiple closed curves indicate a quasiperiodic solution 

 

3rd subharmonic (left) and Fractal collection of points (right) 

  

Many points indicating chaos (left) and another example of chaos (right) 

 



 

 

 

Cantor set (infinitely embedding structure) 

  



Poincaré Maps for Autonomous DEs 

 

As an example, consider the cases where the state variables are 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡). In this state space, 

a Poincaré section is a plane defined by: 

𝑛1𝑥 + 𝑛2𝑦 + 𝑛3𝑧 − 𝑐 = 0 

Where 𝑐 is a constant. The normal to the plane is 

𝒏 = ± {

𝑛1

𝑛2

𝑛3

} 

𝒏 will take either the positive or negative sign.  

The Poincaré map will then consist of points (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘) (𝑘 = 1, 2, 3, …) that meet eq. (1). In addition, if 

𝒔𝒌 represents the tangential vector to the trajectory at (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘) 𝒔𝒌 ∙ 𝒏 must have the same sign. 

The classification of Poincaré maps of autonomous DEs follows that for non-autonomous DEs. That is, 

• A fixed point on the Poincaré map indicates a period-1 solution (periodic solution, only 1 point!) 

• 𝐾 distinct points on the map, indicates a 𝐾 − 𝑡ℎ subharmonic 

• One or more closed curves on the map indicate a quasi-periodic solution. 

• Fractal collection of points, strange attractor, or Cantor set indicate chaos. 

Example: The Lorenz attractor is 

𝑥̇ = 𝜎(𝑦 − 𝑥) 

𝑦̇ = 𝜌𝑥 − 𝑦 − 𝑥𝑧 

𝑧̇ = 𝑥𝑦 − 𝛽𝑧 

Chaos is observed when 𝜎 = 10, and 𝜌 = 28, 𝛽 = 8/3. 

Dimension of phase space: 𝑛 = 6; 

The Poincaré section: 𝑧 = 0; 



Collected “points”: 2,699 (from negative to positive; down from 20,001 for time history computation); 

Poincaré maps are 5-dimensional plots. 

For example, 

 

 

 

 

 

 

 



More Examples 

If 𝑥 = 0 (negative to positive), 567 points 

 

If 𝑦 = 0 (negative to positive), 987 points 

 

If 𝑧 = 40 (less than to greater than), 369 points 

 

  



Lyapunov Exponents and Fractal Dimensions 

Organization of the Wolf et al.’s paper 

The paper shows that the Lyapunov exponents can be determined from a set of first-order ODEs or from 

a time series. Recorded experimental data are a time series, for example. 

Sec. 1: Introduction 

Sec. 2: Definition 

Sec. 3: Computational Aspect 
Sec. 4 – 7: Time Series (Experimental Data) 

Sec. 8: Results 
Sec. 9: Conclusions 

Appendix A: Fortran Code (Lyapunov Spectrum from computation) 
Appendix B: Fortran Code (Lyapunov Spectrum from time series) 
 

Lyapunov Exponents, the Theory 

Considering a chaotic oscillator. Due to its sensitivity on initial conditions, one can image that any two 

trajectories close to another in the 𝑛 −dimensional phase space will move exponentially away from (or 

towards) each other. 

Let 𝑑0 be a measure of the distance between the two trajectories at 𝑡0. At 𝑡,  a later time (keeping in 

mind 𝑡 − 𝑡0 should be small), the distance will grow (or shrink) following a base-2 exponential relation. 

𝑑(𝑡) = 𝑑02𝜆(𝑡−𝑡0) 

The constant 𝜆 is called the Lyapunov exponent. 

 

Similarly, areas, spheres, and hyper-spheres in the phase space may stretch or shrink. As a result, there 

are respective Lyapunov exponents to measure the extents to which the principal axes of the areas, 

spheres, and hyper-spheres, are stretched/shrunk. 



The set of Lyapunov exponents {𝜆1, 𝜆2, … , 𝜆𝑛}, where 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛 is called the Lyapunov 

spectrum. Note that 𝑛 is the dimension of the dynamic system. 

A positive Lyapunov exponent is an indicator of chaos. 

 

Lyapunov Exponents, the Computation 

How to determine the Lyapunov exponents from a set of first-order ODEs is explained in Sec. 3 of Wolf 

et al’s paper. 

One Lyapunov Exponent 

Assuming the vector 𝑿∗(𝑡) represents solutions of the first-order ODEs. They are known as the 

reference trajectory. To compute the Lyapunov exponents, small variations from the trajectory are 

given, and how the variations grow or shrink is computed.  

The small variations are denoted at 𝜹(𝑡) (a vector), and the rate of growth or shrinkage of 𝜹 is 

determined by: 

𝜹̇ ≈ 𝑱(𝑿∗)𝜹 

Where 𝑱(𝑿∗) is the Jacobian evaluated at the reference trajectory. 

Numerically, 𝑿∗ and 𝜹 are solved by ODE solver at the same time. That is, in addition to the first-order 

ODEs, the Jacobian needs to be coded and included in the “function”. 

One 𝜹(𝑡) is determined, the Lyapunov exponent is by: 

𝜆(𝑡𝑀) =
1

𝑡𝑀 − 𝑡0
∑ log2

|𝜹(𝑡𝑘+1)|

|𝜹(𝑡𝑘)|

𝑀

𝑘=1

 

The above equation has two key messages. (1) 𝜆 is a function of time, as 𝑀 gets larger and larger; (2) 

Averaging over a long period of time, or over large expanse of the phase space will give rise to a 

relatively stable 𝜆. 

Lyapunov Spectrum 



To find the Lyapunov spectrum, 𝑛 sets of 𝛿(𝑡) will be needed. They are orthonormal to each other. Or 

they are the base vectors of an 𝑛 −dimensional linear space. 

GSR (Gram-Schmidt Reorthonormalization) is employed to ensure that the 𝑛 sets of 𝛿(t) remain 

orthonormal to each other, as time evolves. Without the GSR, the 𝜆𝑖’s will become indistinguishable as 

time evolves. In other words, only the largest Lyapunov exponent (LLE) will be meaningfully computed. 

GSR can be performed at a certain fixed time interval, say, every time-step, or every 10 time-steps. 

Additionally, the 𝑛 small variation vectors are normalized (to unit vectors) at the beginning of each time 

step, to avoid overflow during the computation. 

 



ODEs and Jacobians, Examples 

The Rossler attractor: 

𝑥̇ = −(𝑦 + 𝑧) 

𝑦̇ = 𝑥 + 𝑎𝑦 

𝑧̇ = 𝑏 + 𝑧(𝑥 − 𝑐) 

The Jacobian is: 

𝐽 = [
0 −1 −1
1 𝑎 0
𝑧 0 𝑥 − 𝑐

] 

Next, the Mathieu’s equation. 

𝑥̈ + [𝑎 − 2𝑞𝑐𝑜𝑠(2𝜔𝑡)]𝑥 = 0 

Where 𝑎 and 𝑞 are constants. 

Set  

𝑥1 = 𝑥 

𝑥2 = 𝑥̇   

𝑥3 = 𝜔𝑡 

 The first-order ODEs are: 

𝑥̇1 = 𝑥2  

𝑥̇2̇ = [2𝑞𝑐𝑜𝑠(2𝑥3)𝑥 − 𝑎]𝑥1 

𝑥̇3 = 𝜔 

The Jacobian is: 

𝐽 = [
0 1 0

2𝑞𝑐𝑜𝑠(2𝑥3) − 𝑎 0 −4𝑞𝑠𝑖𝑛(2𝑥3)
0 0 0

] 

What are the ODEs needed for computing the Lyapunov spectrum? 

If 𝑛 is the number of first-order ODEs, the total number of ODEs for the spectrum is, 𝑛(𝑛 + 1). 

For the systems above, 𝑛 = 3, so 12 ODEs are needed, or 3 sets of ODEs with 3 ODEs in each set. 

For example, the first-order ODEs (for the Mathieu’s equation) 

𝑥̇1 = 𝑥2 

𝑥̇2 = [2𝑞𝑐𝑜𝑠(2𝑥3) − 𝑎]𝑥1 

𝑥̇3 = 𝜔 

Are to compute the reference trajectory 𝑿∗(𝑡). The other 𝑛 sets are to determine the three 𝜹’s by: 

𝜹̇ = 𝑱(𝑿∗)𝜹 

 

 



With 

𝛿 = [

𝑥4 𝑥7 𝑥10

𝑥5 𝑥8 𝑥11

𝑥6 𝑥9 𝑥12

] 

The initial conditions for the 𝛿′𝑠 are: 

𝛿(0) = [
1 0 0
0 1 0
0 0 1

] 

Fractal Dimensions 

Fractal dimension refers to a non-integer dimension. The idea originates from the observations that 

chaotic oscillators occupy regions of the phase space. 

Fractal dimension is used to measure the extent to which trajectories fill up a certain subspace.  

A non-integer dimension is a hallmark of a strange attractor and implies the existence of chaos. 

There are several definitions of fractal dimensions, for example, pointwise dimension, capacity 

dimension, correlation dimension, information dimension, and so on. 

Information dimension can be easily determined once the Lyapunov spectrum is known, see Eqs. (2) and 

(3) in the paper by Wolf et al. 

 

 

 



Bifurcation and Bifurcation Diagram 

What is bifurcation? 

For a dynamic system defined by 𝒙̇ = 𝑓(𝒙; 𝑐), the equilibrium points are those that meet the condition 

of 𝒙̇ = 𝟎, or 𝑓(𝒙𝒆) = 𝟎, with 𝒙𝒆 denoting the equilibrium points (basically you set the LHS equal to zero 

to solve for 𝒙). 

Equilibrium points are classified as: 

• Centers or stable equilibrium points. 

• Saddle points/nodes or unstable equilibrium points. 

As the system’s parameter 𝑐 changes, the number of equilibrium points and the stability of such points 

can change as well. 

The phenomenon that the number of equilibrium points and the stability of such points can change as 

the system’s parameter changes is known as the bifurcation. 

Specifically, it is about the change in the type of long-term behaviors of the system when parameters 

when parameters are varied. 

Theory of bifurcation is the study of these changes is nonlinear systems. 

What is a bifurcation diagram? 

It is a widely used technique for examining the pre- or post-chaotic changes in a dynamic system under 

parameter variations. 

Typically, some measure of the response of the system is plotted against a system parameter. 

The measure may be, for example, the maximum amplitude, the local maxima or minima, or data 

sampled using a Poincaré map. 

When the bifurcation diagram loses continuity, it means either quasi-periodic motion or chaotic motion. 

Bifurcating does not mean being chaotic, it simply means it is bifurcating. Other approaches to identify 

chaos should be jointly used. 

Bifurcation diagram can be drawn through analytical ways or by computation. 

  



Bifurcation diagram by computation 

The following outline of computation assumes that the local maxima in position 𝑥(𝑡) are the measure to 

be plotted.  

Steps are: 

Loop over a parameter range (say, 𝑓0 = 20 to 25, at an increment of 0.001). 

Run an ode solver for the response. Make sure that is covers a long period of time, say, ≥ 100 

forcing period if excitation is present 

Use the second half of the computed time history of position, for plotting the bifurcation 

diagram. That is, the measure is 𝑦(𝑡). 

Loop over the length of 𝑦(𝑡) to find and store the local maxima 

 Find 𝑦(𝑡𝑖−1) < 𝑦(𝑡𝑖) and 𝑦(𝑡𝑖) > 𝑦(𝑡𝑖+1) 

Use the three points (three 𝑡 −values and three 𝑦 −values to evaluate the local 

maximum) 

Store the local maximum in an array (as a vector) 

 End of loop 

Plot the local maxima vector against the specific parameter value 

End of loop 

 

  



Example: Consider the following van der Pol oscillator: 

𝑥̈ − 𝛾𝑥̇(1 − 𝑥2) + 𝛼𝑥 = 𝑓0 cos(𝜔𝑡) 

Where 𝛼 = 1, 𝛾 = 0.25, 𝑓0 = 3, 𝜔 = 1.2, 𝑥(0) = 1, and 𝑥̇(0) = 0 

Plot when 𝜸 = 𝟎. 𝟐𝟓 (plot of 100 points): 

 

Looped for 𝟎. 𝟎𝟓 ≤ 𝜸 ≤ 𝟎. 𝟓: 

 

With 10x the increment as above: 

 



 

Example: Consider the following Duffing oscillator: 

𝑥̈ − 𝛾𝑥̇ + 𝛼𝑥 + 𝛽𝑥3 = 𝑓0 cos(𝜔𝑡) 

(1) 𝛾 = 0.18, 𝛼 = 𝛽 = 1, 𝜔 = 0.8, and 𝒇𝟎 = 𝟐𝟎 to 𝟐𝟑: 

 

(2)TODO FIX 𝛾 = 0.18, 𝛼 = 𝛽 = 1, 𝜔 = 0.8, and 𝑓0 = 20 to 23: 

 

(3) 𝜸 = 𝟎. 𝟏 to 𝟎. 𝟑, 𝛼 = 𝛽 = 1, 𝜔 = 0.8, and 𝑓0 = 23: 

 



(4) 𝛾 = 0.18, 𝛼 = 𝛽 = 1, 𝝎 = 𝟎. 𝟕 to 𝟎. 𝟗, and 𝑓0 = 23: 

 

 

 

 

NOTE: Some potential topics for final exam: Perturbation, harmonic balance, modeling, bifurcation by 

computation or by theory 



Bifurcation Diagram by Analytical Ways 

Bifurcation and bifurcation diagram 

For a dynamic system defined by 𝒙̈ = 𝑭(𝒙, 𝒙̇, 𝑡; 𝑐), the number of its equilibrium points and the stability 

of such points change as the system’s parameter 𝑐 is varied. This phenomenon is known as the 

bifurcation. 

Bifurcation diagram is a widely used technique for examining the pre- or post-chaotic changes in a 

dynamic system under parameter variations. 

Bifurcation diagrams can be drawn through analytical ways or by computation. 

Bifurcation diagram by the analytical ways 

Focusing on autonomous dynamic systems defined by first order ODEs 𝒙̇ = 𝒇(𝒙; 𝑐); 

The existence and uniqueness of theorem 
Detail of the existence and uniqueness theorem can be found form Boyce et al, Theorem 2.4.2 and Theorem 2.8.1, for example. 

The essence of the theorem governing the existence and uniqueness of the solutions to first order ODEs 

𝒙̇ = 𝒇(𝒙; 𝑐) is, 

If the functions 𝒇 and their first order partial derivatives are continuous over a certain domain for 𝑥 and 

𝑡, then there exists a unique solution of the system of ODEs that satisfied the initial condition. 

The equilibrium points (or critical points) 

They are those that meet the condition of 𝒙̇ = 𝟎, or 𝒇(𝒙𝒆; 𝑐) = 𝟎, with 𝒙𝒆 denoting the equilibrium 

points. 

Definition of stability  

There is not a universally agreed upon definition. But the most fundamental definition is attributed to 

Lyapunov. 

Let 𝒙𝒆 ∈ 𝑅𝑛 be an equilibrium point, 

(1) 𝒙𝒆 is stable if, for any ℎ > 0, there is a 𝛿 > 0  

such that if a solution 𝒙(𝑡) satisfies||𝒙(0) − 𝒙𝑒|| < 𝛿, then: 

||𝒙(𝑡) − 𝒙𝒆|| < ℎ, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0  

(2) 𝑥𝑒 is asymptotically stable is there is a 𝛿 > 0  

such that if a solution 𝑥(𝑡) satisfies||𝒙(0) − 𝒙𝑒|| < 𝛿, then: 

lim
𝑡→∞

𝒙(𝑡) = 𝒙𝒆; 

(3) 𝒙𝒆 is monotonically stable if it is asymptotically stable and ||𝒙(𝑡) − 𝒙𝒆|| decreases monotonically 

with time; 

 

(4) 𝒙𝒆 is globally asymptotically stable if it is asymptotically stable and 𝒙(𝑡) → 𝟎  𝑎𝑛𝑑 𝑡 → ∞ for all 

𝒙(0); and 

 

(5) 𝒙𝒆 is unstable if it is not stable as defined above in (1). 



 

Parts (1), (2) and (5) of the definition appear often in the literature. 
Detail of (1), (2) and (5) can be found from Boyce et al, Sec. 9.2 for example. 

Linearization of nonlinear ODEs 

For ODEs 𝑥 = 𝑓(𝑥; 𝑐), its Jacobian matrix 𝐽 evaluated at 𝑥𝑒, is: 

𝑱(𝒙𝒆; 𝑐) = 𝑨(𝒙𝒆; 𝑐) =

[
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

…
𝜕𝑓1
𝜕𝑥𝑛

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

…
𝜕𝑓2
𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑥1

𝜕𝑓𝑛
𝜕𝑥2

…
𝜕𝑓𝑛
𝜕𝑥𝑛]

 
 
 
 
 
 
 

𝒙𝒆

 

Taking the Taylor expansion of 𝒇(𝒙; 𝑐) at 𝒙𝒆 and keeping terms up to the linear, 

𝑥̇ = 𝒇(𝒙; 𝑐) ≈ 𝒇(𝒙𝒆; 𝑐) + 𝑱(𝒙 − 𝒙𝒆) 

Defining 𝒖 = 𝒙 − 𝒙𝒆, and noting that 𝒇(𝒙𝒆; 𝑐) = 0 and 𝒙̇𝒆 = 𝟎 , then linearized ODEs at 𝒙𝒆 is: 

𝒖̇ = 𝑱 ∙ 𝒖 

In other words, 𝒙𝒆 is the “reference”, 𝒖 is the growth or shrinkage from the reference. 

Classification of equilibrium point 

Earlier and in a not-too-specific way, equilibrium point, or stability, is classified as: 

• Centers or stable equilibrium points 

• Saddle points/nodes or unstable equilibrium points. 

A few terminologies are in order. 

Linear stability: 

• The stability of a system of linear ODEs 

• The stability of a system of nonlinear ODEs which is linearized as 𝒖̇ = 𝑱 ∙ 𝒖  

The latter is also known as the local stability. 

Non-linear stability: 

The stability of a system of nonlinear ODEs, typically by making use of the Lyapunov function. 

Proper nodes and improper nodes: 

When 𝑱 has identical eigenvalues, if the corresponding eigenvectors are independent of each other, the 

node is proper; otherwise it is improper. 

The more specific classification: 

If the eigenvalues associated with 𝑱 evaluated at 𝒙𝒆 are, 𝜆1, … , 𝜆𝑛, 

 



𝑛 = 2: 

𝝀𝟏 and 𝝀𝟐 Classification Linear Stability 

Both real and positive Source Unstable 

Both real and negative Sink Asymptotically stable 

Both real, one positive, one 
negative 

Saddle Unstable 

Identical, real and positive Improper Node Unstable 

Identical, real and negative Improper Node Asymptotically stable 

Complex, with positive real part Outward spiral Unstable 

Both imaginary* Center Stable 

* Stability is indeterminate if local stability is concerned. 

Detail can be found from Boyce et al, Theorem 9.3.3 and Table 9.3.1, for example. 

𝑛 > 2: 

All eigenvalues have negative real parts, then 𝒙𝒆 is a stable equilibrium point; 

If at least one of the eigenvalues has a positive real part, then 𝒙𝒆 is an unstable equilibrium point. 

For other cases, nonlinear stability analysis is required. 

Classification of bifurcation 

Saddle point bifurcation or fold bifurcation (two equilibrium points move towards each other, collide, 

and become one; or the opposite) 

Tranncritical bifurcation (a pair of equilibrium points exchange stability; i.e., one point goes from stable 

to unstable while the other does the opposite; but the change takes place at the same parameter value) 

Pitchfork bifurcation (equilibrium points go from one to three, or the opposite; the former is known as 

supercritical pitchfork bifurcation and the latter subcritical pitchfork bifurcation) 

Andronov-Hopf bifurcation or simply Hopf bifurcation (bifurcation from periodic solutions; e.g., the 

creation or destruction of a limit cycle) 

Saddle point Bifurcation 

Consider: 

𝑥̇ = 𝑎 − 𝑥2 

where 𝑥 and 𝑎 are real 

The equilibrium points: 

𝑥 = {
0            𝑎 ≤ 0

±√𝑎     𝑎 > 0
 

The Jacobian at 𝒙𝒆: 

𝐽 = {

[0]                      𝑥𝑒 = 0

[−2√𝑎]          𝑥𝑒 = √𝑎

[2√𝑎]         𝑥𝑒 = −√𝑎

 



Eigenvalues: 

𝜆 = {

[0]                      𝑥𝑒 = 0

[−2√𝑎]          𝑥𝑒 = √𝑎

[2√𝑎]         𝑥𝑒 = −√𝑎

 

The solution to 𝒖̇ = 𝑱 ∙ 𝒖: 

𝒖(𝑡) = {

𝛼𝑒0∙𝑡                     𝑥𝑒 = 0

𝛼𝑒−2√𝑎∙𝑡           𝑥𝑒 = √𝑎

𝛼𝑒2√𝑎∙𝑡         𝑥𝑒 = −√𝑎

 

The bifurcation diagram is: 

 

Transcritical Bifurcation 

Consider: 

𝑥̇ = 𝑎𝑥 − 𝑏𝑥2 

where 𝑥, 𝑎 and 𝑏 are real, 𝑎 ≠ 0, 𝑏 > 0. The parameter is 𝑎/𝑏. 

The equilibrium points: 

𝑥𝑒 = 0 and 
𝑎

𝑏
 

The Jabocian at 𝑥𝑒: 

𝑱 = {
[𝑎]        𝑥𝑒 = 0

[−𝑎]    𝑥𝑒 =
𝑎

𝑏

 

Eigenvalues: 

𝜆 = {
𝑎        𝑥𝑒 = 0

−𝑎     𝑥𝑒 =
𝑎

𝑏

 

The solution to 𝒖̇ = 𝑱𝒖: 

𝑢(𝑡) = {
𝛼𝑒𝑎𝑡        𝑥𝑒 = 0

𝛼𝑒−𝑎𝑡     𝑥𝑒 =
𝑎

𝑏

 

The bifurcation diagram is: 

 



Pitchfork bifurcation 

Consider: 

𝑥̇ = 𝑎𝑥 − 𝑏𝑥3 

Where 𝑥, 𝑎 and 𝑏 are real, 𝑎 ≠ 0, 𝑏 > 0. The parameter is 𝑎/𝑏. 

The equilibrium points: 

𝑥𝑒 = {

0            𝑎𝑛𝑦 𝑎

±√
𝑎

𝑏
     𝑎 > 0

 

The Jabocian at 𝑥𝑒: 

𝑱 = {

[𝑎]        𝑥𝑒 = 0

[−2𝑎]         𝑥𝑒 = ±√
𝑎

𝑏

 

Eigenvalues: 

𝜆 = {

𝑎        𝑥𝑒 = 0

 −2𝑎       𝑥𝑒 = ±√
𝑎

𝑏

 

The solution to 𝒖̇ = 𝑱𝒖: 

𝑢(𝑡) = {

𝛼𝑒𝑎𝑡        𝑥𝑒 = 0

𝛼𝑒−2𝑎𝑡          𝑥𝑒 = ±√
𝑎

𝑏

 

The bifurcation is:  

 
  



Unforced and Undamped Duffing Oscillator: 

𝑥̈ + 𝑎𝑥 + 𝛽𝑥3 = 0 

𝛽 > 0 or hardening: 

• 𝑂 is a center, or a stable equilibrium point. 

 

𝛽 < 0 or softening: 

• Saddle points (or nodes) and separatrices: 

Saddle points (or nodes) are unstable equilibrium points. 

Separatrix refers to the boundary separating different modes of vibrations 

 
• The two situations: 

1) Continuous, or closed curves inside the separatrices; or 

2) Curves “running off” to infinity outside the separatrices 

 



Softened Duffing oscillator: 

𝑥̇ + 𝑎𝑥 + 𝛽𝑥3 = 0,     where 𝛼 ≥ 0, 𝛽 < 0  

Define: 

𝑥 = {
𝑥
𝑥̇
} = {

𝑥
𝑦} 

The first order ODEs 

𝑥 = {
𝑥̇
𝑦̇
} = {

𝑦

−𝛼𝑥 − 𝛽𝑥3} 

The equilibrium points: 

𝒙𝒆 = {
0
0
} , 𝒙𝒆 = {√

𝛼

𝛽

0

} , 𝒙𝒆 = {
−√

𝛼

𝛽
 

0

} 

Jacobians: 

𝑱 = [
0 1

−𝛼 − 3𝛽𝑥2 0
] 

∴ 𝑱 = [
0 1

−𝛼 0
] , 𝑱 = [

0 1
2𝛼 0

] , 𝑱 = [
0 1
2𝛼 0

] 

Eigenvalues: 

𝜆 = {
−√𝛼𝑗

√𝛼𝑗
} , 𝜆 = {

−√2𝛼𝑗

√2𝛼𝑗
} , 𝜆 = {

−√𝛼2𝑗

√2𝛼𝑗
}  

 

 

Classification: 

𝒙𝒆 = {
0
0
}      Center 

𝒙𝒆 = {√
𝛼

𝛽

0

} , 𝒙𝒆 = {
−√

𝛼

𝛽
 

0

}      Saddle Points 

 

 

 

 

 


