
3.3 Gradient Methods 
Suppose this parameter has a non-linear relationship with the output: 

𝜃 

For example (gaussian function), 

𝜇𝐴(𝑥) = 𝑒
−(𝑥−𝜇)2

𝜎2  

For this function, the relationship between 𝜇 and 𝜎 and the MF 𝜇𝐴 is non-linear, and by association, the 

error function 𝐸. 

 

𝜃 = [𝜃1, 𝜃2, … , 𝜃𝑛]𝑇 

 

𝐸(𝜃) 

Looking for optimal 𝜃∗ 

 

 

 

 

 

 

 

 

 

𝜃𝑛𝑒𝑥𝑡 = 𝜃𝑛𝑜𝑤 + 𝜂𝑑 

𝜂 = step 

𝑑 = direction vector 

𝑘𝑡ℎ step: 

𝜃𝑘 
(𝑘 + 1)𝑡ℎ step:  

𝜃𝑘 + 𝜂𝑘𝑑𝑘 

 



Generally, 𝐸(𝜃𝑘+1) ≤ 𝐸(𝜃𝑘) 

 

 

 

 

 

 

Steepest-gradient descent method: 

𝑔⃗(𝜃) = [
𝜕𝐸

𝜕𝜃1

𝜕𝐸

𝜕𝜃2
⋯

𝜕𝐸

𝜕𝜃𝑛
]

𝑇

 

Let 𝑔⃗(𝜃) =
𝜕𝐸(𝜃⃗⃗⃗)

𝜕𝜃⃗⃗⃗
̂ |

𝜃⃗⃗⃗
̂

= 0 

𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑑𝑔⃗ 

 

In general, this is a recursive (or repetitive) algorithm. 

• Stopping criteria: 

1) 𝐸 ≤ threshold: 10−5 

2) # of iterations: ≤ 200 

 

 

 

 

 

  



3.4 Genetic Algorithms (GA) 
Easy to read, does not involve gradient related operations, it is a derivative free method, but it takes a 

very long time to execute. 

It can reach the global minimum, but all other derivative-based methods reach a local minimum 

(depending on initial conditions): 

 

 

 

 

 

 

- Population-based search, so it returns the best results 

- But it’s very time consuming (like, 8 hours) 

- Compare with gradient-based method (15 seconds) 

- Evolution operation  

o Reproduction, cross over, mutation 

  



Chapter 4: Artificial Neural Networks 

 

4.1 Introduction 
Neuron networks: parallel and distributed neurons. 

 

Artificial neural networks: 

 

4.2 Features of Neural Networks 
Layered neurons  

Weighted links 

(link weights 0~1.0) 

 

  



 

1) Neural network topologies  

(a) Feed forward topology (static neural network) 

unidirectional links (just move in one direction, in this case from input to hidden nodes) 

 

 

 

 

 

 

 

 

 

(b) Recurrent topology (dynamic neural network) 

Outputs can move to back into itself, can mode into a different node… they can move anywhere 

depending on requirements. 

Much more complicated, but has some distinct advantages, specifically in terms of access to 

historical data: 

Consider: 

- 𝑘𝑡ℎ step: 𝑥1(𝑘),  𝑥2(𝑘) 
Output: 𝑦(𝑘) 

- (𝑘 + 1)𝑡ℎ step: 𝑥1(𝑘 + 1), 𝑥2(𝑘 + 1) 

Historical information → 𝑦(𝑘) 

Output: 𝑦(𝑘 + 1) 

  



4.2 Features of Neural Networks (Cont’d) 

1) NN Topologies 

- FF NNs 

Simple in structure, consider two inputs and one output below: 

 

 

 

Connections between intermediate neurons and output neurons are unidirectional. 

Static modeling method (given a set of inputs, an output is generated). 

- Recurrent NNs 

Similar in structure, but can have feedback links. 

 

 

 

 

 

 

Gives access to historical information, making the network a ‘dynamic’ network. However, training 

complexity increases. 

𝑥(𝑘) = 𝑂(𝑘) 

Has access to inputs 𝑥1 and 𝑥2 

𝑥(𝑘 + 1) = 𝑂(𝑘 + 1) 

Has access to inputs 𝑥1, 𝑥2, and historical data 𝑥(𝑘) 

  



2) Activation functions 

 

 

 

 

 

Input: 𝑥1𝑤1𝑘 + 𝑥2𝑤2𝑘 + ⋯ + 𝑥𝑙𝑤𝑙𝑘 

∑ 𝑥𝑖𝑤𝑖𝑘

𝑙

𝑖=1
 

𝑂𝑘 = 𝑓 (∑ 𝑥𝑖𝑤𝑖𝑘 − 𝜃𝑘

𝑙

𝑖=1

) 

Where: 

𝑓 = activation function 

𝜃𝑘 = threshold of the kth neuron (bias) 

Sigmoid function: 

𝑠𝑖𝑔(𝑥) =
1

1 + 𝑒−𝑥
 

 

Signum function: 

𝑠𝑔𝑚(𝑥) = ⟨
1 ; 𝑥 > 0
0 ; 𝑥 = 0

−1 ; 𝑥 < 0
 

Step function: 

𝑠𝑡𝑒𝑝(𝑥) = ⟨
1 ; 𝑥 > 0
0 ; 𝑥 ≤ 0

 

 

 



3) Neural Network Learning 

• Supervised learning 

We have a desired output, which can be considered a teacher. 

Teacher (𝑥⃗, 𝑡) 

We compare the desired output and the calculated output and feed the error information back into the 

system to train it. This is the general approach for engineering applications. 

 

• Unsupervised learning  

In applications where we can’t get a target, or we can’t find the desired output, we have no teacher. 

Thus, we cannot do supervised learning – this is usually the case for ‘big data’. 

 

  



• Reinforcement learning 

Feedback information provides a guide for training, but not a target. 

Can be used for special circumstances like scenarios in video games (i.e. beating a bad guy in fewer 

moves to achieve a higher bonus) 

 

 

 

Additional info: 

ANFIS – adaptive neuro-fuzzy inference system 

Our course will focus on the following engineering applications: 

- Control 

- Classification (diagnosis) 

- Modeling (forecasting) 

 

  



4.4 Connectionist Modeling 

1) McCulloch-Pitts (MP) Modeling 

 

 

 

 

 

𝑤1, 𝑤2, … , 𝑤𝑙  are fixed 

𝑂 = 𝑓(𝑥1𝑤1 + 𝑥2𝑤2 + ⋯ + 𝑥𝑙𝑤𝑙 − 𝜃) 

= 𝑓 (∑ 𝑥𝑖𝑤𝑖 − 𝜃
𝑙

𝑖=1
) 

Step: ∑𝑥𝑖𝑤𝑖 = 0.001     ;      0 → 1 

 

2) Perceptron Modeling 

 

 

 

 

 

 

Train link weights (𝑤1, 𝑤2 , … , 𝑤𝑙) and the bias (𝜃), but we don’t train the activation function parameters, 

it is fixed – we simply choose one. 

𝑂 = 𝑓 (∑ 𝑥𝑖𝑤𝑖 − 𝜃

𝑙

𝑖=1

) 

If the training data pairs are linearly separable (or separable by hyper planes) then the training process 

can converge. 

Meaning we can get optimal parameters by a finite number of training operations. 

 

 

 



Consider 2-D data sets: 

𝑥1, 𝑥2 

𝑤1𝑥1 + 𝑤2𝑥2 − 𝜃 = 0 

 

 

 

 

 

 

 

 

  



Summary of Perceptron training algorithm: 

1. Initialize weights and thresholds to small random values 

2. Choose an input-output pattern (𝑥(𝑘), 𝑡(𝑘)) from the training data. 

3. Compute the network’s actual output 𝑜(𝑘) = 𝑓 (∑ 𝑤𝑖𝑥𝑖
(𝑘)

− 𝜃𝑗
𝑖=1 ). 

4. Adjust the weights and bias according to the Perceptron learning rule: 

∆𝑤𝑖 = 𝜂[𝑡(𝑘) − 𝑜(𝑘)]𝑥𝑗
(𝑘)

, and ∆𝜃 = −𝜂[𝑡(𝑘) − 𝑜(𝑘)], where 𝜂 ∈ [0, 1] is the Perceptron’s learning 

rate. 

If 𝑓 is the signum function, this becomes equivalent to: 

 

∆𝑤𝑖 = {
2𝜂𝑡(𝑘)𝑥𝑗

(𝑘)
; if t(𝑘) ≠ 𝑜(𝑘) 

0 ; otherwise
 

 

∆𝜃 = {−2𝜂𝑡(𝑘) ; if t(𝑘) ≠ 𝑜(𝑘) 
0 ; otherwise

 

 

5. If a whole epoch is complete, then pass to the following stepl otherwise go to Step 2 

6. If the weights (and bias) reached steady state (∆𝑤𝑖 ≈ 0) through the whole epoch, then stop the 

learning; otherwise go through one more epoch starting from Step 2.s 

 


