Given k" training data pair:

{ Cey(ky), 22 (), .07, t (k) }

ti(k) — oi(L) ~ error

Objective function of online training:

[EEN

q
B =5 (6 -oPW) 5 k
=1

24
i

n = the total number of training data pairs

Obijective function of offline training:

- zn: E(k) =
k=1

WOk +1) = WD k) + AWD (k)

— 0E (k
AW WD (k) = —77—»—()
oW @ (k)

9E o

2 ()
AW = —n —_—
Y 605{)) 6t0ti(€)

=Wy

(See previous neural network node map)

Output layer L:

a
1
E(k) = EZ (L) (L)
i=1

EGR) = (68 = o) 4 o+ (68 = o) + -

L) _ L) (L-1)
tot; —"--l-Wl-j 0; + -

0E o™ otot™
@ o ®
0 0; dto t; 0 Wl.j

w _
AWij =N

i(mq) Oml

L L
49— o)

1,2, ..

1 , L-1
AW = —n 2 @ (6 = o) (~1) # £ (tot{?) ot

o™V = f(toti(L))

e If asigmoid AF (activation function) is used:

f0 = 1+e7*
x = tot™
f@) = o
_ 1
f= 1+e*
f =10 +e™)7) = =101 + ™) e (-1)
eeres
P
1
14+e™*
Then,
ff=r-1

o |If oi(L) is a sigmoid function:

s = (e = o) f(1 - otV
— L) @Yy W @Y ,@-1
—n(ti -0)oi (1—oi)oj

59 = (19— o®) 1 (10t ®)

59 = (19 — o) o (1 - o)

W _ s, LD
Wi~ =né;" o

.
For Wl-j :

/-

& _ @) (¢-1)
AWU —175i 0;

(ti({)) - oi“)) i (toti(“’))

General structure:

Forward pass — o (calculate output)

Backward pass — update WiE.L)

Example 5.1
To illustrate this powerful algorithm, we apply it for the training of the following network, shown in

Figure 5.4. The following htree training pattern pairs are used, with x and t being the input and the
output data respectively:

x® =(0.3,04), t@V =(0.88)

x@ =(0.1,0.6), t® =(0.82)
x®) =(0.9,04), t® =(0.57)

0o 03

O = 5(2\;40-:(9\

biases

Biases are treated here as connection weights that are always multiplied by (—1) through a neuron to
avoid special case calculation for biases. Each neuron uses a unipolar sigmoid activation function given

by:

1) ,
o = f(tot) = W,usmg?\ = 1,then f'(tot) = o(1 — 0)

Solution

To illustrate this powerful algorithm, we apply it for the training of the following
network shown in Figure 5.4. The following three training pattern pairs are
used, with x and t being the input and the output data respectively:

x"=(0.3,0.4), tV=(0.88),

x?=(0.1, 0.6), t?=(0.82),

x¥=(0.9,0.4), t9=(0.57),

<— target
t

biases

Figure 5.4: Structure of the neural network of Example 5.1

Biases are treated here as connection weights that are always multiplied by —1
through a neuron to avoid special case calculation for biases. Each neuron uses
a unipolar sigmoid activation function given by:

o =f(tot) = ﬁ using A=1, then f'(tot) =0 (1 - 0)
+ e

Step (1) - Initialization
Initialize the weights to small random values. We assume all weights are
initialized to 0.2; set learning rate to 7 = 0.2; set maximum tolerable error

to £, = 0.01 (i.e., 1% error); set current error value to £ = 0; set current
training pattern to k= 1.

Training Loop — Loop (1)
Step (2) - Apply input pattern
Apply the 1st input pattern to the input layer:
xY'=(0.3, 0.4), t¥ = (0.88), then, 0, =%, =0.3; 0, =X, = 0.4; 0, =X, =—1
Step (3) - Forward propagation
Propagate the signal forward through the network:

05 = f(W;00, + W3,0; + W3,0,) = 0.4850
0, = [(W,00, + W0, + W,,0,) = 0.4850
0;,=-1

0, = (W05 + Wg,0, + Wes0,) = 0.4985

Step (4) — Output error measure

Compute the error value E and the error signal d, of the output layer:
E =3(t-0,)°+E=0.0728
0, = f'(tot,) (f — 0,)
=01 — o,)(t — 0,)
=0.0954

Step (5) - Error backpropagation

Propagate the errors backward to update the weights and compute the
error signals of the preceding layers.

Third layer weight updates:

Awg; = nNd,05 = 0.0093 Wi = wo + Aw,; = 0.2093
Awg, = ndg0, = 0.0093 wis = w2 + Aw,, = 0.2093
Awgs = N005 =—0.0191 Wi = wid + Aw,s = 0.1809

[

WW layer error signals:

6
(53 = f;(totg)z W,'35,‘ = 03(1 - 03)W6356 = 0.0048

i=6

6
8, = fi(tot) > w0, = 0,(1 — 0,)W,, O = 0.0048

i=6
Second layer weight updates:
Aw,, = 10,0, =0.00028586 Wi = w3 + Aw,, = 0.2003
Aws, = nd;0, =0.00038115 Wi = w3 + Aws, = 0.2004
Aw,, =050, =—0.00095288 Wi = wSs + Aws, = 0.1990
Aw,, =nd,0,=0.00028586 wieY = wid + Aw,, = 0.2003
Aw,, =nd,0, =0.00038115 Wi = wid + Aw,, = 0.2004
Aw,, =nd,0,=-0.00095288 wi" = w3l + Aw,, = 0.1990

Training Loop - Loop (2)

Step (2) — Apply the 2nd input pattern

Apply the 2nd input pattern to the input layer:

x?=1(0.1, 0.6), t? = (0.82), then, 0,= 0.1, 0, = 0.6, 0, = —1

Step (3) - Forward propagation

05 = f(W300, + W3,0; + W;,0,) = 0.4853
0, = [(W,00, + Wy10, + W,,0,) = 0.4853
0;,=-1

05 = [(We30;5 + Wy,0, + Wy505) = 0.5055

Step (4) — Output error measure

E=1(t-0,)’+E=0.1222
0, =0,(1 —0,)(t—0,) =0.0786

Step (5) - Error backpropagation

Third layer weight updates:

Aw,; = nd40, =0.0076 Wi = wy + Aw,; = 0.2169
Aw,, = nde0,=0.0076 Wi = wold + Aw,, = 0.2169
Awgs = N0405 =—0.0157 Wi = we + Awgs = 0.1652

Second layer error signals:
6
5 = f5(tots) Y w30, = 05(1 — 05)we;0, = 0.0041
i=6
6
0,= f;(tota)zwjaé,- =0,(1 - 0,)w,,0, = 0.0041

i=6
‘/x‘zx

Bewiiid layer weight updates:

Aw,, = nd;0, = 0.000082169 Wi = Wi + Awy, = 0.2004
Aw;, = N0;0, = 0.00049302 Wi = w4+ Awsy, = 0.2009
Awsy, =050, =—-0.00082169 wis¥ = w3 + Awy, = 0.1982

Aw,o=n0,0,=0.000082169 wis"=wiy + Aw,,=0.2004
Aw,, =nB,0, = 0.00049302 W ™ =w’" + Aw,, = 0.2009
Aw,, =nd,0,=-0.00082169 w3 =wiy + Aw,,=0.1982

Training Loop — Loop (3)
Step (2) - Apply the 3rd input pattern to the input layer

x? =(0.9, 0.4), t? = (0.57), then, 0,= 0.9, 0, = 0.4, 0, = -1
Step (3) - Forward propagation

0, = f(W3,0, + W3,0, + W5,0,) =0.5156
0, = [(W00, + W,,0; + W,,0,) =0.5156
0;=-1

06 = f(We305 + We 0, + We505) = 0.5146
Step (4) — Output error measure

E=1(t—o0,)+E=0.1237
O, =041 —0,)(t—0,) =0.0138

Required Steps for Backpropagation Learning Algorithm

e Step 1: Initialize weights and thresholds to small random values.
e Step 2: Choose an input-output pattern form the training input-output data set:

(x(k), t(k))

e Step 3: Propagate the k" signal forward through the network and compute the output values or all
i neurons at every layer (£) using:

N1 _
of (k) = f<zp=0 Wiy 0 ”)

e Step 4: Compute the total error value E = E(k) + E and the error signal Sl.(L) using formulae:
L L L
s* = [ti —of)] [(tot)§)]
e Step 5: Update the weights according to:

Awi(f) = —7761-(4))0]-({)_1), for{=1,..,1 using
w _ 1, _ @ ’ (L) . .
8,7 = |ti —o; || f (tot); and proceeding backward using

n

® _ ® @) C L+, (£+1)
6i = o, (1—oi)zp=16p Wy forY <L

e Step 6: Repeat the process starting from step 2 using another exemplar. Once all exemplars have
been used, we then reach what is known as one epoch training.

e Step 7: Check is the cumulative error E in the output layer has become less than a predetermined
value. If so, we say the network has been trained. If not, repeat the whole process for one more
epoch.

Ia——e

ol(") -1,
\ s
(D—s ot
Ny
Oror
‘\éif\
. '_éAL

t £ (£-1
aw® = 7500l
Error signal:

@) _ g1 (€3] (#+1)_ (¢+1) #+1)_ (¢+1) (t+1)_ (#+1) (¢+1)_ (¢+1)
5 = £ (tot) [65 Pwft + 6 PwD e 8w 4t 5w
p
{ 1 (1 +1 £+1
5 = f' (tot]))Z6§ e
p=1

For a sigmoid AF, there is a special case:

f'=f=f) - 0?1 -0®)

4.6 Momentum
When 7 is small, the convergence towards the target is slow:

Vel
L

Conversely, when 7 is large, it can miss the target (convergence not met)

b
4\&%9‘ @ ﬁ'
P

Epin = 0.05 e
OE (k ©°
MO +1) = —1 EW)
aw® "V
_/
AW
v €1[0,1]

v=10.8,09

Effect of hidden nodes on function approximation

To illustrate the effects of the number of hidden neurons on the approximation
capabilities of the MLP, we use here the simple function f(x) given by:

f(x) =xsin(x)

Six input/output samples were selected from the range [0:10] of the variable x.
The first run was made for a network with three hidden nodes. The results are
shown in Figure 5.6(a). Another run was made for a network with five (Figure
5.6(b)) and 20 (Figure 5.6(c)) nodes respectively. From the result of the simula-
tion, one may conclude that a higher number of nodes is not always better as
is seen in Figure 5.6(c). This is mostly due to the fact that a network with this
structure has overinterpolated in between the samples and we say that the net-
work was overtrained. This happens when the network starts to memorize the
patterns instead of interpolating between them. In this series of simulations
the best match with the original curve was obtained with a network having five
hidden nodes. It seems here that this network (with five nodes) was able to
interpolate quite well the nonlinear behavior of the curve. A smaller number of
nodes didn’t permit a faithful approximation of the function given that the non-
linearities induced by the network were not enough to allow for adequate inter-
polation between samples.

f(x) = xsin(x)
x =0~10

@ ned
X —p @:0_5_9 $(+)

5

(a) Function approximation with (d) Function approximation with
(18 three hidden nodes three training patterns

X X
(b) Function approximation with (e) Function approximation with
“.‘7 five hidden nodes ten training patterns

Assume
n=5

X X
(c)) Function approximation with (f) Function approximation with
[\ 20 hidden nodes 20 training patterns

10 T T T T

+ Training patterns
Original curve
------ Network output

Figure 5.6 a, b, c: Effect of the number of hidden nodes on MLP approximation of

f&x)
Figure 5.6 d, e, f: Effect of the number of training patterns on MLP approximation

of f(x)

Using more neurons in the hidden layer doesn’t necessarily improve the performance of the system, but
using more training data pairs improves system performance.

4.7 Radial Basis Function Neural Network (RBF NN)
- Special case of a feedforward neural network

1.3 Layer FF NN

Loger |

La‘:Se" 3 Lager 3

2. Unity line weights between (neurons) layer 1 and layer 2 (they have the same value).
3. AFs in the neurons in hidden layer are kernel functions.

e Gaussian function:

S o2
—|1%-7;l|
>\ — 207
gi(x) =e “%
X = input vector
¥; = center vector
0; = spread parameter
e Logic function:
1
gi(®) = S o2
—|12-%l|

2

1+e 29

Output:

0;(X) = g1 (Xwj; + -+ gi (DOwj; + -+ gn, Dwjn, 5 j=12,...

n;
0;(xX) = Z wj; * g; (%)
-

Training:
e Parameters in the hidden neuron AFs (centers and spreads)
e Link weights between the hidden layer & output layer

Note:
A Radial Basis Function (RBF) neural network is a neuro-fuzzy system

Chapter 5: Neuro-Fuzzy Systems

5.1 Introduction

Fuzzy logic

Neural networks

Representation

Linguistic description of
knowledge

Knowledge distributed within
computational units

Adaption

Some adaptation

Adaptive

Knowledge Representation

Explicit and easy to interpret

Implicit and difficult to interpret

Learning

Non-existent

Excellent tools for imparting
learning

Verification

Easy and efficient

Not straightforward
(“black box” reasoning)

Integrated systems of fuzzy logic (FL) and neural networks (NN)

1. Neuro-fuzzy (NF) system
FL parameters can be trained by using NN training methods (back propagation, etc.)
2. Fuzzy-neuro system (RBF)
Neural network, but some neurons are fuzzified

3. Neural fuzzy systems

Just a simple combination of FL and NN (separate systems utilized in series)

