Chapter 1: Introduction to Soft Computing

What is Soft Computing?

Soft computing is an emerging approach to computing, which parallels the remarkable ability of the
human mind to reason and learn in an environment of uncertainty and imprecision.
(Dr. Lotfi A. Zadeh)

Conventional Artificial Intelligence (Al) and Soft Computing (SC)
- Symbolic tools

- Crisp calculation 1 Aeve
@ : Yaee
Gate:
-——/._—f—' @
_____,/‘-—" '

Al Intelligent System (expert system)

Inference
Engine

Question -
—_— Explanatlon
— Facility Global
Response Data Base
User
(Novice)
=] Facts
Rulss
Knowledge 1C Host
Engineer Knowledge Compuw

Human Acquisition
Expert

Interface

ser

ANV

Advantages:
- Easy to set up

- Still commonly used today

Disadvantages:
- Difficult to improve, how do you implement new knowledge to the system?
- How do you represent knowledge to the users?

SC Intelligent System

Devl
Perceptions | | (Vision) Task
Generator

L)
|
| Machine
i Learning
1

L;l-turll Knowledge : Inferencing

' nguage Handler i “ (Reasoning)
i
i
1

Actions Mechanical Handler
-—_— L 1

Devices

i

:

Itis intelligent because it can sense the environment (temperature, acceleration, etc.)

Example of a SC Intelligent System:

f——————
|
|
|
|
|
|
|

—_——————
—_——————

Character
Recongnizer

Two systems co-operate with each other to determine the written character.

Neural Networks
Consider a neuron:

Cell body
Nuclous r
Axon
Dendartas
This can be used to adapt the following model:
x1 W TEACH /USE
INPUTS
OUTPUT

TEACHING INPUT

- Mimic the human brain to make decisions

- The functional speed of nerve cells is significantly slower than an electronic gate

- However, the brain can process A/V information significantly faster than a computer
o especially under uncertainty and noise

Advantages:
- Good adaptive capability

- Can use machine learning algorithms to improve its function

Disadvantages:
- Difficult to recognize how decisions are made in the model

- Reasoning is complex, not immediately comprehensible

Fuzzy Logic
- Mimic linguistic reasoning to make a decision
o Specifically, IF-THEN rules are utilized

IF—THEN rules

- Based on inputs, make a decision
o IF (food quality = good, service = fast) THEN (tip = 20%)
o IF (food quality = okay, service = slow) THEN (tip = 10%)

Advantages:
- Easy to follow logical process

- Intuitive

Disadvantages:
- Poor learning capability

- Difficult to optimize if application changes, or the environment varies

Table: Soft computing constituents (the first three items) and conventional artificial intelligence

Methodology Strength

Neural network Learning and adaptation

Fuzzy set theory Knowledge representation via fizzy if-then rules
Genetic algorithm and simulated annealing Systematic random search

Conventional Al Symbolic manipulation

Neuro-fuzzy modeling
- Combining a fuzzy logic system with a neural network leads to a neuro-fuzzy system.

Why neuro-fuzzy?

Fuzzy Logic Neural Networks

Knowledge Representation Linguistic description of Knowledge distributed within
knowledge computational unit

Intuitiveness Explicit and easy to interpret Implicit and difficult to interpret
(intuitive) (“black box”)

Verification Easy Not as easy

Adaptation Manual Automatic

Learning None Excellent tools for imparting

learning

Consider:

Input Hidden Output

P (avs) — ()

Historical development of related techniques:

Conventional AI Neural network% Fuzzy systems Other methodologies
1 I
| | !
| | |
. 1943 McCulloch-Pitts | :
1947 Cybemetics | neuron model | [
| | |
I I I
s e b - Sy S M S S S g
I I |
I | [
I I [
| | |
19508 4956 Artificial 11957 Perceptron | [
Intelligence : : :
[I I
1960 Lisp language 1;19603 Adaline T r
: Madaline : :
1960 I I |
s | | 1965 Fuzzy sets |
I [|
| | : |
K S — e e e e e o e e b e e | B et gt e o s
1974 Bithof Back- | | 1970s Genetic
| Propagation | | algorithm
19704 Mid: 19708 : S | 1974 F —
Knowiedge 1975 Cognitron | WEEY T, |
Engineering l Neocognitron | [
(expert systems) | | I
B T1980 Self-organizing T r
[map I I
- 1982 Hopfield Net | p—— | ;::0?' ”
s o1 19 uzzy ing cal lite
:1983 Boltzmann machme: (TSK model) : Immune modeling
(1986 Backpropagation | I
U O L, L T S D —
| | 19908 Neuro-fuzzy | 1990 Genetic
: : modeling : programming
1990s | | 1991 ANFIS |
: : 1994 CANFIS :
| | |
1 1 L

Chapter 2: Fuzzy Sets
2.1 Review of Conventional Al (Crisp Logic or Crisp Sets)
Logic ~ representation of processing of knowledge

A ~aset
X ~ universe of discourse

Pi
X

¢ ~ null set
x ~ elementin set A
x €A

X

Consider:

[Cond:\ong

oA={x|x=>6}
eB={x,y|lx=2x=>3,y=>2}

1) Operations of Sets

1. Complement
Given set A4, the complement is everything outside of A —» A’

2. Union
GivensetsAand B> AUB
¢ R vaon

3. Intersection

GivensetsAand B> ANB
-X_ o intecgecto®

covest
4., Subset

Set A is a subset of B, if the elements of A are contained within B - A € B (or A € B)

2) Conventional Logic

Knowledge statement is represented by proposition.
Teve ("'\

Truth tablel ¢ e (¢)

1. Negation (NOT)

2. Disjunction (OR) ﬂﬁo * 0(,;/“”&0‘\
. Disjunction L\ g
S

EIESIEIEEIFS
m (N =Rw <

3. Conjunction (AND) ’@ ’
A

=

|| >

TR S
n|NmNw >

4. Implication (IF-THEN)

IFATHEN B

A B A-B
T T T
T F F —
contradicts logic
F T T
does not contradict logic
could be T, could be F
F F T (same reason as above)

\

Boolean Algebra: O or 1

Table 1.2: Isomorphism between set theory, logic, and Boolean algebra

Set theory Set theory Binary logic Binary logic Boolean algebra
concept notation concept notation notation
Universal set X (Always) true (Always) T 1
Null set a (Always) false (Always) F 0
Complement A Negation (NOT) Aor~A A
Union AuUB Disjunction (OR) Av B A+B
Intersection ANnB Conjunction (AND) AAB A-B
Subset AcB Implication (if-then) A—B A<B
3) Logic Processing
Knowledge is usually represented by a proposition.
Consider 3 propositions; 4, B, and C.
X(always T) and ¢p(always F)
1. Commutativity ‘
AAB=BAA q.»
AVB=BVA QOP
Ly
2. Associativity C
(AAB)AC=AA(BAC)
Dy
(AVB)VC=AV(BV(C) o ¢

3. Distributivity

4. Absorption

AABVC) =(AAB)V(BAC)
AV (BAC)=(AVB)A(BVO)

>

AV(AAB)=A

AAN(AVB)=A

5. ldempotency
AVA=A
ANA=A
6. Exclusion
AVA =X = (alwaysT)

7. Contradiction

AANA = ¢ = (always F)

8. De Morgan’s Law

9. Boundary Conditions

AvX=X=T
ANX=A
Avd=A
ANp=¢p=F

Consider:

A = "food is good"

B = "service is good" 9

It is not true that both “food is good” and “service is good”
Either “food is not good” or “service is not good”

4) Rules of Inference
1. Conjunction rule of inference (CRI)

(A,B) > AAB

IF proposition A is TRUE and the second proposition B is TRUE
THEN the combined proposition A A B is also TRUE

2. Modus Ponens
AAN(A > B)=>B

IFA— B,thenB
IFAisT, thenBisT

Consider:
A = "food is good"
B = "tips are generous”

Thus, IF “food is good” THEN “tips are generous”
3. Modus Tollens
BA(A->B)=>4

IF proposition Biis not T, and A — B holds
THEN A is NOT TRUE

4. Hypothetical Syllogism

[A->B)AB->0]=>A->0)

Consider:

A = "machine performs well"

B = "vibration level is low"

C = "manufacturing accuracy is high"

If both terms hold, then
IF “machine performs well” THEN “manufacturing accuracy is high”

2.2 Concepts of Fuzzy Sets

Conventional crisp logic utilizes 0 /1 (or true/false)
- Good for math operations

- Good for computers, chip designs

However, real applications have many abstract and imprecise concepts (think “grey” areas)

Crisp logic {F ~0

Set:
A={x|x =6}

Temperature “cold”

Temp:
A = "cold”
A={t <-10°C}

But what about:
temp = —10.1 °C
temp = —9.99 °C
A->T

A-F

B = aperson s tall
B ={x|x =6 ft}

x =6.01ft
B-T

x =5.99 ft
Fuzzy Logic

Ideal filter:
0

| x®)

Wo

2.2 Fuzzy Sets (Cont’d)

Crisp sets: A {(1)

Concepts and thoughts are abstract and imprecise # random.

Fuzzy logic — approximate knowledge

Fuzzy \og<

R - “ay ¢

(N {; H

Membership function (MF) grade.

Consider:

Height:

H = 6.001 ft

“Tall” MF grade: 99.9%

H' =5.999 ft
“not Tall” MF grade: 0.01%

Fuzzy set:
A= {x, pa(x)}

x =variable € X
pa = MF
X = universe of discourse

1) Fuzzy sets with a discrete non-ordered universe
X = {Montreal, Toronto, Vancouver}

C = "desired city to live in"
C = {(Mon,0.5),(Tor,0.8), (Van,0.7)}

Graphical representation:
M

|
0%

07
o5
N
y | 4

T Moa Toe Naa X

2) Fuzzy set with a discrete ordered universe
X =1{0,1,2,3,4}

Fuzzy set A = “sensible number of cars in a family”
A =1{(0,0.1),(1,0.8),(2,1.0),(3,0.4), (4,0.1)}

Graphical representation:
X
]

o.2

o%
¢ | It ——>¥ (1)

o ' 2 s & 7

3) Fuzzy sets with a continuous space
X ="ages" (0 ~ 120)

Fuzzy set B = “about 40 years old”
B ={(x,up(x)}, x € X

Graphical representation:
Molx)

/”"' \
/2

[\
[]
:" ! N
e s
1

x — 40*
1+ ()
e Subjective (X, MF)
e Notrandom

pp(x) =

4) Other fuzzy set representations
For a discrete, non-ordered universe:

_ pa(xy) n pp(x2) n pc (x3) .

A
X1 X2 X3
e.g.
B 0.5 N 0.8 N 0.7
" Mon Tor Van
For a discrete, ordered universe:
01 08 10 04 0.1
A=—+—+—+—+—

O+1+2+3+4

For a continuous space:

B:MB(X)
X
1
B = —40 4/x
x_
1+ ()

If the universe space X is a continuous space, we can partition X into several fuzzy sets.

Consider:
X — llage”

Partitions:

“young”, “middle aged”, “old”
uy (), up(x), uo(x), wherex € X

) M R)

2.3 Other Concepts of Fuzzy Sets

1) Support
support(4) - {x|u,(x) > 0}

2) Core
core(B) - ug(x) =1
Mol & Coe

\§®W

- AV §

Foc o ‘eiacaorac Conction,

Pond poouvd be

o&_‘) j_

“n ‘Hae coce

3) Normality
normality(C) - max{u-(x)} =1

4) Cross-over Points

»x

) N —
s s & Cross-over pount,
Up (XO) = .uC(xO) = 05 ‘?Qﬂ\- &35“4 ho_“c s?ec_.?:cd
Xo = a cross-over point ‘ndicat:on,

g eods (& 0o spec-FTred
. ‘N\dicedion, owde = @.5
5) Fuzzy singletons

Basically, a fuzzy set in discrete form.

Diagnosis:
Class 1, Class 2, ...

T o

wae€ oude¢ Gy (o)

7y cl_p cl\osses

tace Tace
domeae domene
6) a — cut
B = {x, up () |y, ()2}
Ho)
' ®

ot --

» X
e Strong a — cut
B = {x, up () |pa(x) > a}

7) Convexity
Fuzzy sets are convex functions.

8) Fuzzy Numbers

A fuzzy number is a fuzzy set

— normality

— convexity (monotonically increasing, followed by monotonically decreasing, or constant)

9) Bandwith
‘»3

\

ov

X, — x1 = bandwith
ta(xy) = ua(xz) = 0.5

10) Symmetry
----- R ﬁ NoN-Synmeltre

Table 2.1: Some properties of fuzzy sets

Property name Relation
Commutativity AnB=BnNA
AuB=BUA
Associativity AnBNC=ANn(BNC)
(AuB)uC=AuBUC0)
Distributivity AnBuUO=AnBUAN()
AUuBNO=AuBN(Au0)
Absorption AUMANB)=A
An(AuB) =A
Idempotency AUA=A
(Idem = same; potent = power) AmA=A
(Similar to unity or identity operation)
Exclusion:
Law of excluded middle AUA CX
Law of contradiction ANA D¢
DeMorgan’s Laws AnBY=A"uUB
AuB=A"NnE
Boundary conditions AuX=X
AnX=A
Augp=A

And=¢

2.4 Set Operations

1) Subset
Consider fuzzy set A & B

If A is a subset of B:

AcB
MF pa(x) < pp(x)
M Q
\ =}
{
\
|
1 N
x v X
2) Union (Disjunction) - OR
GivenA & B
C=AUB

pe(x) = max{ ps(x), pg(x)}

3) Intersection (Conjunction) — AND
GivenA & B

C=ANB

e (x) = min{ uy(x), pp(x)}

4) Complement (Negation) — NOT
GivenA & B

not A or A (fuzzy set)

pi(X) =1 —pu(x)

5) Cartesian Product / Co-product

A ~fuzzy setin X '} u /c(-.(\S’
) o A+ Unyverses o
B ~fuzzy setinY eere® '

Cartesian product A x B
isinXxY
Haxp(x,y) = min{u,(x), us(y)}
Cartesian co-product A + B
isinX+Y
ta+s (e, y) = max{ ua(x), pp(y)}

2.4 Membership Functions (MF)
1) Triangular Membership Functions
M g
|

- — -

0 whenx<a

(x—a) whena <x<b
uax;a,b,c) = (IZZfE

) whenb < x <c

S

Cc —

0 whenx>c
In MATLAB:
trimf(x,[a b c])

2) Trapezoidal Membership Functions

/*(-\(”\ VAN

\ I e

\
\
‘\ \
» \
) \
0 whenx < a
(x—a) whena<x<b
b—a
pa(x;a,b,c,d) =< 1 whenb<x<c
d—x
() whenc<x<d
d—c
\ 0 whenx > d
In MATLAB:

trapmf(x,[a b c d])

NOTE: Triangular, and trapezoidal membership functions are not continuous, which means the
derivatives functions do not exist (equal to zero).

The following membership functions are continuous:

3) Gaussian Membership Functions

1/x-c\2
Uy = gauss(x;c,0) = G(x) = e'E(T)

c = center
o = spread

—

In MATLAB:
gaussmf(x;[c,a])

i (x) =DG(x) = e‘%(%)z : [_%

4) Generalized Bell Membership Functions

In MATLAB:

1
Uy = bell(x;a,b,c) = T,
1+ =
a
(a) Changing 'a” (b) Changing 'b*
1
0.8
0.6
0.4
02
-10 -10 -5 0 5 10
(d) Changing 'a’ and ‘b’
1 - 1 e =3
\ i \
08 0.8 , \
i 1 \
0.6 ‘ 06 , \
1 \
0.4 K 04 ! \
: A
02} L’ o2t i, v
QL = ol -
-0 -5 0 10 -10 -5 0 5 10

Figure 2.8. The effects of changing parameters in bell MFs: (a) changing param-
eter a; (b) changing parameter b; (c) changing parameter c; (d) changing a and b
simultaneously but keeping their ratio constant. (MATLAB file: allbells.m)

gbellmf (x; [a, b, c])

5) Sigmoid Membership Functions
1

1+ exp[—alx —¢)]

u(x) = sig(x;a,c) =

In MATLAB:
sigmf(x;[a,c])

T S, S —

O 1 2 3 4 (Y e 7 8 8 1

If a > 0, sigmf opens to the right
If a < 0, sigmf opens to the left

P —

j
i f L

N Y B BT

03; ;
S S 6 7 8 9 1

% 10

' (x) = DS(x) = _1[1 + e—a(x—c)]_ze—a(x—c) - (—a)
0<x<o

2.5 Fuzzy Operations
MFs [0, 1]

A~10,1]
B~10,1]
C~AUB
D~ANB

[0,1] x[0,1] - [0, 1]

1) Triangular Norm (T-Norm) — Generalized Intersection

a = pu(x)
b = ug(x)

T =(a,b), aTb

Properties in table below.

2) T-Conorm (S-Norm)
Properties in table below.

Table 2.2: Some properties of a triangular norm

Item description

Function

Nondecreasing in
each argument

Commutative
Associative

Boundary
conditions

Examples

DeMorgan’s
Laws

T-norm (triangular norm)

T: [0, 1] x [0, 1] = [0, 1]

Ifbza,d=c
then bTd = aTc

alb=bTa
(aTb)Tc=aT(bTc)

all=a
alo=0
witha, b, ¢, d e [0, 1]

Conventional: min(a, b)
Product: ab

Bounded max (bold intersection):

max[0, a+ b —1]

General:

1—min[1, (1 —a)”+ (1 = b)")"7]
p=1

max[0, (A+ 1)(a+ b - 1) — Aab]
Az -1

aSb=1-(1-a) T(1-b)
alb=1-(1-a) S(1-b)

S-norm (T-conorm)

Same

Same

Same
Same

asS0=a
aS1=1

Conventional: max(a, b)
Set addition: a+ b —ab
Bounded min (bold union):
min[1, a + b]

General:

min(1, (@” + b)A"?

p=z1

min[1, a + b + Aab]

A=-1

Example 2.3 (Similar to Example 2.13)
Use DeMorgan’s law to determine the S-norm corresponding to max(x, y), and T-norm corresponding to
min(x, y).

Solution 2.3
xSy=1-(1-x)T(A-y)
T — min
=1-—min[(1 —x), (1 —y)]
={1—(1—y)=y: x <y
1-(1—-x)=x; x=y
xSy = max (x,y)

Example 2.4 (Similar to Example 2.14)
Prove that the min operator is the largest T-norm and the max operator is the smallest S-norm.

Solution 2.4
Nondecreasing, boundary conditions

xTy < 1Ty =y
xTy <xT1l=x
xTy < min(x,y)

2.5 Fuzzy Operations

3) Set Inclusion

Fuzzy sets A, B

If A is a subset of fuzzy set B,

(x) = { 1 ; ifpa(x) < pp(x)
Hacs pa(x)Tug(x) ; Otherwise

min ~ T-norm

s ifpa(x) < pp(x)
; Otherwise

)LU’\W

o)

4) Set Equality (A = B)
pax) = pug(x)

~ 1 ;5 ifus(x) = pp(x)
“A=B(x)_{yA(x)Tu3(x) ; otheArwise ’

min ~ T-norm

1 5 ifua(x) =pp(x)
min(p (), up(x)) 5 ifua () # wp(x)

I) 9‘%

pa=p(x) = {

o
s X
2.6 Implication (IF — THEN)
A-B
IF A THENQ
T % conseguent
onclusion
W‘~=\vabx~5
Condidton
A~X
B~Y
A- B XxY

1) Method 1 (Mamdaniimplication)

tasp(x,y) = min[ps (x), up(y)]
x€X,yeY

2) Method 2 (Larson implication)
tasp (6, y) = pa(x) - up(y)

3) Method 3 (Bounded sum implication)

tasp(x,y) = min[1, {1 — pa(x) + up ()3}
o ® |

M&(x) =
Proof:

A-B

SIRIESIEEIES
|~ = w

S~ =L

A->B=(AAB)VA

A-B=(AVAABVA
=XA(BVA)
=BVA
=1—(BVA)
4) Method 4 (Zadeh implication)
tasp(x,y) = max[min{u, (x), up ()}, 1 — pa(x)]
MV A VWV

(D
5) Method 5 (Dienes-Rescher implication)
tasp(x,y) = max[1 — p,(x), up ()]

IF uy(x) = 0.6
IF ug(x) = 0.5
Method 1 (Mamdani):
= min(0.6,0.5)
= 0.5

Method 2 (Larson):
= product(ﬂA(x),llB (x))
=0.3

Method 3:

= min[1,{1 — 0.6 + 0.5}]
= min [1, 0.9]

=0.9

Method 4:

= max[min{0.6, 0.5}, 1 — 0.6]
= max[0.5, 0.4]

=0.5

Method 5:

= max[1 — 0.6, 0.5]
= max[0.4, 0.5]
=0.5

Example 2-6 (Problem 2.16)

Consider the membership functions of fuzzy sets A and B as shown in
Figure 2.10, and expressed below:

Halx) = mu{ﬁ.

=max{0.

=0

Haly) = max{ﬂ.

10"_3} 03 £x<0.5
?—IO.X} 0.5<x<0.7
otherwise
10’;_3} 03<y<05
?—1(}3-'} 0.5<y<0.7
otherwise

The resulting expressions for the combined membership functions, which rep-
resent the five implication relations, are given in (a)-(e) below, and sketched
in Figure 2.11.

0.7

xe [0, 1]

0.7
ye[0.1]

Figure 2.10: Membership functions of fuzzy sets A and B

(b) Mamdani implication (min operation)

[10x-3 10y -3]
2 2

[10x-3 7-10y]
L 2 " 2 |
7-10x 10y -3

2 2

[7-10x 7-10y]

Solution
min
min
j,m_.a{x;}")= .
min
min
0

2 2

if 0.3=x=<0.5and0.3<y=<0.5

if 0.3=x=0.5and0.5<y=0.7

if 0.5<x=0.7and0.32y=<0.5

if 0.5<x=0.7and0.5<y=<0.7

otherwise

(a) Larsen implication (product or dot operation)

HasalX, y) =

4

4

4

4

(10x - 3)(10y - 3)
(10x - 3)(7 — 10y)
(7 —10x)(10y - 3)

(7 = 10x)(7 — 10¥)

if 0.3<x=05and0.3=sy=0.5

if 0.3=x<0.5and0.5<y<0.7

if 0.5<x<0.7and0.3<y<0.5

if 0.5<x=07and05<y=0.7

otherwise

2.7 Extension Principle and Fuzzy Relations

f~fromXtoY
(e
A

Example:

A~x€eX
B~yeY

Many to one mapping ~ max

_ pa(xy) n pa(xz) I ta(xn)

X1 X2

For fuzzy sets A and B
B =f(4)
y=fk)

Xn

_ MA(X1) n ,UA(XZ) - M(xn)

A

V1 V2

01 04 08 09

I S T
y=f(kx)=x*>-3

01 04 08 09

1 23T

0.1v0.3 04Vv09
= +

1 —2
07 09 08

1 7273

In

N\
0.3

7
(_‘b):

0.3

1

0.8

+_
-3

ool

Given fuzzy sets (X, Y)
Where:x € X,y €Y
u(x), u(y), 0~1 (binary relations)

Binary fuzzy sets
Let X and Y be two universes of discourse.

R = {(xl y)l UR (xl 3/')|XxY}
ug(x,y) ~ 2D membership function

R ="y is greater than x”
y—Xx ify>
— ;i X
uR<x,y>={x+y—2 g
0 ;ify<x

X ={3,4,5}
Y ={3,4,5,6,7}

% % 2 b 1
2 [0 0.111 0.200 0.273 0.353
R= Yo 0 0.091 0.167 0.231]
% 10 0 0 0.077 0.143

1) Max-Min Composition
R; ~ fuzzy relation on Xx Y
R, ~ fuzzy relationon Yx Z
R; and R, ~ fuzzy set X and Z

Max-Min Composition:
HUR,oR, (x,2)
= max min|ug, (x,y), Hr, (v, 2)]
= Vy[HR1 (x, J’)/\#Rz (v, Z)]

Where:
V ~ max (or)
A ~ min (and)

e Properties:

R:XxY
S:YxZ
T:ZxW

1) Associativity
Ro(SoT)=(RoS)oT

2) Distributivity
Ro(SUT)=(RoS)U(R-T)

3) Weak distributivity over intersection
Ro(SANT)E(RoS)MN(RoT)

4) Monotonicity
SET>RoSERoT

T — norm ~ min product
S — norm ~ max product

2) Max-Product Composition

Ry ~ XxY

R, ~YxZ

Hr,or, (X, 2) = man[uR1 (6,) * g, (v, 2)]

Example 2-7

Let:
R, = "xisrelevant to y"
R, ="y isrelevant to z"

be two fuzzy relationships defined on X x Y and Y x Z, respectively, where X = {1,2,3}, Y = {«, 8,7, 5},
and Z = {a, b}. Assume that R; and R, can be expressed as the following matrices:

® B D

©[01 03 05 07
Ri= @04 02 08 09
@06 08 03 02lx Y

® ®
09 01

_ 0.2 0.3
Ro = % 05 06
07 02lY+*Z
Now, we want to find R, o R, which can be interpreted as a derived fuzzy relation "x is relevant to z"

based on R, and R,. For simplicity, suppose that we are only interested in the degree of relevance
between 2(€ X) and a(€ Z). If we adopt max min composition, then:

Solution
X={1,23}

Y ={a,pB,v, 6}
Z = {a, b}

1) Max-min composition operator
HR,oR, (x,2) - HRioR, (2,a)
= maxmin[ug, (x,7), g, (v, 2)]
= myax[0.4 A0.9, 02A0.2, 0.8A0.5 09A0.7)]

= max[0.4, 0.2, 0.5, 0.7)]
y

=0.7

2) Max-product composition operator
,u—RloRZ (x’ Z) - “—RloRZ (27 a)
= max[0.4 % 0.9, 0.2+0.2, 0.8+0.5 0.9=0.7]
= max[0.36, 0.04, 0.14, 0.63]
= 0.63

2.7 Fuzzy IF-THEN Rules

1) Linguistic Variables
{fuzzy set, universe, syntactic rule, semantic rule}

age ~ linguistic variable
set T (age)

(young;
not young;
very young;
T (age) =<{ middleaged; ;
very old;
not very old,;
\more or less old’

X = [0,100]

e Primary terms: young, middle aged, old
e Negation: not

e Hedges: very, quite, more or less

e Connectives: and, or, either, neither

e Concentration and dilation

Example:

A ~ linguistic term

MF: piy(x)

A¥ ~ modified version of the linguistic value

A¥ ~ [pk () /x
e Concentration

CON(A) = A?
e Dilation

DIL(A) = VA

Not
f[l — pa(x)]

X

NOT(A) = -A =

Consider two terms 4, B:

x) A X
AANDB:AnB=f“A() pp (x)

x

AORB=AUB = fﬂA(X)V#B(x)
x

Example:

T(age)

Uyoung (X) = bell (X, 20,2, O)

_ 1

TS

1+(z5)

Uora (x) = bell(x, 30,3,100)
1

14 ()

For x = [0,100]:

{a) Primary Linguistic Values

{b) Composite

o !
% 0.8
(<]

206
?

_E 0.4
202

% 10 20

More or less

DIL(old) = 0ld®>

f L
e

X

Not young AND not old
= (= young) M (= old)

L T

1

Young but not very (too) young
= young N (- young?)

[11-- 1x _4]/\[1— T 100°
1+(35) 1+ (")

2

f%/\l_;

1+(2x—0) 1+

()

Extremely old

= con (con(con(old)))
((old?)?)? = old®

[1
_ 3
1+ ()

X

Mot Young and Not Old

Linguistic Values

T

2) Orthogonality

T = {ty, ty, ..., ty}
Universe X

e, () + pe, () + -+ pe, () =1
~ orthogonal

2.9 Fuzzy IF-THEN Rules

Fuzzy implication

“If x is Athen y is B”
\,\/

W
Reemise / conousen |
* wenc e
condixiON w“se‘;
IIA N B”

A and B ~ linguistic values
X and Y ~ universe

R=A-B
e Acoupled with B

R=A->B=AxB
_ f MA(x)IuB(y)/
XxY (x'y)

¥ = T-norm operator
e Material implication (A entails B)
R=A-B=—-AUB

And:
a = pa(x)
b= up(y)

1) A coupled with B
1. Mamdani conjunction
_ _ _ ta(x) A ug(y) /
Rm A-B AxB LXY (x’y)
fm(a,b) =anb

2. Larson (product) implication

R — _ ta(x) - pup(y)
p AxB LXY /(x'y
fp=a-b

3. Bounded product operator

_ _ pa(x) © up(y)
Rp—AXB—LXY A B /(x’y
0 + -1
_ov [a(x) + pp(y) — 1] /(x
fbp=0V[a+b—1]

4. Drastic product operator

_ _ ()"
de =AxB _nyﬂA X MB(Y)/(x’y

a ; b=1
fap(a,b) =a’b=1b ; a=1
0 ; Otherwise

Consider:
a = uy(x) = bell(x, 4,3,10)
b = ug(y) = bell(y, 4,3,10)

m\

R
]“ll \“ =

Figure 2.16. (First row) Four T-norm operators Tpin(a,b), Tap(a,bd),
Top(a,b), and Typ(a,b); (second row) the corresponding surfaces for a =
trapezoid(z,3,8,12,17) and b = trapezoid(y,3,8,12,17). (MATLAB file:
tnorm.m)

2) Aentails B

1. Zadeh’s arithmetic rule
R,=A-B=-AUB
fala,b) =1A(1 —a+Db)

2. Zadeh’s max-min rule
Rpm =A->B=—-AU(ANB)
a = pyu(x)
b = ug(x)
fmm(a,b) = (1 —a) Vv (aAb)

3. Boolean fuzzy implication
Rp=A-B=-AUB

:f [1-pa()] v MB(y)/
XXxY (x,y)

fela,b)=(1—a)Vvb

4. Gogen’s fuzzy implication

RA:A—)B
=f uA(x)ZuB(y)/
XxY 1 (x,y
= ;o a<hb
fA(a:b)—a<b—{b/a ; a>h

{a) Zadeh's Arthmetic Rule (b) Zadeh's Max-Min Rule () Boclean Fuzzy Impfication {d) Goguen's Fuzzy Imp!ic.u!m
2 O

il
\%‘1‘&‘

Figure 3.9. First row: fuzzy implication functions based on the interpretation
“A entails B”; second row: the corresponding fuzzy relations. = (MATLAB file:
fuzimp.m)

2.10 Fuzzy Reasoning Rulebase

2-valued logic, modus ponens

Something like:

fact ~ x is A’

premise (rule) =if x is Athen yis B
consequent conclusion ~ y is B’

— called approximate reasoning

— or generalised modus ponens (GMP)

Let A, B be fuzzy sets
of Xand Y, A'~ of X’

Rule — fuzzy implication
R=A-B ; XxY

pp(y) = maxminfuy (x), pgr(x,y)]

=V, [pa(x) A up(x,)]
or
B'=A'oR=A"o(A— B)

o " = composition operator

1) Single rule with single antecedent

Premise 1 (fact): xis A’
Premise 2 (rule): If xis Athenyis B
Consequence (conclusion): yis B’

1 (¥) =Vy [y () A pgr(x, y)]
A->B=ANAB

=V, [yg(x) Apa(x) A pg (y)]]
=V, [[1a GO A pa GO A s ()]
\——\/_\/

ée5‘“‘c‘\°€ - w (-,..\«5&5“"“\
ot

ts () =Vy [0 A ug ()]

K0 =) A pa] A s ()
= wApp(y)
min

2) Single rule with multiple antecedents
antecedent ~ something existing before (or logically proceeding) another.

Premise 1 (fact): xis A’ and yis B’

Premise 2 (rule): If xisAand yis B thenzis C

Consequence (conclusion): zisC’
R=AxB->_C

Loed

R, (AB,C)=AxB > C
= MA(X)/\#B(J/)/\MC(Z)/
(

Mamdani’s implication:

X,¥,2)
A'xB;C' =7

C'=(A"xXB')xXRp,

= (A xB")-(AxB - ()

= (A xB)YANAxBxC)

uc(z) = max — min
=Vyy a0 A g DA [pa () Aug () A e (2]}
=Vyy (a0 A s COIA [up () Aug 1} A pc(2)

=V, [() A g ()] AV, [up (V) A ug (] A ue(2)
—_—
w, W

= w1 Awy Auc(z)

3) Multiple rules with multiple antecedents

Premise 1 (fact): xisA"and yis B’

Premise 2 (rule 1): If x is A1 and y is B; then z is C;
Premise 3 (rule 2): If x is A, and y is B, then z is C,
Consequence (conclusion): zisC'

Rule 1: R1 = A1 XBl - C1
Rule 2: R2 = A2 XBZ - CZ
Fact: A'x B’

Use max min composition operator "o "
C'=(A'"xB") o (R; UR,)

C, = (A,X B,) A (Rl L Rz)
— [(4'x B) AR, U[(A xB') AR,]
\,__\/\/

ol Ca

=C{UC,

Theorem 2.1 Decomposition Method

R- (AxB - ()

Given fact: A’ x B’
C'=(AxB") - (AxB - ()
=[4A-(A-0)]n[B"-(B~-C)]
T~ \/_/
c. Ca
=CingG

Proof:
ter(2) =Vay {lgr () A pgr DT A [pa) A up(y) A pc(2)]}
=V [par () A pa () A pc (2] AVy, [pg () Aug () A uc(2)]

= Ug'o(asc) NUBo(B0)
=C{NC,

In Summary

Degree of compatibility Compare the known facts with the antecedents of fuzzy rules to find the
degrees of compatibility with respect to each antecedent MF.

Firing strength Combine degrees of compatibility with respect to antecedent MFs in a rule using fuzzy
AND or OR operators to form a firing strength that indicates the degree to which the antecedent part of
the rule is satisfied.

Qualified (induced) consequent MFs Apply the firing strength to the consequent MF of a rule to
generate a qualified consequent MF. (The qualified consequent MFs represent how the firing strength
gets propagated and used in a fuzzy implication statement.)

Overall output MF aggregates all the qualified consequent MFs to obtain an overall MF.

Chapter 3: Fuzzy Inference Systems

neuro fuzzy system ~ fuzzy system (the main difference is related to parameter training)
Inputs: fuzzy inputs, crisp inputs (fuzzy singletons)

1) Mamdani Fuzzy Models
Rule: (R,)

If (x is A1) and (y is B;)

Then (z is C;)

Rule: (R,)
If (x is A;) and (y is By)
Then (z is C;)

X = Xp
Y=Yo
z =7

- zisC' @

2) Defuzzification
When we want to get back a number, instead of a membership function.

e Centroid of the area (most commonly used, dividing line drawn across the centroid of the MF)
e Bisector of the area (commonly used, dividing line such that area on LHS = RHS)

e Smallest of the maximum

e Largest of the maximum

e Mean of the maximum

.——-.._-__-_—

A

—— by - ——

N e
x
S 2

> Z

_/ Centroid of Area «
Bisecter of Area
Mean of Max. o

)

» Smallest of Max.
o Largest of Max.

1) Mamdani fuzzy model
max — min/ product

R,UR, U ...

2) Sugeno fuzzy models
Takagi-Sugeno-Kang (TSK): consequent part of a rule is a polynomial function of inputs.

Defuzzification:

. Wi1Zi T W2z
- wy + wy
7 = wi(p1x + g1y + 1) + wo(pax + gy +12)
wy + wy

Type 1: TSK model (1** order)

7z = pixt + gyt +n
Zi=p1xt+ gy tmn

Type 0: (or 0t" order TSK)

71 =p1x° +q1y° + 1
Zy=p1tag1+n

(consequent part is just a number)
7y =(

1** order TSK and models are commonly used in modeling (forecasting) applications.

Neuro fuzzy models (NF) are fuzzy model — but they are different from conventional fuzzy systems. They
can use machine learning algorithms to update parameters.

3) Tsukamoto fuzzy models
Premise parts — same
Consequent parts = monotonic functions

M A »

Defuzzification (output):

W1Z1 + Wy Zy

fol—

wy + wy

(T\'\'\S s w‘n:j we uvse
Monotonic Foncdiols -
OMecwise Hnece is +LO
d-CSerent tesouds ot &
&s0g\e \:u:ns s-\ie(\g,-“n)

Gioa,F [y 105,]} 2= |

Rule 2 i

(Crispor — ——— I
X I;Ff—'?w ' LE Is Az|> @’J% Aggregator|:- e Defuzzifier F ey
; . | TEIEEEEL ,

- . i
Ruler

I_Ts_ja',]— |_yi§ B J-@"”” :

Consider the room comfort control system schematically shown in Figure 3.3.
The temperature (7) and humidity (H) are the process variables that are mea-
sured. These sensor signals are provided to the fuzzy logic controller, which
determines the cooling rate (C) that should be generated by the air condition-
ing unit. The objective is to maintain a particular comfort level inside the room.

A simplified fuzzy rule base of the comfort controller is graphically presented
in Figure 3.4. The temperature level can assume one of two fuzzy states
(HG, LW), which denote high and low, respectively, with the corresponding
membership functions. Similarly, the humidity level can assume two other fuzzy
states (HG, LW) with associated membership functions. Note that the member-
ship functions of T are quite different from those of H, even though the same
nomenclature is used. There are four rules, as given in Figure 3.4. The rule base is:

Rule 1:
Rule 2:
Rule 3:
Rule 4:

else
else
else
end

If
if
if
if
if

~ = =~

is HG
is HG
is LW
is LW

and
and
and
and

I T I T

is HG
is LW
is HG
is LW

The nomenclature used for the fuzzy states is as follows:

then C
then C
then C
then C

PH
PL
NL
NH

Temperature (T) Humidity (H) Change in cooling rate (C)
HG = High HG = High PH = Positive high
LW=Low LW = Low PL = Positive low
NH = Negative high
NL = Negative low
Air
H T conditioner
Y \ ® ®
Fuzzy logic Temperature Humidity
controller Cooling rate - sensor sensor
C
Room

Figure 3.3: Comfort control system of a room

A

A

A

Rule 1
Rule 2:
Rule 3:

Control Inference:

Cl

f
Centroid

A schematic diagram of a simplified system for controlling the liquid level in
a tank is shown in Figure 3.8(a). In the control system, the error (actually,
correction) is given by

e = Desired level — Actual level.

The change in error is denoted by Ae. The control action is denoted by u, where
u > 0 corresponds to opening the inflow valve and u < 0 corresponds to open-
ing the outflow valve. A low-level direct fuzzy controller is used in this control
system, with the control rule base as given in Figure 3.8(b).

The membership functions for E, AE, and U are given in Figure 3.8(c). Note
that the error measurements are limited to the interval [-3a, 3a] and the Aerror
measurements to [-3b, 3b]. The control actions are in the range [—4c, 4c].

Valve Liquid level Level

actuator i sensor controller

I

|

|

|

7

|

I

Inflow —= l
l\euel !
Desired :
I

I

|

I

|

|

I

I

|

|

I

I

|

I

level

level

o e e e e e = = =

; actuator
—> Qutflow
v B

Figure 3.8 (a): Liquid level control system

AE
E NL NS Z0 PS PL
NL NL NL NM NS Z0
NS NL NM NS Z0 PS
20 NM NS Z0 PS PM
PS NS Z0 PS PM PL
PL Z0 PS PM PL =
Figure 3.8 (b): The control rule base
He(e)
NL NS Z0 PS PL
1.0
-3a —2a -a 0 a 2a 3a Z
tne(Ae)
NL NS 10 Z0O PS PL
3b “ob b 0 b 2b 3b Ae
Hu(u)
NL NM NS 10 Z0O PS PM PL
—4¢ -3¢ -2c —C 0 c 2c e 4¢ L

Figure 3.8 (c): The membership functions of error, change in error, and control action

Chapter 4: System Training

The difference between a fuzzy system and a neuro fuzzy system is that we can implement the fuzzy
system like a neural network, then we can train system parameters.

We can use machine learning or training algorithms to optimize membership function parameters. This
includes the TSK model (the consequent part parameters) and system reasoning structures. Parameters
can be linear or nonlinear.

Linear:z =3x+ 5y + 2
Non-linear: z* = 2x2 + 3y3 + x + 2

4.1 Least Squares Estimator (LSE)
For linear parameter optimization:

y =01fy) + 0, f(Wy) ... 6, f ()

Parameters = {6; 6, .. 0.}
Output = y

Input vectors = Uy, Uy, ..., Uy
(Becauseu ={u; U, .. Uy}

4.1 Least Squares Estimator
or linear parameter optimization: @

2, = Bx* $,5~ T2

W12, + Wy Z,

*

wy + wy

S = wi(p1x + q1y + 1) + W (2x + @y +13)
wy + wy

Linear parameters: p1,q1, 71, 92,92, 12

_G-a)? (Fozay?
Ka, =€ b2 ;o wy=e b

Nonlinear: MF (membership function) parameters
y =011 + 0,2 + -+ 0 fu (W)
U ={x, %5 ... xn}" inpote
6 =1{64,6,,..,0,}7 uvakeown
Linear parameters:
{1y, y1}, {2, y23 oo, (i, Yimd
General representation:
i, v} 5 i=12,..,m
fi(@1)01 + ()0, + -+ + f W1)0, = ¥4
f1(@2)0, + f2(Uz)0; + - + f(U2)6, = ¥,

£ @)s + f3)8 + -+ foGin)0 = Y

Matrix representation:

ar [A@) f0) - fu(@n)]

ox fi(d) fo(d) - fou(dp) [[6: N
; : : e : B2 _ |72
ORI A S

)

. . . |,
- —fl(ﬁm) fz(ﬁm) fn(am)— 3
—— ——
A

—

éT = {61, 62, ...,Bn}

Summary:
e Vectors “=" (column representation, typically)
e Matrix4
e Scalar
aiT = {f1(@W), (W), ..., fn ()}
N —
{ti; yi}
AG=7
If A is non-singular (det # 0)
AlAG=4T5
6=4"5
m-on

m = # of training data points
n = # of linear paramerers to be optimized

“In general, the training data points should be 5-times the number of linear data points to be optimized”
e Noise in experiments
Unavoidable (always present)

— ectot
AG+é=7
A9+E=Y
heoretical Mmeosweed
Error vector:

e=5—Ad
Objective function:
5) 2 R o 2
E(6)=(y:—ai6) +(y—ai6) +-+(yi—af8) +-+ (ym—dnb)

H@=ZM—TW

Consider:

878 = (5 — A6)"(7 — A6)

= [¥" — (46" — 46)

=57 — 67 AT|(5 — 46)

=575 —yTAG — 67T ATy + 6T AT A6

=575 — TA6 — yTAG + 67 AT AG

= 575 — 25T A6 + 6T AT AG
E(9) 5(01\

4[/’\/ " 1[\/

.. Do, (xo0) ,_ [N

o e‘ (vectoc) 7 e ° e; 7 61
£(9) X E(QAT

() "5 ‘;\ ei () ’e‘ *;\ eo-

6 =1{64,0, ...,0,)7

> 1
PEO) 25D o a) + (a7) + (7))

06 96
Let:
oE(6 L s
(e) =0 ; 60=60
06
Consider:

o(yTAx) .
% Ay

= 02475+ [aTA+47(a7)"|
—247§ + 24746 = 0
ATA6 = AT

(A7A) " (AT4)6 = (474) A5

6 =(aTa) ATy
R

T

[
<

Dy
Il
[
=
[

Example 3.1 (Jang’s Book) et
m=7
L
)
F

Experiment Force (Newtons) Length of Spring (inches)

1 1.1 1.5

2 1.9 2.1

3 3.2 2.5

4 4.4 3.3

5 5.9 4.1

6 7.4 4.6

7 9.2 5.0
L=ky+kF :%

2 _ v
ko + 1.1k, = 1.5 .0
ko + 19k, = 2.1 e’
5\.(\03

ko + 9.2k, = 5.0/9
Ab=7-¢
2.1] l

A 0 A y
k1 TATA (3% s +)

QDL

Use MATLAB (inv and .* operators)

Or, manually (since it is a 2x2 matrix) via:

[(cl Z] ~ad— bc[d B]
; — [ko] _[1.20
k4 0.44
R
J L =120+ 040F

<y

Mathworks:
MATLAB toolboxes > Fuzzy Logic
(do the tutorials)

LSE (least squares estimator) — used to optimize the linear parameters of a system
é) = {01, 02, 03, ey gn}T

- T
U; = {21, %2, X3, e, Xp}
m — training data pairs

{ﬁlr }’1}' {ﬁz: yZ}r ey {am' ym}

i=1,23,..,m
Ab =y
g =(4T4) ATy

This is offline training (speed of operation is not a primary concern)
- you use all the training data pairs at once.

Recursive, or online training, is when training data pairs are used one after the other, or one at a time.

4.2 Recursive Lease Squares Estimator (LSE)
Suppose m —training data pairs.

k" training data pair

k" training operation

0<k<m-1
(In MATLAB:1 <k <m)

Corresponding to the k" training data pair: 1,2, ..., k

— —»
A B Y
f1(ty) f2() - fu(Uy)

[1 Y1
I fl('ﬂz) fz('ﬂz) fn(}_l)z) I z; I[}’Z]I
| AGD @0 f@ g | 2 |
filieer) foltinsy) - folien)] Vit

-8t 5 ~

0&&\ Aek =-‘5’;"-“-.\

6 =(ATA) ATy
------- \/e L

If (k + 1) training data pair is available:

{ﬁk+1rYk+1}

Will do (k + 1)" update operation:

[=[,0]
Aje+1 T e

P B

- =%

k = - - 1>
o ier) Lafis : A1

Vi+1

§k+1~§k + update (modification)

Introduce:
-1
Py = (ATA)
Bk—l — ATA
-1
v =l] 2] —O
I = - > ’
o yrd Lakss
A -1
[l
\ e a£+1
- - -1
Pry1 = [4T4+ a£+1ak+1] :]9
Bk_+11 =4,T.§v+ Zlk+1‘i£+1
e
Pih = Bt il 4—3)
6, = (474) ATy
do=nay &)
Brss = Pes[AT @][y]
+1 = Lkt1 k+1
Vik+1
§k+1 =[A"Y Gpy1Viea] Q'_@
From Eq. (4):

Eqg. (5) becomes:
Or+1 = 1_3k+1[£k_1§k 5£+1yk+1]
From Eq. (3):
Bk_l = Bk_-l}l - a£+1ak+1
Eqg. (5) becomes:

- - -
Or+1 = Praa [(£k+11 - ak+1a£+1)0k ak+13’k+1]

- ->T =4 -
- £k+1ak+1ak+1]9k + Pry1Gps1YVi+1

[1

=4 - ->T =4 -

Ok — Prr10p410k+10k + Pra1Gps1 Vi1
AMANNVVW vwwww v

Ok+1 = Ok + Pry1lyry View1 — i1 0k) Q—@

From Eq. (3):

Formula:

=A1-A'BU+CA'B)tcA™?

— p-1
A =P
B = ay4
C =ay

k+1

-1
_ - >T - >T
Pryr =P _Bkak+1(1 + Qjy1 Py ak+1) Q41 Pr
P, Gy, Gr, P
p — p, _ 2k Uk+1%er1li
k+1 — 2k I+ >T P - 7
A+15% A+

Use Eq. (6) and Eq. (7) to do recursive LSE and update §k+1

Initialization:
Py =al
Where a is a larger number (1000, 10000, etc.).
. — To be used
From this, you can generate: n project

4.3 Gradient Algorithms
Non-linear parameter optimization method.

For linear parameters, LSE is the general method — not many methods are required.

Compared to linear parameter optimization, there are many optimization methods for non-linear
systems, but this one is the basic one (most general).

- 5> > -
6 =16,,6,,..,6,]

Objective function (error function):
E(6)
We want to minimize this function.
But, 8 can have many values, and it’s possible that different numbers produce the same value:
Consider:
fo + x,p

Whenx; =1,x, =1,E(0) =3
Whenx; =2,x, = —5,E(0) =3

These points would be on the same ‘error height’

3.3 Gradient Methods
Suppose this parameter has a non-linear relationship with the output:

6
For example (gaussian function),

—(x—p)?
pa(x) =e o

For this function, the relationship between y and ¢ and the MF p4 is non-linear, and by association, the
error function E.

Obectve

Conckion 6 =161, ...,6,]"

Eccos

v o,g&'.o. E (é)

Looking for optimal 6*

1 = step
d = direction vector

kth step:

(k + 1) step:

ék + TIkC_ik

Generally, E(§k+1) < E(ék)

\
I &= 9.e¢o°
N
% g
Steepest-gradient descent method:
o [0E OE oE1"
0=l 5 -
1 2 n
ey 0E(6)
Letglf)=—==*_=0
etg(0) =5,
Gorn = Be—nad oSudie
k+1 = ki??\dg/Qo,):o%o.
Sy
»

In general, this is a recursive (or repetitive) algorithm.

e Stopping criteria:
1) E <threshold: 107°
2) # of iterations: < 200

.+« NO co«uec&e«ce
krz’ doo \owse)

3.4 Genetic Algorithms (GA)
Easy to read, does not involve gradient related operations, it is a derivative free method, but it takes a
very long time to execute.

It can reach the global minimum, but all other derivative-based methods reach a local minimum

(depending on initial conditions):

E
D

- Population-based search, so it returns the best results
- Butit’s very time consuming (like, 8 hours)
- Compare with gradient-based method (15 seconds)
- Evolution operation
o Reproduction, cross over, mutation

Chapter 4: Artificial Neural Networks

4.1 Introduction
Neuron networks: parallel and distributed neurons.

<<

Cet boay
Nucieus
0 !
Ason
-
Donortes
Artificial neural networks:
TEACH /USE

TEACHING INPUT
4.2 Features of Neural Networks
Layered neurons
Weighted links
(link weights 0~1.0)
Input Hidden Qutput

l.' ‘
pr(avs) — ! “\ :

PAs(AVS) — .

1)

Neural network topologies
(a) Feed forward topology (static neural network)
unidirectional links (just move in one direction, in this case from input to hidden nodes)

O
T~
O-—»—v

O*
O/

OOQ

(b) Recurrent topology (dynamic neural network)
Outputs can move to back into itself, can mode into a different node... they can move anywhere
depending on requirements.

Much more complicated, but has some distinct advantages, specifically in terms of access to
historical data:

Consider:

Kkt step: x;(k), x,(k)

Output: y(k)

(k + 1D step: x; (k + 1), x,(k + 1)
Historical information — y (k)
Output: y(k + 1)

4.2 Features of Neural Networks (Cont’d)

1) NN Topologies
- FF NNs

Simple in structure, consider two inputs and one output below:

4 — o
O—

y«,——b

Connections between intermediate neurons and output neurons are unidirectional.
Static modeling method (given a set of inputs, an output is generated).

- Recurrent NNs

Similar in structure, but can have feedback links.

o

© — o
O—

Gives access to historical information, making the network a ‘dynamic’ network. However, training
complexity increases.

x(k) = 0(k)
Has access to inputs x; and x,

xk+1)=0k+1)
Has access to inputs x4, x5, and historical data x(k)

2) Activation functions

&
X’

£,y Q —h O

vy

Ly

Input: X, Wy + X,Wop + -+ + X3Wyy,

l
O =f zxiwik — O
i=1
Where:
f = activation function
6) = threshold of the k™ neuron (bias)
Sigmoid function:
90 = e
1 ; x>0
sgm(x):<0 ;o ox =
-1 ; x<0

Step function:

1 ; x>0
step) =(, 7 T2,

Sigmoid function Step function Hyperbolic tangent function
- 2 2
1
08 :f;// | f
06 H -
}. o e
4 ,/
0.4 /.‘; L
[-1 -1
o0z - .‘/‘
oL 0 L
-2 0 2 -2 0 2 -2 0 2
(a) (b} e
Linear function Signum function Sigmoid derivative function
3 3 0.3
2 2 —~
1 1 0.2 4 \\
0 0 / \
/ \
-1 - 01| / \\
-2 -2
-3 3 [
2 0 2 2 [2 2 0 2

3) Neural Network Learning
e Supervised learning

We have a desired output, which can be considered a teacher.
Teacher (X, t)

We compare the desired output and the calculated output and feed the error information back into the
system to train it. This is the general approach for engineering applications.

Cumulative
error

Supervised based
weight updating

—

Input
signal

e Unsupervised learning
In applications where we can’t get a target, or we can’t find the desired output, we have no teacher.

Thus, we cannot do supervised learning — this is usually the case for ‘big data’.

Unsupervised based
weight updating

{

a)
Ipput Output
signal signal

e Reinforcement learning
Feedback information provides a guide for training, but not a target.

Can be used for special circumstances like scenarios in video games (i.e. beating a bad guy in fewer
moves to achieve a higher bonus)

Reinforcement
signal : j
Reinforcement based
weight updating

X/

- N

Input

signal Output

signal

Additional info:
ANFIS — adaptive neuro-fuzzy inference system

Our course will focus on the following engineering applications:
- Control

- Classification (diagnosis)

- Modeling (forecasting)

4.4 Connectionist Modeling

1) McCulloch-Pitts (MP) Modeling

J-) .
fu w\\ﬁ AF (9‘19) outpyt

v 4 b
,_B@__-» O
RO,

ey

Wy, Wo, ..., w; are fixed

0 = f(xywy + xwy + -+ x;w; — 6)

=f <zl_=1xiwi - 9)

ANAANNY Acednotd
Step: Yx;w; = 0.001 ; 0-1

2) Perceptron Modeling

N

' i O
T O— O
@/ ' AF

Pas &9 posuakion

cunchio®

Train link weights (w;, w,, ..., w;) and the bias (8), but we don’t train the activation function parameters,
it is fixed — we simply choose one.

l

0:f ZXL'WL'—Q

i=1

If the training data pairs are linearly separable (or separable by hyper planes) then the training process
can converge.

Meaning we can get optimal parameters by a finite number of training operations.

Consider 2-D data sets:
xl! x2

W1Xq +W2X2 —-0=0

Summary of Perceptron training algorithm:

1
2
3.
4

Initialize weights and thresholds to small random values

Choose an input-output pattern (x), t ®)) from the training data.

Compute the network’s actual output 0%) = f (Z{=1 wix ™ — 9).

Adjust the weights and bias according to the Perceptron learning rule:

Aw; = n[t® — o(k)]xj(k), and A9 = —[t®) — o(®)], where i) € [0, 1] is the Perceptron’s learning
rate.

If f is the signum function, this becomes equivalent to:

Aw: = {Znt(k)xj(k) o ift) £ o0
' 0 ; otherwise

—ont® . i@)
AD = { 2nt ;o ift) = 0
0 ; otherwise
If a whole epoch is complete, then pass to the following stepl otherwise go to Step 2
If the weights (and bias) reached steady state (Aw; = 0) through the whole epoch, then stop the
learning; otherwise go through one more epoch starting from Step 2.s

Tensorflow for NNs:
http://playground.tensorflow.org/

Mackey-Glass data:
https://www.mathworks.com/matlabcentral/fileexchange/24390-mackey-glass-time-series-generator

ACarnr n% da:\~u
e
| e

L A— ,—/L\
If we have x1 ,X5 ,X3,X4 ,X5,X6,X7 ,Xg , -
———— - M

L
—Lc“;m“
dasn Pauc |\

For example:

One -step-ahead prediction:

{(xlr X2, X3); X4}
{(x2, X3, x4); x5}
{(x3, x4, x5); x4}

TSK-1:

If (x; is s1) and (x, is s,) and (x5 is L) then
yl = a1Xq + ble + C1X3 + dl

Then each rule has 4 linear parameters to be updated, and we have 9 rules.
Then in total, we have 4 x 9 = 36 linear parameters to be updated.

Non-linear parameters are related to the ‘small’ and ‘large’ membership function parameters (assume
each is a sigmoid function, and has two parameters):
2x6=12

In total, there are 48 training data pairs.

Training data pairs is at least 5 times the number of non-linear parameters:
5x48 = 240

http://playground.tensorflow.org/
https://www.mathworks.com/matlabcentral/fileexchange/24390-mackey-glass-time-series-generator

If you have 16 rules with 4 inputs, each having 2 membership functions:
16 rules: linear

Ry:if (xq is s1) and (x5 is s3) and (x3 is L3) and (x4 is s4)
Then: V1= a1Xq + ble + C1X3 + d1x4 + g1

How many linear parameters for each rule?
5x16 =80

How many non-linear function parameters?
8x2=16

4.4 Connectionist Modeling
e MP Modeling

0 =f(X1W1 + xXowy + -+ xWp — 0)

Input pattern
vector

l

=f inwi—e

i=1

Consider the general activation functions:

Sigmoid function

-2 0 2

X, = 1 Bias input

Step function

~ [> Output

Activation
function

Hyperbolic tangent function

- 2
5 of
reodinnnsinind 1 :
. . 72 .
-2 0 -2 0 2
(b) (c)
Signum function Sigmoid derivative function
' 0.3 .
—————— 0.2
L o 0.1
: 0 : : :
-2 0 -2 0 2
(e) ()

e Perceptron

Training algorithm (DIRECTLY FROM TEXTBOOK):
1. Initialize weights and thresholds to small random values.
Choose an input-output pattern (x®),¢®)) from the training data.

2

, k) — l) _
3. Compute the network’s actual output 0 = f (X ;_, wix 0).
4

14
Adjust the weights and bias according to the Perceptron learning rule:
Aw; = [t — o]
And:
7§ = —q[t® — o®)]
Where i € [0, 1] is the Perceptron’s learning rate.
If f is the signum function, this becomes equivalent to:

Aws = {217t(k)xi(k) s if t®) % o)
' 0 ; otherwise
And:

0 ; otherwise

5. If awhole epoch is complete, then pass to the following step; otherwise go to Step 2.
6. If the weights (and bias) reached steady state (Aw; = 0) through the whole epoch, then stop the
learning; otherwise go through one more epoch starting from Step 2.

Training algorithm (CLASS NOTES):
> (k) (k) "
(O = {xl , Xy e X, }

Where:
t() = target, desired output

l
00 = (Z w0 _ 9>
i=1

WD = O 4 AW

(&
i

AW = n(t(k) — O(k)))'c’(k)

1 ; input>0
If f(-) ~ signum fxn< 0 ; otherwise
-1 ; input<O

If t0) = 00O (then we don’t need to update anything)

_ 0 ; t =0®
Aw =\, zm -
2ntx ; otherwise

Otherwise, if t) = 0O

If ¥ = +1, then 0¥ = -1 = —t®
Ift® = —1,then 0™ = +1 = —¢t®

Similarly:
Ut = g + A
A6 = —n (¥ — 0®)

If AF is signum fxn
If £t = o)

Otherwise t®) = 0, o) = ()
0 t® = o®

AG =
2nt®) ;. otherwise

Example 4.1 (Book 1)
Train a network using the following set of input and desired output training vectors:

x® =11,-2,0,1]7; t® =—-1
x® =10,1.5-0.5,—-1]"; t®@ =—-1
x® =1[-1,1,05-1]"; t® = +1

With initial weight vector w = [1,-1,0,0.5]7, learnn = 0.1

Solution B =0
v \w‘ l (o)
" (s (__Y >_—-» (@)
W/’ Sanum
%s V
Fu
n=0.1

w® =11,-1,0,0.5]"

—T =

0 = f(xywy + xowy + x3w3 + x3w, —0) = f(W'x — 0)
(but 8 is 0 here)

Epoch 1:
M =11,-2,0-1]", tMO=-1

0 =sgn (W(l)Tf)

1
-2
=sgn|{[1 -1 0 0.5][0\
-1

=sgn(1+2+0-0.5) =sgn(2.5)

7@ =5 4 AW
1 1
w® = |+ 200D |

0.5 -1
0.8

0
1 —0.7

Input the 2™ training data pair ¥(?:
0@ = f (W(z)T,;(z))

0
=sgn| 08 -06 0 07|
-1
=sgn(0 —0.9+0—10.7)
= sgn(—1.6)
0.8
w3 = 5@ 4 AW =@ = —8.6
0.7

Input the 3™ training data pair x®;
® =[-1,1,05-1]", t® =1

0® =f (W(3)T5C’(3))

-1
_ 1
=sgn| [0.8 —0.6 0 0.7] 0.5
-1
=sgn(0.8—-0.6+0—0.7)
=sgn(-2.1)
=-1#t® =1

W@ = B® 1 A
[0.8] -1

L@ _|-0.6 1
w 0 +2(0.1)(1) 0.5

[—0.7] ~1
0.6 \‘/__/

— _0.4'
w@® = 01 1>\>)
| 0.5 |

End of epoch 1

Since Aw # 0, proceed to epoch 2...

(GO, t®) (D, (@) (3@, (@)
l l l
(F®, t®) (O, t®) (3©, t©)

w® =[0.6,—0.4,0.1,0.5]7

0@ = f (W@)T,gm))

1
-2

0
-1

=sgn| [06 —04 0.1 0.5]

=sgn(0.6 +0.8+0—0.5) =
=sgn(0.9) = +1 #tW = -1

W) = 5@ 4 2 @z@

[0.6 1
—0.4 —2

= 01 +2(0.1)(-1) 0

| 0.5 —1

0.4

0

0.1

0.7

) =@ =10,1.5,-0.5,—1]7
00 = fW® 7))

Epoch 3 (still doesn’t meet requirements)
w9 =10 04 03 03]"

Epoch 4 (still doesn’t meet requirements)
w2 =[-2 03 05 03]

After Epoch 5, we can meet the requirements.

Example 4.2 (Example 2 in Book 1)
Assume 1 = 0.5, and there exists two sets of patterns to be classified:
Class 1: Target value -1:

T=1[20]"; U=1[22]T; Vv=[1,3]T
Class 2: Target value 1:

X=[-1,0]; Yy=[-20]"; Z=[-1,2]T

Solution:
t(l):—l
4
T
N1 oo
2\ v
AT °
Y » N
— T
e
T\
1N
ﬁ \
\
W1X1+W2x2_9:0
t@ = +1

Assume initial values:

w; = _1,W2 = 1,9 =-1
(—1)x1 + (1)x2 +1=0

e Pattern T = [2,0]7, signum AF

_ ST > _ 2
0=sgn(W"x)+1= sgn([—l 1] [0] + 1)
=sgn(-2+0)+1=-1=t®

e Inputx=1uU= [;]
0 = sgn(wWT ¥ — 0)

=sgn([-1 1] [g] +1)

=sgn(—2+2+1) =+1#t®
tW = -1

W = O+ 2e™ 7]

_ [—11] +2(0.5)(-1) [é] = [j]

6@ =6 + A6
= —1+4[-2(0.5)(-1)] =0

Boundary function:
WX, +wyx, —0 =0
—3x; —x, =0
Xy = —3x4
Input ¥ = 1
° nput x [3] . Sgn(WT 0
= sgn ([—3 -1] [;] — 0)
=sgn(-3+3)=-1=tW
=[]
0 =0
Input X = -1
° nput x [O] Ozsgn(WTf_e)
~sm(i-s -u[]-0)
=sgn(3+0)=+1= t@
@ — p® = [:ﬂ
6™ =0
Input % = | 2
° nput X [0] OZSgn(WTf_Q)
~sn(i-s -u[-0
— sgn(6+0—0) = +1 = t@
7 =[]

0% =0

e InputX = [_21] . |
0=sgnw'x—-6

=sgn([-3 -1 [_21] -0)

=sgn(3-2-0)=1=t®
w© — [:?{]

0® =

Input layer -+ Layer (f —1) Layer (¥) Layer(¥+ 1) --- Outputlayer (L)
O O

If t(k) = k" largest target output of the NN
k" training data pair

k=1,2,..,n
n = total number of training data pairs

Error function:

E(R) ~ [6.(0) — 0 0], ... [t:k) = 0P ()], ., [t4 () = 0P ()]

E(K) = %[(1200 - 0" (k))2 et (800 = 05”("))2]

1 oo s
[t:(k) — 0,(K)]? K/\Q;D
=1

NGB

= E.

(For simplicity, drop the "(L)" from notation)
Overall error function:

E, = ;E(k)

= E(l)_+ EQ2)+--+Ek)+--+EMm)

i E(k) = %zn: zq:[ti(k) - 0;(K)]?
k=1

k=1i=1

E.

E (k) ~ online training
E. ~ offline training

For online training:
min E (k)

wO(k+1) =wW (k) + Aw(k)
gradient descent method

=) _ O]
Aw® = Awl.j

Chain rule:

9E (k)
awi}'

Aw® = Aw
_ 9E() 00" atot;?)

= N7 " @ A ®
907 at,t!” ow];

If layer £ is the output layer L:

B =5 [400 - 0,00

Omit "k"

9E 9E 90" atot™
@~ A0 o S0
ow,? 00" att” ow,

]

L L-1). (L L-1) (L (L-1)
tot =5 0 Pw + 08 PwS + -+ 0

o = f (tot)

(L)
WU + oo

0E _
—5 = —(ti— 0)f' (tot™) o
Wij
0E
@ _ _
Awij =N aW(L)

=1 (fi - Oi(L))f' (toti(’“)) Oj(L—l)
ANV NN

) _ (L-1)
Awl.j —n6i0j

N
5.“ s ewor s
*

Given k" training data pair:

{ Cey(ky), 22 (), .07, t (k) }

ti(k) — oi(L) ~ error

Objective function of online training:

[EEN

q
B =5 (6 -oPW) 5 k
=1

24
i

n = the total number of training data pairs

Obijective function of offline training:

- zn: E(k) =
k=1

WOk +1) = WD k) + AWD (k)

— 0E (k
AW WD (k) = —77—»—()
oW @ (k)

9E o

2 ()
AW = —n —_—
Y 605{)) 6t0ti(€)

=Wy

(See previous neural network node map)

Output layer L:

a
1
E(k) = EZ (L) (L)
i=1

EGR) = (68 = o) 4 o+ (68 = o) + -

L) _ L) (L-1)
tot; —"--l-Wl-j 0; + -

0E o™ otot™
@ o ®
0 0; dto t; 0 Wl.j

w _
AWij =N

i(mq) Oml

L L
49— o)

1,2, ..

1 , L-1
AW = —n 2 @ (6 = o) (~1) # £ (tot{?) ot

o™V = f(toti(L))

e If asigmoid AF (activation function) is used:

f0 = 1+e7*
x = tot™
f@) = o
_ 1
f= 1+e*
f =10 +e™)7) = =101 + ™) e (-1)
eeres
P
1
14+e™*
Then,
ff=r-1

o |If oi(L) is a sigmoid function:

s = (e = o) f(1 - otV
— L) @Yy W @Y ,@-1
—n(ti -0)oi (1—oi)oj

59 = (19— o®) 1 (10t ®)

59 = (19 — o) o (1 - o)

W _ s, LD
Wi~ =né;" o

.
For Wl-j :

/-

& _ @) (¢-1)
AWU —175i 0;

(ti({)) - oi“)) i (toti(“’))

General structure:

Forward pass — o (calculate output)

Backward pass — update WiE.L)

Example 5.1
To illustrate this powerful algorithm, we apply it for the training of the following network, shown in

Figure 5.4. The following htree training pattern pairs are used, with x and t being the input and the
output data respectively:

x® =(0.3,04), t@V =(0.88)

x@ =(0.1,0.6), t® =(0.82)
x®) =(0.9,04), t® =(0.57)

0o 03

O = 5(2\;40-:(9\

biases

Biases are treated here as connection weights that are always multiplied by (—1) through a neuron to
avoid special case calculation for biases. Each neuron uses a unipolar sigmoid activation function given

by:

1) ,
o = f(tot) = W,usmg?\ = 1,then f'(tot) = o(1 — 0)

Solution

To illustrate this powerful algorithm, we apply it for the training of the following
network shown in Figure 5.4. The following three training pattern pairs are
used, with x and t being the input and the output data respectively:

x"=(0.3,0.4), tV=(0.88),

x?=(0.1, 0.6), t?=(0.82),

x¥=(0.9,0.4), t9=(0.57),

<— target
t

biases

Figure 5.4: Structure of the neural network of Example 5.1

Biases are treated here as connection weights that are always multiplied by —1
through a neuron to avoid special case calculation for biases. Each neuron uses
a unipolar sigmoid activation function given by:

o =f(tot) = ﬁ using A=1, then f'(tot) =0 (1 - 0)
+ e

Step (1) - Initialization
Initialize the weights to small random values. We assume all weights are
initialized to 0.2; set learning rate to 7 = 0.2; set maximum tolerable error

to £, = 0.01 (i.e., 1% error); set current error value to £ = 0; set current
training pattern to k= 1.

Training Loop — Loop (1)
Step (2) - Apply input pattern
Apply the 1st input pattern to the input layer:
xY'=(0.3, 0.4), t¥ = (0.88), then, 0, =%, =0.3; 0, =X, = 0.4; 0, =X, =—1
Step (3) - Forward propagation
Propagate the signal forward through the network:

05 = f(W;00, + W3,0; + W3,0,) = 0.4850
0, = [(W,00, + W0, + W,,0,) = 0.4850
0;,=-1

0, = (W05 + Wg,0, + Wes0,) = 0.4985

Step (4) — Output error measure

Compute the error value E and the error signal d, of the output layer:
E =3(t-0,)°+E=0.0728
0, = f'(tot,) (f — 0,)
=01 — o,)(t — 0,)
=0.0954

Step (5) - Error backpropagation

Propagate the errors backward to update the weights and compute the
error signals of the preceding layers.

Third layer weight updates:

Awg; = nNd,05 = 0.0093 Wi = wo + Aw,; = 0.2093
Awg, = ndg0, = 0.0093 wis = w2 + Aw,, = 0.2093
Awgs = N005 =—0.0191 Wi = wid + Aw,s = 0.1809

[

WW layer error signals:

6
(53 = f;(totg)z W,'35,‘ = 03(1 - 03)W6356 = 0.0048

i=6

6
8, = fi(tot) > w0, = 0,(1 — 0,)W,, O = 0.0048

i=6
Second layer weight updates:
Aw,, = 10,0, =0.00028586 Wi = w3 + Aw,, = 0.2003
Aws, = nd;0, =0.00038115 Wi = w3 + Aws, = 0.2004
Aw,, =050, =—0.00095288 Wi = wSs + Aws, = 0.1990
Aw,, =nd,0,=0.00028586 wieY = wid + Aw,, = 0.2003
Aw,, =nd,0, =0.00038115 Wi = wid + Aw,, = 0.2004
Aw,, =nd,0,=-0.00095288 wi" = w3l + Aw,, = 0.1990

Training Loop - Loop (2)

Step (2) — Apply the 2nd input pattern

Apply the 2nd input pattern to the input layer:

x?=1(0.1, 0.6), t? = (0.82), then, 0,= 0.1, 0, = 0.6, 0, = —1

Step (3) - Forward propagation

05 = f(W300, + W3,0; + W;,0,) = 0.4853
0, = [(W,00, + Wy10, + W,,0,) = 0.4853
0;,=-1

05 = [(We30;5 + Wy,0, + Wy505) = 0.5055

Step (4) — Output error measure

E=1(t-0,)’+E=0.1222
0, =0,(1 —0,)(t—0,) =0.0786

Step (5) - Error backpropagation

Third layer weight updates:

Aw,; = nd40, =0.0076 Wi = wy + Aw,; = 0.2169
Aw,, = nde0,=0.0076 Wi = wold + Aw,, = 0.2169
Awgs = N0405 =—0.0157 Wi = we + Awgs = 0.1652

Second layer error signals:
6
5 = f5(tots) Y w30, = 05(1 — 05)we;0, = 0.0041
i=6
6
0,= f;(tota)zwjaé,- =0,(1 - 0,)w,,0, = 0.0041

i=6
‘/x‘zx

Bewiiid layer weight updates:

Aw,, = nd;0, = 0.000082169 Wi = Wi + Awy, = 0.2004
Aw;, = N0;0, = 0.00049302 Wi = w4+ Awsy, = 0.2009
Awsy, =050, =—-0.00082169 wis¥ = w3 + Awy, = 0.1982

Aw,o=n0,0,=0.000082169 wis"=wiy + Aw,,=0.2004
Aw,, =nB,0, = 0.00049302 W ™ =w’" + Aw,, = 0.2009
Aw,, =nd,0,=-0.00082169 w3 =wiy + Aw,,=0.1982

Training Loop — Loop (3)
Step (2) - Apply the 3rd input pattern to the input layer

x? =(0.9, 0.4), t? = (0.57), then, 0,= 0.9, 0, = 0.4, 0, = -1
Step (3) - Forward propagation

0, = f(W3,0, + W3,0, + W5,0,) =0.5156
0, = [(W00, + W,,0; + W,,0,) =0.5156
0;=-1

06 = f(We305 + We 0, + We505) = 0.5146
Step (4) — Output error measure

E=1(t—o0,)+E=0.1237
O, =041 —0,)(t—0,) =0.0138

Required Steps for Backpropagation Learning Algorithm

e Step 1: Initialize weights and thresholds to small random values.
e Step 2: Choose an input-output pattern form the training input-output data set:

(x(k), t(k))

e Step 3: Propagate the k" signal forward through the network and compute the output values or all
i neurons at every layer (£) using:

N1 _
of (k) = f<zp=0 Wiy 0 ”)

e Step 4: Compute the total error value E = E(k) + E and the error signal Sl.(L) using formulae:
L L L
s* = [ti —of)] [(tot)§)]
e Step 5: Update the weights according to:

Awi(f) = —7761-(4))0]-({)_1), for{=1,..,1 using
w _ 1, _ @ ’ (L) . .
8,7 = |ti —o; || f (tot); and proceeding backward using

n

® _ ® @) C L+, (£+1)
6i = o, (1—oi)zp=16p Wy forY <L

e Step 6: Repeat the process starting from step 2 using another exemplar. Once all exemplars have
been used, we then reach what is known as one epoch training.

e Step 7: Check is the cumulative error E in the output layer has become less than a predetermined
value. If so, we say the network has been trained. If not, repeat the whole process for one more
epoch.

Ia——e

ol(") -1,
\ s
(D—s ot
Ny
Oror
‘\éif\
. '_éAL

t £ (£-1
aw® = 7500l
Error signal:

@) _ g1 (€3] (#+1)_ (¢+1) #+1)_ (¢+1) (t+1)_ (#+1) (¢+1)_ (¢+1)
5 = £ (tot) [65 Pwft + 6 PwD e 8w 4t 5w
p
{ 1 (1 +1 £+1
5 = f' (tot]))Z6§ e
p=1

For a sigmoid AF, there is a special case:

f'=f=f) - 0?1 -0®)

4.6 Momentum
When 7 is small, the convergence towards the target is slow:

Vel
L

Conversely, when 7 is large, it can miss the target (convergence not met)

b
4\&%9‘ @ ﬁ'
P

Epin = 0.05 e
OE (k ©°
MO +1) = —1 EW)
aw® "V
_/
AW
v €1[0,1]

v=10.8,09

Effect of hidden nodes on function approximation

To illustrate the effects of the number of hidden neurons on the approximation
capabilities of the MLP, we use here the simple function f(x) given by:

f(x) =xsin(x)

Six input/output samples were selected from the range [0:10] of the variable x.
The first run was made for a network with three hidden nodes. The results are
shown in Figure 5.6(a). Another run was made for a network with five (Figure
5.6(b)) and 20 (Figure 5.6(c)) nodes respectively. From the result of the simula-
tion, one may conclude that a higher number of nodes is not always better as
is seen in Figure 5.6(c). This is mostly due to the fact that a network with this
structure has overinterpolated in between the samples and we say that the net-
work was overtrained. This happens when the network starts to memorize the
patterns instead of interpolating between them. In this series of simulations
the best match with the original curve was obtained with a network having five
hidden nodes. It seems here that this network (with five nodes) was able to
interpolate quite well the nonlinear behavior of the curve. A smaller number of
nodes didn’t permit a faithful approximation of the function given that the non-
linearities induced by the network were not enough to allow for adequate inter-
polation between samples.

f(x) = xsin(x)
x =0~10

@ ned
X —p @:0_5_9 $(+)

5

(a) Function approximation with (d) Function approximation with
(18 three hidden nodes three training patterns

X X
(b) Function approximation with (e) Function approximation with
“.‘7 five hidden nodes ten training patterns

Assume
n=5

X X
(c)) Function approximation with (f) Function approximation with
[\ 20 hidden nodes 20 training patterns

10 T T T T

+ Training patterns
Original curve
------ Network output

Figure 5.6 a, b, c: Effect of the number of hidden nodes on MLP approximation of

f&x)
Figure 5.6 d, e, f: Effect of the number of training patterns on MLP approximation

of f(x)

Using more neurons in the hidden layer doesn’t necessarily improve the performance of the system, but
using more training data pairs improves system performance.

4.7 Radial Basis Function Neural Network (RBF NN)
- Special case of a feedforward neural network

1.3 Layer FF NN

Loger |

La‘:Se" 3 Lager 3

2. Unity line weights between (neurons) layer 1 and layer 2 (they have the same value).
3. AFs in the neurons in hidden layer are kernel functions.

e Gaussian function:

S o2
—|1%-7;l|
>\ — 207
gi(x) =e “%
X = input vector
¥; = center vector
0; = spread parameter
e Logic function:
1
gi(®) = S o2
—|12-%l|

2

1+e 29

Output:

0;(X) = g1 (Xwj; + -+ gi (DOwj; + -+ gn, Dwjn, 5 j=12,...

n;
0;(xX) = Z wj; * g; (%)
-

Training:
e Parameters in the hidden neuron AFs (centers and spreads)
e Link weights between the hidden layer & output layer

Note:
A Radial Basis Function (RBF) neural network is a neuro-fuzzy system

Chapter 5: Neuro-Fuzzy Systems

5.1 Introduction

Fuzzy logic

Neural networks

Representation

Linguistic description of
knowledge

Knowledge distributed within
computational units

Adaption

Some adaptation

Adaptive

Knowledge Representation

Explicit and easy to interpret

Implicit and difficult to interpret

Learning

Non-existent

Excellent tools for imparting
learning

Verification

Easy and efficient

Not straightforward
(“black box” reasoning)

Integrated systems of fuzzy logic (FL) and neural networks (NN)

1. Neuro-fuzzy (NF) system
FL parameters can be trained by using NN training methods (back propagation, etc.)
2. Fuzzy-neuro system (RBF)
Neural network, but some neurons are fuzzified

3. Neural fuzzy systems

Just a simple combination of FL and NN (separate systems utilized in series)

NN: universal approximators
- Desired accuracy

1) Neuro-fuzzy
e Fuzzy logic system with neural network training

2) Fuzzy neural
e Neural network, some neurons are fuzzified

e.g. RBF NN (Radial basis function neural network)

s —%

—

3) Neural fuzzy systems
e Linear combination of fuzzy logic and neural networks

Ll b e i

5.2 Adaptive Neuro-Fuzzy Inference Systems (ANFIS)

Consider the following general model:

Sugeno fuzzy model (TSK-1):

Consider a system with two inputs (x, y), each having two memberships functions, and one output z
Ry:If(xis Ay)and (yis By) then (z; = p1x + q1y +171)

Ry If (xis Ay) and (yis By) then (z, = pox + qoy + 13)

Ay, Ay, By, By ~ fuzzy sets
P1,P2,91, 92,11, 2 ~ parameters o

?‘)‘ ’b ‘.eq.)""’”a

8
= P‘I*‘i.'ﬁ*v\

[

p'a'f o W2
w1z + wyz, _ wy w, ~
Z= W1 + Wy N (Wl + WZ)Z1 <W1 + WZ)ZZ = WiZ1 + Wy Z>
Lo\be,c \ Lages 2 Lages 3 Lagee L Loogs 5

T _ ||
” /v @ _,_,», \ l Wy,
\, OQW

JL N‘L

/” = ®T
\‘Oo« . ®

e layer 1: Input later, adaptive layer

011 = Ha1(x)
012 = Uaz(x)
013 = pp1(¥) ME
014 = Up2(¥) 2

For example, generalized bell membership function MF:

1
far (x) =—|2bi ;o 1=1,2

X — C;
1+ a

A sigmoid, gaussian, etc. functions can be utilized instead.

e Llayer 2: fixed nodes
Firing strength: (e.g., product)

Wy = 011 ¥ 013 = Par(x) * ppq (Y)
Wy = 012 * 014 = Hap(X) * Upy (Y)

T — norm can be product, minimum, etc.

e Layer 3: normalization layer, fixed neurons

_ Wy
1= wy + wy
W
2 —
wy + wy
e Llayer 4: nodes are adaptive nodes
Output:
_ Wy (n +r)
Wiz = ——(p1x T
121 Wi+ w, P1 1y T™n
_ W (n +7y)
Wyzy = ———— (pox T
222 Wi+ w, P2 qzy v 12

e Llayer 5: nodes are fixed nodes

zZ = M_/1Z1 + \/T/zZz

Notes:
e The structure of the adaptive network is not unique.

Tsukamoto ANFIS:

e TSK-1
TSK-0
Tsukamoto (monotonic function)
Mamdani model (related to summation of area, difficult to utilize, so not common for making an
ANFIS)

5.6 System Training
- Non-linear MF parameters
- Linear parameters

TSK-1:
- premise MF parameters
- consequent linear parameters

Z =WqZy + Wyzy

= w1 (p1x + q1y +11) + Wo(px + @2y +12)

= (W1 0)p1 + (W1 y)q1 + wiry + (Wx)p, + (W) qz + wer,
Hybrid training (LSE + GD):

training efficiency T

reduce some local minima:

E \Oco\éftr

N

N &

GA (genetic algorithm):

e Forward pass:

premise MF parameters — fixed

optimize linear parameters through LSE (least-squares estimator)

e Backward pass
Linear parameters — fixed
update — MF parameters (these are the non-linear parameters)

Tsukamoto:
Linearized consequent MF:

V4

w=p+

q-p
z'=Ww-p)q—p)

Example: (Book 2, Ch. 12, Sec. 6.5) — good example for a forecasting project

MG (Mackey-Glass):

0.2x(t — 1)
X =— — 0.1x(t
*(©) 14+ x10(t — 1) 0-Lx(t)
Initial values:
x(0) =1.2

T=17~30,dt =1

Six-steps-ahead prediction

4-inputs
1-output
Input: {x(t — 18), x(t —12), x(t —6), x(t)}
X 3 S e
Output: {x(t + 6)}
p

L
Each has 2 MFs <S
2% = 16 rules "‘i"’iy

®—01

O_?Srs

RS

-

o~

001 __(b) Prediction Erors.

ows ' et
w.rs fqhmdmiuww t 'ﬁw}ws‘j ﬂ

°

-0.003

oot —e s —

200 1000

Time

Mackey-glass forecasting data system:

dx(t) 3 0.2x(t —1)
dt 1+x10(t—1)

—0.1x(t)

T = 17~30 (dependent on individual person)
dt = 1 (selected)
x(0) = 1.2 (dependent on different application)

If you utilized the Mackey-Glass program to generate 2000 data points...

dll d21 d3l d4-l dSI d6l d7l d8' d9 dZOOO
If s = 1 (one — step — ahead prediction):

15t training data pair: (dy, d,, d3; d4)
2™ training data pair: (d,, ds, d4; ds)
374 training data pair: (ds, d4, ds; dg)

997”1 training data pail‘: (d997, dggg, dggg; leOO)

If s = 2 (two — steps — ahead prediction):

(d1: d3: dsi d7)
(dz: d4: dsi ds)
(d3; ds' d7i d9)

(d994' dgoe, dgog; leOO)

s — steps — ahead prediction:

x(t)
does
{x(t —2s), x(t—ys), x(t) ; x(t+ SV ordet
—_— —— D L =~ (LI
Yo X, X Xu m"*“!

If s = 6:

{x(t—12), x(t—6), x(t) ; x(t +6)}

Neural network:

e (Can also do sunspot activity forecasting

RWC: Belgium World Data center
Records from 1700 ~ now
Daily, weekly, monthly, annually, etc.

Daily is very non-linear (very difficult):

Weekly, monthly, annually may produce more reliable results (annual is preferred).

In this course we used a hybrid training method:
(a combination least-squares estimator and gradient descent)

1. Initial values of linear and nonlinear parameters. Usually, nonlinear parameters are related to the
membership function parameters.
2. Choose an input-output pattern:

{x2(k) 5 t(k)}

3. Propagate inputs and calculate the related node output.
4. Calculate the error:

E=Ek)+E(k-1)
5. Train the linear consequent parameters with non-linear MF parameters fixed.

LSE (least-squares estimator):

1 ny 2
E =5 " (5-)
i=1
For offline training:

§=(aTA) ATy
é = {pl: d1, 71, P2, qZ'TZ}T

For 8 rules:
Linear parameters: 4 x 8 = 32

Each sigmoid function has two MF (2 variables)
2xX 6 = 12 ~ non-linear parameters

6. Train nonlinear parameters
Linear parameters are fixed, and non-linear parameters are adjusted.

1
E(k) = 52(9’ -y
7

Sigmoid MF:
1
0; = palx;) = 1+ e-a@itby
a;, b;
(l l) O'; < @
J0E
a;(k) =a;(k—1) ~Magy
0E

b;(k) = b;(k — 1) 5,
L

0E 1 Z dy; do;

da; .
- '

% a.u'A _ (_1)(1 + e—ai(xi—bi))_z(e_ai(xi_bi))[—(xl' - bl)]

da; OJa;
B e~ @xi=bd (x, — b))
- [1 + e—ai(xl-—bi)]z

= dMai (in MATLAB)

Similarly,
0E 1 ayj aoi
_:_22) (=1 =L —
an, 2% j (& =)D, 55
do; Oug -2
— = =(-1D(1 —ai(x;—by) —ai(xi=b)) (g,
ab; ~ o, ~ D1 +e) (e)(@)
e~ @(xi=bi) (g;)
T [1 + e—aixi—b]2
= dMbi (in MATLAB)
Ed . dyoi (in MATLAB)
aoi
0E] . .
a—ai = dEdai = —Z(tj — yj) *x dyoi * dMai
J

OF
o = dEdbi = =) (t; — ;) * dyoi » dMbi
i -
]

For example,
a;(k) = a;(k — 1) — ny(dEdai);
b;(k) = b;(k — 1) — n,(dEdbi);

W,

(

Layer 2

Figure 12.1. (a) A two-input first-order Sugeno fuzzy model with two rules; (b)

equivalent ANFIS architecture.

W,

Layer 3

f,=PX +qyy +1;

f2= PX +Q.Y +1;

a)

Layer 4

|

Xy
3y

Layer 5

!

(b)

Learning Rules:

The learning rules of ANFIS are then as follows:

1.

Propagate all patterns from training set and calculate the optimized consequent parameters using
the LSE method, while fixing the antecedent parameters.

Propagate all training patterns again and tune (through one epoch only) the antecedent parameters
using the LM/Gradient Descent method and backpropagation (as in MLP), while fixing the
consequent parameters.

If the error was reduced in 4 consecutive steps (heading towards the right direction), then increase
the learning rate n by 10%.

‘\‘ s \-\‘\'/ >

P Beoce

If the error in 4 consecutive steps was fluctuating (up and down), then decrease the learning rate
n by 10%.

E t WA \-‘\."'.

D Beoc®

Stop if the error is small enough or the maximum number of epochs is reached; otherwise start over
from Step 1.

Typically, “small enough” could be:

E < 0.00001
(or 107°)
E
9
v

EL Q.W‘ m

Chapter 6

6.1 Introduction
Classical control systems:

Jl oot | o
s O [o} b
No %€

Cc~

Senset |
| —
SP — setpoint
C,, — measured error

error = SP — C,,; < threshold

Classical control
PI control, PD control, P control, gravitated complex control, PID control

P — proportional
I — integral
D — derivative

7

{
'

H,, adaptive, sliding mode
linear systems

If the system (plant) is very non-linear, parameters are time variant (e.g. process control)
environment — noisy

Plant model — linear PDEs
complex non-linear systems
I.C. ~ approximate reasoning

6.2 Fuzzy and NF Control
Fuzzy reasoning — fuzzy logic
fuzzy system parameters — trained

Question 3.3 (Book 1)

Consider the experimental setup of an inverted pendulum shown in Figure P3.3. Suppose that direct
fuzzy logic control is used to keep the inverted pendulum upright. The process measurements are the
angular position, about the vertical (ANG) and the angular velocity (VEL). The control action (CNT) is the
current of the motor driving the positioning trolley. The variable ANG takes two fuzzy states: positive
large (PL) and negative large (NL). Their memberships are defined in the support set [-30°, 30°] and
are trapezoidal. Specifically,

0 for ANG = {—30°, —10°}
upy =1 linear(0,1.0) for ANG = {—10°, 20°}
1 for ANG = {20°, 30°} N
0 for ANG = {—30°, — 20°}
Uy = 1 linear(1.0,0) for ANG = {—20°, 10°}
1 for ANG = {10°, 30°}
[]
~VEL
o ~ANa |6 g
CNT

The variable VEL takes two fuzzy states PL and NL which are quite similarly defined in the support set
[-60°/s 60°/s]. The control inference CNT can take two states: positive large (PL), no change (NC), and
negative large (NL). Their membership functions are defined in the support set [-34, 34] and are
either trapezoidal or triangular. Specifically,

0 for CNT = {—34, 0}
pp, = 1 linear(0,1.0) for CNT = {0, 24}
1 for CNT = {24, 34}
0 for CNT = {—34, — 24}

linear(0,1.0) for CNT = {—24, 0}
Unc = s _
linear(1.0,0) for CNT = {0, 24}
0 for CNT = {24, 34}

1.0 for CNT = {—34, — 24}
Up, = 3 linear(1.0,0) for CNT = {—24, 0}
0 for CNT = {0, 34}

The following four fuzzy rules are used in control:

If ANG s PL and VEL s PL then CNT is NL
elseif If ANG is PL and VEL s NL then CNT is NC
elseif If ANG is NL and VEL s PL then CNT is NC
elseif If ANG is NL and VEL s NL then CNT is PL

end if

a) Sketch the four rules in a membership function diagram for the purpose of making control
inferences using individual rule-based inference.

b) If the process measurements of ANG = 5° and VEL = 15 °/s are made, indicate on your sketch the
corresponding control inference.

Control Inference:

(2) NF control:

Optimize MF parameters and consequent parameters.

If MF parameters are non-linear,
e |[f the consequent parameters are linear
Then - GD + LSE
e If the consequent parameters are non-linear
Then = GD + GD (or NG,LM, etc.)
Even if GD is used twice, it is still a hybrid method, since they are used independently (and for
different system aspects)

,—-A/\

AL \O ‘bo

(3) Properties of Fuzzy Control (or NF Control)

1) Completeness
Rule base should be “complete”

Given an input, there is at least one active rule.

9 A%
My M%
= A

2) Continuity
There is no gap between MFs

9 v m.‘(\
X \))‘ \))“
Waz ()
- /
-5

3) Consistency
No contradictory rules

Ry:ifxisLthenyis M

Ry:ifxis LthenyisL

4) Nointeraction
Interaction: rules are coupled

if A; and B; then C; and D,
else if A, and B, then C, and D,
elseif ...

5) Otherrules
Validity, ..., etc.

6.3 NN-based System Identification and Control
ANNs, Recurrent NNs, feed-forward NNs

e NN-based controller

lec«‘ .
—]

5| Plost

5P — Q\.—_p ! Cent eplle<]———9\ onipuodo '7

/

X/(’:——)e@%\

e NNs to model plant
System identification to identify system model.

Reference Y
model
(k)
E— Neuro
Reference identifier A
signal
€
+
Neuro Nonlinear Yo
—> ————>
r controller N¢ plant

Time delayed recurrent neural network:

u(k) e)
I u(k—1)
Time
delay :
block u(k—m)
ylk-m) yik1)
Time
delay
block .
y(k)
Series-parallel
F“T | buk"‘\
AW
M
f
o)
M
68>
\S Q(‘:QQO‘

Previous output:

o<’ e:.
S [A ~

{fu(k),utk — 1),u(k — 2), ..., u(k —m)}

Plant’s real output: y(k + 1)

RRN output: §(k + 1)
Error:

e(k

+1)=yk+1)—-9k+1)

There is also parallel method (next page)

6.3 NN-based System Identification and Control

Highly non-linear

time-varying

dynamic coupling

time-delays Nose

outpot

<P ot |
PO Eomteoner {4 momuiator 19 ploot |
=+ | S— C
5 Sengort

Cwm

error = SP — Cy,

model — plant dynamics

PDE modeling
FFNN-based‘gNae\"'
RNN-based
e Series-parallel method:
Plant g YY)
U(k) - E(k+ 1)
- el (Guyely
u(k—1) ~
e(en) = ‘5(“‘) - S(Ku\
Time .
delay :
block u(k—m)
[ik+1)
yik—m) g
Time .
delay R
block y(k-1)
y(k)
. t /

e Parallel method:

k+1
Plant * N)
u(k) 4 N - elk+1)
A+
L u(k-1)
Time :
delay :
block u(k - m)
Plk+1)
J(k—m)
Time X
delay P
block | ¥(k-1)
ylk)
A
N ‘t\ y
re(K}

e NN-controllers

PID ~ P gain, | gain, D gain

