
Chapter 1: Introduction to Soft Computing

What is Soft Computing?
Soft computing is an emerging approach to computing, which parallels the remarkable ability of the

human mind to reason and learn in an environment of uncertainty and imprecision.

(Dr. Lotfi A. Zadeh)

Conventional Artificial Intelligence (AI) and Soft Computing (SC)
- Symbolic tools

- Crisp calculation

Gate:

AI Intelligent System (expert system)

Advantages:

- Easy to set up

- Still commonly used today

Disadvantages:

- Difficult to improve, how do you implement new knowledge to the system?

- How do you represent knowledge to the users?

SC Intelligent System

It is intelligent because it can sense the environment (temperature, acceleration, etc.)

Example of a SC Intelligent System:

Two systems co-operate with each other to determine the written character.

Neural Networks
Consider a neuron:

This can be used to adapt the following model:

- Mimic the human brain to make decisions

- The functional speed of nerve cells is significantly slower than an electronic gate

- However, the brain can process A/V information significantly faster than a computer

o especially under uncertainty and noise

Advantages:

- Good adaptive capability

- Can use machine learning algorithms to improve its function

Disadvantages:

- Difficult to recognize how decisions are made in the model

- Reasoning is complex, not immediately comprehensible

Fuzzy Logic
- Mimic linguistic reasoning to make a decision

o Specifically, IF-THEN rules are utilized

IF – THEN rules

- Based on inputs, make a decision

o IF (food quality = good, service = fast) THEN (tip = 20%)

o IF (food quality = okay, service = slow) THEN (tip = 10%)

Advantages:

- Easy to follow logical process

- Intuitive

Disadvantages:

- Poor learning capability

- Difficult to optimize if application changes, or the environment varies

Table: Soft computing constituents (the first three items) and conventional artificial intelligence

Methodology Strength

Neural network Learning and adaptation

Fuzzy set theory Knowledge representation via fizzy if-then rules

Genetic algorithm and simulated annealing Systematic random search

Conventional AI Symbolic manipulation

Neuro-fuzzy modeling
- Combining a fuzzy logic system with a neural network leads to a neuro-fuzzy system.

Why neuro-fuzzy?

 Fuzzy Logic Neural Networks

Knowledge Representation Linguistic description of
knowledge

Knowledge distributed within
computational unit

Intuitiveness Explicit and easy to interpret
(intuitive)

Implicit and difficult to interpret
(“black box”)

Verification Easy Not as easy

Adaptation Manual Automatic

Learning None Excellent tools for imparting
learning

Consider:

Historical development of related techniques:

Chapter 2: Fuzzy Sets

2.1 Review of Conventional AI (Crisp Logic or Crisp Sets)
Logic ~ representation of processing of knowledge

𝐴 ~ a set

𝑋 ~ universe of discourse

𝜙 ~ null set

𝑥 ~ element in set A

 𝑥 ∈ 𝐴

Consider:

𝐴 = { 𝑥 | 𝑥 ≥ 6 }

𝐵 = { 𝑥, 𝑦 | 𝑥 ≥ 𝑥 ≥ 3, 𝑦 ≥ 2 }

1) Operations of Sets
1. Complement

Given set 𝐴, the complement is everything outside of 𝐴 → 𝐴′

2. Union

Given sets 𝐴 and 𝐵 → 𝐴 ∪ 𝐵

3. Intersection

Given sets 𝐴 and 𝐵 → 𝐴 ∩ 𝐵

4. Subset

Set 𝐴 is a subset of 𝐵, if the elements of 𝐴 are contained within 𝐵 → 𝐴 ⊂ 𝐵 (or 𝐴 ⊂ 𝐵)

2) Conventional Logic
Knowledge statement is represented by proposition.

Truth table:

1. Negation (NOT)

~ 𝐴

𝑨 𝑨̅
𝑇 𝐹
𝐹 𝑇

2. Disjunction (OR)

𝐴 ∨ 𝐵

𝑨 𝑩 𝑨 ∨ 𝑩
𝑇 𝑇 𝑇
𝑇 𝐹 𝑇
𝐹 𝑇 𝑇
𝐹 𝐹 𝐹

3. Conjunction (AND)

𝐴 ∧ 𝐵

𝑨 𝑩 𝑨 ∧ 𝑩
𝑇 𝑇 𝑇
𝑇 𝐹 𝐹
𝐹 𝑇 𝐹
𝐹 𝐹 𝐹

4. Implication (IF-THEN)

 IF 𝐴 THEN 𝐵

𝐴 → 𝐵

𝑨 𝑩 𝑨 → 𝑩
𝑇 𝑇 𝑇
𝑇 𝐹 𝐹

𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑠 𝑙𝑜𝑔𝑖𝑐
𝐹 𝑇 𝑇

𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡 𝑙𝑜𝑔𝑖𝑐
𝑐𝑜𝑢𝑙𝑑 𝑏𝑒 𝑇, 𝑐𝑜𝑢𝑙𝑑 𝑏𝑒 𝐹

𝐹 𝐹 𝑇 (𝑠𝑎𝑚𝑒 𝑟𝑒𝑎𝑠𝑜𝑛 𝑎𝑠 𝑎𝑏𝑜𝑣𝑒)

Boolean Algebra: 0 or 1

3) Logic Processing
Knowledge is usually represented by a proposition.

Consider 3 propositions; 𝐴, 𝐵, and 𝐶.

𝑋(𝑎𝑙𝑤𝑎𝑦𝑠 𝑇) and 𝜙(𝑎𝑙𝑤𝑎𝑦𝑠 𝐹)

1. Commutativity

𝐴 ∧ B = B ∧ A

𝐴 ∨ B = B ∨ A

2. Associativity

(𝐴 ∧ B) ∧ C = 𝐴 ∧ (B ∧ C)

(𝐴 ∨ B) ∨ C = 𝐴 ∨ (B ∨ C)

3. Distributivity

𝐴 ∧ (B ∨ C) = (A ∧ B) ∨ (B ∧ C)

𝐴 ∨ (B ∧ C) = (A ∨ B) ∧ (B ∨ C)

4. Absorption

𝐴 ∨ (A ∧ B) = A

𝐴 ∧ (A ∨ B) = A

5. Idempotency

𝐴 ∨ A = A

𝐴 ∧ A = A

6. Exclusion

𝐴 ∨ A̅ = 𝑋 = (𝑎𝑙𝑤𝑎𝑦𝑠 𝑇)

7. Contradiction

𝐴 ∧ A̅ = ϕ = (𝑎𝑙𝑤𝑎𝑦𝑠 𝐹)

8. De Morgan’s Law

𝐴 ∧ 𝐵̅̅ ̅̅ ̅̅ ̅ = 𝐴̅ ∨ 𝐵̅

𝐴 ∨ 𝐵̅̅ ̅̅ ̅̅ ̅ = 𝐴̅ ∧ 𝐵̅

9. Boundary Conditions

𝐴 ∨ X = X = T

𝐴 ∧ X = A

𝐴 ∨ ϕ = A

𝐴 ∧ ϕ = ϕ = F

Consider:

𝐴 = "food is good"

𝐵 = "service is good"

It is not true that both “food is good” and “service is good”

Either “food is not good” or “service is not good”

4) Rules of Inference
1. Conjunction rule of inference (CRI)

(𝐴, 𝐵) → 𝐴 ∧ 𝐵

IF proposition A is TRUE and the second proposition B is TRUE

THEN the combined proposition A ∧ B is also TRUE

2. Modus Ponens

𝐴 ∧ (𝐴 → 𝐵) => 𝐵

IF A → 𝐵, then B

IF A is T, then B is T

Consider:

𝐴 = "food is good"

𝐵 = "tips are generous"

Thus, IF “food is good” THEN “tips are generous”

3. Modus Tollens

𝐵̅ ∧ (𝐴 → 𝐵) => 𝐴̅

IF proposition B is not T, and A → 𝐵 holds

THEN A is NOT TRUE

4. Hypothetical Syllogism

[(𝐴 → 𝐵) ∧ (B → C)] => (𝐴 → 𝐶)

Consider:

𝐴 = "machine performs well"

𝐵 = "vibration level is low"

𝐶 = "manufacturing accuracy is high"

If both terms hold, then

IF “machine performs well” THEN “manufacturing accuracy is high”

2.2 Concepts of Fuzzy Sets
Conventional crisp logic utilizes 0 /1 (or true/false)

- Good for math operations

- Good for computers, chip designs

However, real applications have many abstract and imprecise concepts (think “grey” areas)

Crisp logic {
𝑇 = 1
𝐹 = 0

Set:

𝐴 = {𝑥|𝑥 ≥ 6}

Temperature “cold”

Temp:

𝐴 = ”𝑐𝑜𝑙𝑑”

𝐴 = {𝑡 ≤ −10 °𝐶}

But what about:

𝑡𝑒𝑚𝑝 = −10.1 °𝐶

𝑡𝑒𝑚𝑝 = −9.99 °𝐶

𝐴 → 𝑇

𝐴 → 𝐹

𝐵 = a person is tall

𝐵 = {𝑥|𝑥 ≥ 6 𝑓𝑡}

𝑥 = 6.01 𝑓𝑡

𝐵 → 𝑇

𝑥 = 5.99 𝑓𝑡

Fuzzy Logic

Ideal filter:

2.2 Fuzzy Sets (Cont’d)

Crisp sets: 𝐴 {
1
0

Concepts and thoughts are abstract and imprecise ≠ random.

Fuzzy logic → approximate knowledge

Membership function (MF) grade.

Consider:

Height:

𝐻 = 6.001 𝑓𝑡

“Tall” MF grade: 99.9%

𝐻′ = 5.999 𝑓𝑡

“not Tall” MF grade: 0.01%

Fuzzy set:

𝐴 = {𝑥, 𝜇𝐴(𝑥)}

𝑥 = variable ∈ 𝑋

𝜇𝐴 = 𝑀𝐹

𝑋 = universe of discourse

1) Fuzzy sets with a discrete non-ordered universe
𝑋 = {𝑀𝑜𝑛𝑡𝑟𝑒𝑎𝑙, 𝑇𝑜𝑟𝑜𝑛𝑡𝑜, 𝑉𝑎𝑛𝑐𝑜𝑢𝑣𝑒𝑟}

𝐶 = "desired city to live in"

𝐶 = {(𝑀𝑜𝑛, 0.5), (𝑇𝑜𝑟, 0.8), (𝑉𝑎𝑛, 0.7)}

Graphical representation:

2) Fuzzy set with a discrete ordered universe
𝑋 = {0, 1, 2, 3, 4}

Fuzzy set 𝐴 = “sensible number of cars in a family”

𝐴 = {(0, 0.1), (1, 0.8), (2, 1.0), (3, 0.4), (4, 0.1)}

Graphical representation:

3) Fuzzy sets with a continuous space
𝑋 = "ages" (0 ~ 120)

Fuzzy set 𝐵 = “about 40 years old”

𝐵 = {(𝑥, 𝜇𝐵(𝑥)}, 𝑥 ∈ 𝑋

Graphical representation:

𝜇𝐵(𝑥) =
1

1 + (
𝑥 − 40
10

)
4

• Subjective (𝑋,𝑀𝐹)

• Not random

4) Other fuzzy set representations
For a discrete, non-ordered universe:

𝐴 =
𝜇𝐴(𝑥1)

𝑥1
+
𝜇𝐵(𝑥2)

𝑥2
+
𝜇𝐶(𝑥3)

𝑥3
+⋯

e.g.

𝐶 =
0.5

𝑀𝑜𝑛
+
0.8

𝑇𝑜𝑟
+
0.7

𝑉𝑎𝑛

For a discrete, ordered universe:

𝐴 =
0.1

0
+
0.8

1
+
1.0

2
+
0.4

3
+
0.1

4

For a continuous space:

𝐵 =
𝜇𝐵(𝑥)

𝑥

𝐵 = [
1

1 + (
𝑥 − 40
10

)
4] 𝑥⁄

If the universe space 𝑋 is a continuous space, we can partition 𝑋 into several fuzzy sets.

Consider:

𝑋 = “age”

Partitions:

“young”, “middle aged”, “old”

𝜇𝑌(𝑥), 𝜇𝑀(𝑥), 𝜇𝑂(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ 𝑋

2.3 Other Concepts of Fuzzy Sets

1) Support
𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐴) → {𝑥|𝜇𝐴(𝑥) > 0}

2) Core
𝑐𝑜𝑟𝑒(𝐵) → 𝜇𝐵(𝑥) = 1

3) Normality
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑡𝑦(𝐶) → max{𝜇𝐶(𝑥)} = 1

4) Cross-over Points

𝜇𝐵(𝑥0) = 𝜇𝐶(𝑥0) = 0.5

𝑥0 = a cross-over point

5) Fuzzy singletons
Basically, a fuzzy set in discrete form.

Diagnosis:

Class 1, Class 2, …

6) 𝛼 − 𝑐𝑢𝑡
𝐵 = {𝑥, 𝜇𝐵(𝑥)|𝜇𝐴(𝑥)≥𝛼}

• Strong 𝛼 − 𝑐𝑢𝑡

𝐵 = {𝑥, 𝜇𝐵(𝑥)|𝜇𝐴(𝑥) > 𝛼}

7) Convexity
Fuzzy sets are convex functions.

8) Fuzzy Numbers
A fuzzy number is a fuzzy set

→ normality

→ convexity (monotonically increasing, followed by monotonically decreasing, or constant)

9) Bandwith

𝑥2 − 𝑥1 = bandwith

𝜇𝐴(𝑥1) = 𝜇𝐴(𝑥2) = 0.5

10) Symmetry

2.4 Set Operations

1) Subset

Consider fuzzy set 𝐴 & 𝐵

If 𝐴 is a subset of 𝐵:

𝐴 ⊂ 𝐵

𝜇𝐴(𝑥) ≤ 𝜇𝐵(𝑥)

2) Union (Disjunction) - OR
Given 𝐴 & 𝐵

𝐶 = 𝐴 ∪ 𝐵

𝜇𝑐(𝑥) = max{ 𝜇𝐴(𝑥), 𝜇𝐵(𝑥) }

3) Intersection (Conjunction) – AND
Given 𝐴 & 𝐵

𝐶 = 𝐴 ∩ 𝐵

𝜇𝐶(𝑥) = min{ 𝜇𝐴(𝑥), 𝜇𝐵(𝑥) }

4) Complement (Negation) – NOT
Given 𝐴 & 𝐵

𝑛𝑜𝑡 𝐴 or 𝐴̅ (fuzzy set)

𝜇𝐴̅(𝑋) = 1 − 𝜇𝐴(𝑥)

5) Cartesian Product / Co-product
𝐴 ~ fuzzy set in 𝑋

𝐵 ~ fuzzy set in 𝑌

Cartesian product 𝐴 x 𝐵

is in 𝑋 x 𝑌

𝜇𝐴 x 𝐵(𝑥, 𝑦) = min{ 𝜇𝐴(𝑥), 𝜇𝐵(𝑦) }

Cartesian co-product 𝐴 + 𝐵

is in 𝑋 + 𝑌

𝜇𝐴+𝐵(𝑥, 𝑦) = max{ 𝜇𝐴(𝑥), 𝜇𝐵(𝑦) }

2.4 Membership Functions (MF)

1) Triangular Membership Functions

𝜇𝐴(𝑥; 𝑎, 𝑏, 𝑐) =

{

0 𝑤ℎ𝑒𝑛 𝑥 ≤ 𝑎

(
𝑥 − 𝑎

𝑏 − 𝑎
) 𝑤ℎ𝑒𝑛 𝑎 < 𝑥 < 𝑏

(
𝑐 − 𝑥

𝑐 − 𝑏
) 𝑤ℎ𝑒𝑛 𝑏 < 𝑥 < 𝑐

0 𝑤ℎ𝑒𝑛 𝑥 > 𝑐

In MATLAB:

𝑡𝑟𝑖𝑚𝑓(𝑥, [𝑎 𝑏 𝑐])

2) Trapezoidal Membership Functions

𝜇𝐴(𝑥; 𝑎, 𝑏, 𝑐, 𝑑) =

{

0 𝑤ℎ𝑒𝑛 𝑥 < 𝑎

(
𝑥 − 𝑎

𝑏 − 𝑎
) 𝑤ℎ𝑒𝑛 𝑎 ≤ 𝑥 < 𝑏

 1 𝑤ℎ𝑒𝑛 𝑏 ≤ 𝑥 < 𝑐

(
𝑑 − 𝑥

𝑑 − 𝑐
) 𝑤ℎ𝑒𝑛 𝑐 ≤ 𝑥 ≤ 𝑑

0 𝑤ℎ𝑒𝑛 𝑥 > 𝑑

In MATLAB:

𝑡𝑟𝑎𝑝𝑚𝑓(𝑥, [𝑎 𝑏 𝑐 𝑑])

NOTE: Triangular, and trapezoidal membership functions are not continuous, which means the

derivatives functions do not exist (equal to zero).

The following membership functions are continuous:

3) Gaussian Membership Functions

𝜇𝐴 = 𝑔𝑎𝑢𝑠𝑠(𝑥; 𝑐, 𝜎) = 𝐺(𝑥) = 𝑒
−
1

2
(
𝑥−𝑐

𝜎
)
2

𝑐 = center

𝜎 = spread

In MATLAB:

𝑔𝑎𝑢𝑠𝑠𝑚𝑓(𝑥; [𝑐, 𝜎])

𝜇′(𝑥) = 𝐷𝐺(𝑥) = 𝑒−
1
2
(
𝑥−𝑐
𝜎
)
2

∙ [−
1

2
∙ 2 (

𝑥 − 𝑐

𝜎
) ∙
1

𝜎
]

4) Generalized Bell Membership Functions

𝜇𝐴 = 𝑏𝑒𝑙𝑙(𝑥; 𝑎, 𝑏, 𝑐) =
1

1 + |
𝑥 − 𝑐
𝑎

|
2𝑏

In MATLAB:

𝑔𝑏𝑒𝑙𝑙𝑚𝑓(𝑥; [𝑎, 𝑏, 𝑐])

5) Sigmoid Membership Functions

𝜇(𝑥) = 𝑠𝑖𝑔(𝑥; 𝑎, 𝑐) =
1

1 + 𝑒𝑥 𝑝[−𝑎(𝑥 − 𝑐)]

In MATLAB:

𝑠𝑖𝑔𝑚𝑓(𝑥; [𝑎, 𝑐])

If 𝑎 > 0, 𝑠𝑖𝑔𝑚𝑓 opens to the right

If 𝑎 < 0, 𝑠𝑖𝑔𝑚𝑓 opens to the left

𝜇′(𝑥) = 𝐷𝑆(𝑥) = −1[1 + e−𝑎(𝑥−𝑐)]
−2
𝑒−𝑎(𝑥−𝑐) ∙ (−𝑎)

0 ≤ 𝑥 < ∞

2.5 Fuzzy Operations
MFs [0, 1]

𝐴 ~ [0, 1]

𝐵 ~ [0, 1]

𝐶 ~ 𝐴 ∪ 𝐵

𝐷 ~ 𝐴 ∩ 𝐵

[0, 1] x [0, 1] → [0, 1]

1) Triangular Norm (T-Norm) – Generalized Intersection
𝑎 = 𝜇𝐴(𝑥)

𝑏 = 𝜇𝐵(𝑥)

𝑇 = (𝑎, 𝑏), 𝑎𝑇𝑏

Properties in table below.

2) T-Conorm (S-Norm)
Properties in table below.

Example 2.3 (Similar to Example 2.13)
Use DeMorgan’s law to determine the S-norm corresponding to max(x, y), and T-norm corresponding to

min(x, y).

Solution 2.3
𝑥𝑆𝑦 = 1 − (1 − 𝑥)𝑇(1 − 𝑦)

𝑇 → min

= 1− min[(1 − 𝑥), (1 − 𝑦)]

= {
1 − (1 − 𝑦) = 𝑦; 𝑥 < 𝑦

1 − (1 − 𝑥) = 𝑥; 𝑥 ≥ 𝑦

𝑥𝑆𝑦 = max (𝑥, 𝑦)

Example 2.4 (Similar to Example 2.14)
Prove that the min operator is the largest T-norm and the max operator is the smallest S-norm.

Solution 2.4
Nondecreasing, boundary conditions

𝑥𝑇𝑦 ≤ 1𝑇𝑦 = 𝑦

𝑥𝑇𝑦 ≤ 𝑥𝑇1 = 𝑥

𝑥𝑇𝑦 ≤ min(𝑥, 𝑦)

2.5 Fuzzy Operations

3) Set Inclusion
𝐵 ⊂ 𝐴

Fuzzy sets 𝐴, 𝐵

If 𝐴 is a subset of fuzzy set 𝐵,

𝐴 ⊂ 𝐵

𝜇𝐴⊏𝐵(𝑥) = {
1 ; if 𝜇𝐴(𝑥) ≤ 𝜇𝐵(𝑥)

𝜇𝐴(𝑥)T𝜇𝐵(𝑥) ; Otherwise

min~ T-norm

𝜇𝐴⊏𝐵(𝑥) = {
1 ; if 𝜇𝐴(𝑥) ≤ 𝜇𝐵(𝑥)

𝜇𝐵(𝑥) ; Otherwise

4) Set Equality (𝐴 = 𝐵)
𝜇𝐴(𝑥) = 𝜇𝐵(𝑥)

𝜇𝐴=𝐵(𝑥) = {
1 ; if 𝜇𝐴(𝑥) = 𝜇𝐵(𝑥)

𝜇𝐴(𝑥)T𝜇𝐵(𝑥) ; otherwise

min~ T-norm

𝜇𝐴=𝐵(𝑥) = {
1 ; if 𝜇𝐴(𝑥) = 𝜇𝐵(𝑥)

min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) ; if 𝜇𝐴(𝑥) ≠ 𝜇𝐵(𝑥)

2.6 Implication (IF – THEN)
𝐴 → 𝐵

IF 𝐴 THEN 𝐵

𝐴 ~ 𝑋

𝐵 ~ 𝑌

𝐴 → 𝐵, 𝑋 x 𝑌

1) Method 1 (Mamdani implication)
𝜇𝐴→𝐵(𝑥, 𝑦) = min[𝜇𝐴(𝑥), 𝜇𝐵(𝑦)]

𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌

2) Method 2 (Larson implication)
𝜇𝐴→𝐵(𝑥, 𝑦) = 𝜇𝐴(𝑥) ∙ 𝜇𝐵(𝑦)

3) Method 3 (Bounded sum implication)
𝜇𝐴→𝐵(𝑥, 𝑦) = min[1, {1 − 𝜇𝐴(𝑥) + 𝜇𝐵(𝑦)}]

Proof:

𝑨 𝑩 𝑨 → 𝑩
𝑇 𝑇 𝑇
𝑇 𝐹 𝐹
𝐹 𝑇 𝑇
𝐹 𝐹 𝑇

𝐴 → 𝐵 = (𝐴 ∧ 𝐵) ∨ 𝐴̅

𝐴 → 𝐵 = (𝐴 ∨ 𝐴̅) ∧ (𝐵 ∨ 𝐴̅)

= 𝑋 ∧ (𝐵 ∨ 𝐴̅)

= 𝐵 ∨ 𝐴̅

= 1− (𝐵 ∨ 𝐴)

4) Method 4 (Zadeh implication)
𝜇𝐴→𝐵(𝑥, 𝑦) = max[min{𝜇𝐴(𝑥), 𝜇𝐵(𝑦)}, 1 − 𝜇𝐴(𝑥)]

5) Method 5 (Dienes-Rescher implication)
𝜇𝐴→𝐵(𝑥, 𝑦) = max[1 − 𝜇𝐴(𝑥), 𝜇𝐵(𝑦)]

IF 𝜇𝐴(𝑥) = 0.6

IF 𝜇𝐵(𝑥) = 0.5

Method 1 (Mamdani):

= min(0.6, 0.5)

= 0.5

Method 2 (Larson):

= product(𝜇𝐴(𝑥), 𝜇𝐵(𝑥))

= 0.6 ∗ 0.5
= 0.3

Method 3:

= min[1, {1 − 0.6 + 0.5}]

= min [1, 0.9]

= 0.9

Method 4:

= max[min{0.6, 0.5}, 1 − 0.6]

= max[0.5, 0.4]

= 0.5

Method 5:

= max[1 − 0.6, 0.5]

= max[0.4, 0.5]

= 0.5

Example 2-6 (Problem 2.16)

Solution

2.7 Extension Principle and Fuzzy Relations
𝑓 ~ from 𝑋 to 𝑌

𝐴 =
𝜇𝐴(𝑥1)

𝑥1
+
𝜇𝐴(𝑥2)

𝑥2
+⋯+

𝜇𝐴(𝑥𝑛)

𝑥𝑛

For fuzzy sets 𝐴 and 𝐵

𝐵 = 𝑓(𝐴)

𝑦 = 𝑓(𝑥)

=
𝜇𝐴(𝑥1)

𝑦1
+
𝜇𝐴(𝑥2)

𝑦2
+⋯+

𝜇(𝑥𝑛)

𝑦𝑛

Example:

𝐴 =
0.1

−2
+
0.4

−1
+
0.8

0
+
0.9

1
+
0.3

2

𝑦 = 𝑓(𝑥) = 𝑥2 − 3

𝐴 ~ 𝑥 ∈ 𝑋

𝐵 ~ 𝑦 ∈ 𝑌

𝐵 =
0.1

1
+
0.4

−2
+
0.8

−3
+
0.9

−2
+
0.3

1

Many to one mapping ~ max

𝐵 =
0.1 ∨ 0.3

1
+
0.4 ∨ 0.9

−2
+
0.8

−3

 =
0.7

1
+
0.9

−2
+
0.8

−3

Given fuzzy sets (𝑋, 𝑌)

Where: 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌

𝜇(𝑥), 𝜇(𝑦), 0~1 (binary relations)

Binary fuzzy sets

Let 𝑋 and 𝑌 be two universes of discourse.

𝑅 = {(𝑥, 𝑦), 𝜇𝑅(𝑥, 𝑦)|𝑋x𝑌}

𝜇𝑅(𝑥, 𝑦) ~ 2D membership function

𝑅 = "y is greater than x”

𝜇𝑅(𝑥, 𝑦) = {

𝑦 − 𝑥

𝑥 + 𝑦 − 2
 ; 𝑖𝑓 𝑦 > 𝑥

0 ; if 𝑦 ≤ 𝑥

𝑋 = {3, 4, 5}

𝑌 = {3, 4, 5, 6, 7}

𝑅 = [
0 0.111 0.200 0.273 0.353
0 0 0.091 0.167 0.231
0 0 0 0.077 0.143

]

1) Max-Min Composition
𝑅1 ~ fuzzy relation on X x Y

𝑅2 ~ fuzzy relation on Y x Z

𝑅1 and 𝑅2 ~ fuzzy set 𝑋 and 𝑍

Max-Min Composition:

𝜇𝑅1∘𝑅2(𝑥, 𝑧)

= maxmin[𝜇𝑅1(𝑥, 𝑦), 𝜇𝑅2(𝑦, 𝑧)]

= 𝑉𝑦[𝜇𝑅1(𝑥, 𝑦)⋀𝜇𝑅2(𝑦, 𝑧)]

Where:

∨ ~ max (or)

∧ ~ min (and)

• Properties:

𝑅:𝑋 x 𝑌

𝑆: 𝑌 x 𝑍

𝑇: 𝑍 x 𝑊

1) Associativity

𝑅 ∘ (𝑆 ∘ 𝑇) = (𝑅 ∘ 𝑆) ∘ 𝑇

2) Distributivity

𝑅 ∘ (𝑆 ∪ 𝑇) = (𝑅 ∘ 𝑆) ∪ (𝑅 ∘ 𝑇)

3) Weak distributivity over intersection

𝑅 ∘ (𝑆 ⊓ 𝑇) ⊑ (𝑅 ∘ 𝑆) ⊓ (𝑅 ∘ 𝑇)

4) Monotonicity

𝑆 ⊑ 𝑇 → 𝑅 ∘ 𝑆 ⊑ 𝑅 ∘ 𝑇

𝑇 − norm ~minproduct

𝑆 − norm ~max product

2) Max-Product Composition
𝑅1 ~ 𝑋x𝑌

𝑅2 ~ 𝑌x𝑍

𝜇𝑅1∘𝑅2(𝑥, 𝑧) = max𝑦
[𝜇𝑅1(𝑥, 𝑦) ∗ 𝜇𝑅2(𝑦, 𝑧)]

Example 2-7
Let:

 ℛ1 = "𝑥 is relevant to 𝑦"

 ℛ2 = "𝑦 is relevant to 𝑧"

be two fuzzy relationships defined on 𝑋 x 𝑌 and 𝑌 x 𝑍, respectively, where 𝑋 = {1, 2, 3}, 𝑌 = {𝛼, 𝛽, 𝛾, 𝛿},

and 𝑍 = {𝑎, 𝑏}. Assume that ℛ1 and ℛ2 can be expressed as the following matrices:

ℛ1 = [
0.1 0.3 0.5 0.7
0.4 0.2 0.8 0.9
0.6 0.8 0.3 0.2

]

ℛ2 = [

0.9 0,1
0.2 0.3
0.5 0.6
0.7 0.2

]

Now, we want to find ℛ1 ∘ ℛ2 which can be interpreted as a derived fuzzy relation "𝑥 is relevant to 𝑧"

based on ℛ1 and ℛ2. For simplicity, suppose that we are only interested in the degree of relevance

between 2(∈ 𝑋) and 𝑎(∈ 𝑍). If we adopt maxmin composition, then:

Solution

(1)

(2)
(3)

(𝛼)

(𝛽)

(𝛾)
(𝛿)

(𝑎)

(𝑏)

𝑋 = {1, 2, 3}

𝑌 = {𝛼, 𝛽, 𝜈, 𝛿}

𝑍 = {𝑎, 𝑏}

1) Max-min composition operator
𝜇𝑅1∘𝑅2(𝑥, 𝑧) → 𝜇𝑅1∘𝑅2(2, 𝑎)

= max
𝑦
min[𝜇𝑅1(𝑥, 𝑦), 𝜇𝑅2(𝑦, 𝑧)]

= max
𝑦
[0.4 ∧ 0.9, 0.2 ∧ 0.2, 0.8 ∧ 0.5, 0.9 ∧ 0.7)]

= max
𝑦
[0.4, 0.2, 0.5, 0.7)]

= 0.7

2) Max-product composition operator
𝜇𝑅1∘𝑅2(𝑥, 𝑧) → 𝜇𝑅1∘𝑅2(2, 𝑎)

= max[0.4 ∗ 0.9, 0.2 ∗ 0.2, 0.8 ∗ 0.5, 0.9 ∗ 0.7]

= max[0.36, 0.04, 0.14, 0.63]

= 0.63

2.7 Fuzzy IF-THEN Rules

1) Linguistic Variables

{fuzzy set, universe, syntactic rule, semantic rule}

𝑎𝑔𝑒 ~ linguistic variable

𝑠𝑒𝑡 𝑇 (𝑎𝑔𝑒)

𝑇 (𝑎𝑔𝑒) =

{

𝑦𝑜𝑢𝑛𝑔;
 𝑛𝑜𝑡 𝑦𝑜𝑢𝑛𝑔;
𝑣𝑒𝑟𝑦 𝑦𝑜𝑢𝑛𝑔;
 𝑚𝑖𝑑𝑑𝑙𝑒 𝑎𝑔𝑒𝑑;
𝑣𝑒𝑟𝑦 𝑜𝑙𝑑;

𝑛𝑜𝑡 𝑣𝑒𝑟𝑦 𝑜𝑙𝑑;
𝑚𝑜𝑟𝑒 𝑜𝑟 𝑙𝑒𝑠𝑠 𝑜𝑙𝑑}

𝑋 = [0, 100]

• Primary terms: young, middle aged, old

• Negation: not

• Hedges: very, quite, more or less

• Connectives: and, or, either, neither

• Concentration and dilation

Example:

𝐴 ~ linguistic term

𝑀𝐹: 𝜇𝐴(𝑥)

𝐴𝑘 ~ modified version of the linguistic value

𝐴𝑘 ~ ∫ 𝜇𝐴
𝑘(𝑥) 𝑥⁄

• Concentration

𝐶𝑂𝑁(𝐴) = 𝐴2

• Dilation

𝐷𝐼𝐿(𝐴) = √𝐴

• Not

𝑁𝑂𝑇(𝐴) = ¬ 𝐴 =
∫[1 − 𝜇𝐴(𝑥)]

𝑥

Consider two terms 𝐴, 𝐵:

𝐴 AND 𝐵 = 𝐴 ∩ 𝐵 =
∫𝜇𝐴(𝑥) ∧ 𝜇𝐵(𝑥)

𝑥

𝐴 OR 𝐵 = 𝐴 ∪ 𝐵 =
∫𝜇𝐴(𝑥) ∨ 𝜇𝐵(𝑥)

𝑥

Example:

T(𝑎𝑔𝑒)

𝜇𝑦𝑜𝑢𝑛𝑔(𝑥) = bell(𝑥, 20, 2, 0)

=
1

1 + (
𝑥
20
)
4

𝜇𝑜𝑙𝑑(𝑥) = bell(𝑥, 30, 3, 100)

=
1

1 + (
𝑥 − 100
30

)
6

For 𝑥 = [0, 100]:

• More or less

𝐷𝐼𝐿(𝑜𝑙𝑑) = 𝑜𝑙𝑑0.5

=

∫
√

1

1 + (
𝑥 − 100
30

)
6

𝑥

• Not young AND not old

= (¬ young) ⊓ (¬ old)

=

∫ [1 −
1

1 + (
𝑥
20
)
4] ∧ [1 −

1

1 + (
𝑥 − 100
30

)
6]

𝑥

• Young but not very (too) young

= young ⊓ (¬ young2)

=

∫ [
1

1 + (
𝑥
20
)
4] ∧ [1 − (

1

1 + (
𝑥
20
)
4)

2

]

𝑥

• Extremely old

= con (con(con(old)))

((𝑜𝑙𝑑2)2)2 = 𝑜𝑙𝑑8

=

∫ (
1

1 + (
𝑥 − 100
30

)
6)

8

𝑥

2) Orthogonality
𝑇 = {𝑡1, 𝑡2 , … , 𝑡𝑛}

Universe 𝑋

𝜇𝑡1(𝑥) + 𝜇𝑡2(𝑥) +⋯+ 𝜇𝑡𝑛(𝑥) = 1

~ orthogonal

2.9 Fuzzy IF-THEN Rules
Fuzzy implication

“If 𝑥 is 𝐴 then 𝑦 is 𝐵”

“𝐴 → 𝐵”

𝐴 and 𝐵 ~ linguistic values

𝑋 and 𝑌 ~ universe

𝑅 = 𝐴 → 𝐵

• 𝐴 coupled with 𝐵

𝑅 = 𝐴 → 𝐵 = 𝐴 x 𝐵

= ∫
𝜇𝐴(𝑥) ∗̃ 𝜇𝐵(𝑦)

(𝑥, 𝑦)⁄

𝑋 x 𝑌

∗̃ = 𝑇-norm operator

• Material implication (𝐴 entails 𝐵)

𝑅 = 𝐴 → 𝐵 = ¬ 𝐴 ⊔ 𝐵

And:

𝑎 = 𝜇𝐴(𝑥)

𝑏 = 𝜇𝐵(𝑦)

1) 𝐴 coupled with 𝐵

1. Mamdani conjunction

𝑅𝑚 = 𝐴 → 𝐵 = 𝐴 x 𝐵 = ∫
𝜇𝐴(𝑥) ∧ 𝜇𝐵(𝑦)

(𝑥, 𝑦)⁄

𝑋 x 𝑌

𝑓𝑚(𝑎, 𝑏) = 𝑎 ∧ 𝑏

2. Larson (product) implication

𝑅𝑝 = 𝐴 x 𝐵 = ∫
𝜇𝐴(𝑥) ∙ 𝜇𝐵(𝑦)

(𝑥, 𝑦)⁄

𝑋 x 𝑌

𝑓𝑝 = 𝑎 ∙ 𝑏

3. Bounded product operator

𝑅𝑏𝑝 = 𝐴 x 𝐵 = ∫
𝜇𝐴(𝑥) ⊙ 𝜇𝐵(𝑦)

(𝑥, 𝑦)⁄

𝑋 x 𝑌

= ∫
0 ∨ [𝜇𝐴(𝑥) + 𝜇𝐵(𝑦) − 1]

(𝑥, 𝑦)⁄

𝑓𝑏𝑝 = 0 ∨ [𝑎 + 𝑏 − 1]

4. Drastic product operator

𝑅𝑑𝑝 = 𝐴 x 𝐵 = ∫
𝜇𝐴(𝑥) .̂ 𝜇𝐵(𝑦)

(𝑥, 𝑦)⁄

𝑋 x 𝑌

𝑓𝑑𝑝(𝑎, 𝑏) = 𝑎 .̂ 𝑏 = {

𝑎 ;
𝑏 ;
0 ;

𝑏 = 1
𝑎 = 1

Otherwise

Consider:

𝑎 = 𝜇𝐴(𝑥) = bell(𝑥, 4, 3, 10)

𝑏 = 𝜇𝐵(𝑦) = bell(𝑦, 4, 3, 10)

2) 𝐴 entails 𝐵

1. Zadeh’s arithmetic rule

𝑅𝑎 = 𝐴 → 𝐵 = ¬ 𝐴 ⊔ 𝐵

𝑓𝑎(𝑎, 𝑏) = 1 ∧ (1 − 𝑎 + 𝑏)

2. Zadeh’s max-min rule

𝑅𝑚𝑚 = 𝐴 → 𝐵 = ¬ 𝐴 ⊔ (𝐴 ⊓ 𝐵)

𝑎 = 𝜇𝐴(𝑥)

𝑏 = 𝜇𝐵(𝑥)

𝑓𝑚𝑚(𝑎, 𝑏) = (1 − 𝑎) ∨ (𝑎 ∧ 𝑏)

3. Boolean fuzzy implication

𝑅𝐵 = 𝐴 → 𝐵 = ¬ 𝐴 ⊔ 𝐵

= ∫
[1 − 𝜇𝐴(𝑥)] ∨ 𝜇𝐵(𝑦)

(𝑥, 𝑦)⁄

𝑋 x 𝑌

𝑓𝐵(𝑎, 𝑏) = (1 − 𝑎) ∨ 𝑏

4. Gogen’s fuzzy implication

𝑅∆ = 𝐴 → 𝐵

= ∫
𝜇𝐴(𝑥) <̃ 𝜇𝐵(𝑦)

(𝑥, 𝑦)⁄

𝑋 x 𝑌

𝑓∆(𝑎, 𝑏) = 𝑎 <̃ 𝑏 = {
1 ;
𝑏/𝑎 ;

𝑎 ≤ 𝑏
𝑎 > 𝑏

2.10 Fuzzy Reasoning Rulebase

2-valued logic, modus ponens

Something like:

fact ~ 𝑥 is 𝐴′

premise (rule) = if 𝑥 is 𝐴 then 𝑦 is 𝐵

consequent conclusion ~ 𝑦 is 𝐵′

→ called approximate reasoning

→ or generalised modus ponens (GMP)

Let 𝐴, 𝐵 be fuzzy sets

of 𝑋 and 𝑌, 𝐴′~ of 𝑋′

Rule – fuzzy implication

𝑅 = 𝐴 → 𝐵 ; 𝑋 x 𝑌

𝜇𝐵
′ (𝑦) = max min[𝜇𝐴

′ (𝑥), 𝜇𝑅(𝑥, 𝑦)]

=∨𝑥 [𝜇𝐴(𝑥) ∧ 𝜇𝐵(𝑥, 𝑦)]

or

𝐵′ = 𝐴′ ∘ 𝑅 = 𝐴′ ∘ (𝐴 → 𝐵)

" ∘ " = composition operator

1) Single rule with single antecedent
Premise 1 (fact): 𝑥 is 𝐴′
Premise 2 (rule): If 𝑥 is 𝐴 then 𝑦 is 𝐵

Consequence (conclusion): 𝑦 is 𝐵′

𝜇𝐵
′ (𝑦) =∨𝑥 [𝜇𝐴

′ (𝑥) ∧ 𝜇𝑅(𝑥, 𝑦)]

𝐴 → 𝐵 = 𝐴 ∧ 𝐵

=∨𝑥 [𝜇𝐴
′ (𝑥) ∧ [𝜇𝐴(𝑥) ∧ 𝜇𝐵(𝑦)]]

=∨𝑥 [[𝜇𝐴
′ (𝑥) ∧ 𝜇𝐴(𝑥)] ∧ 𝜇𝐵(𝑦)]

𝜇𝐵
′ (𝑦) =∨𝑥 [𝜔 ∧ 𝜇𝐵(𝑦)]

𝜇𝐵
′ (𝑦) =

∨𝑥

max
[𝜇𝐴

′ (𝑥) ∧ 𝜇𝐴(𝑥)] ∧ 𝜇𝐵(𝑦)

= 𝜔 ∧ 𝜇𝐵(𝑦)

2) Single rule with multiple antecedents
antecedent ~ something existing before (or logically proceeding) another.

Premise 1 (fact): 𝑥 is 𝐴′ and 𝑦 is 𝐵′
Premise 2 (rule): If 𝑥 is 𝐴 and 𝑦 is 𝐵 then 𝑧 is 𝐶

Consequence (conclusion): 𝑧 is C′

𝑅 = 𝐴 x 𝐵 → 𝐶

Mamdani’s implication:

𝑅𝑚(𝐴, 𝐵, 𝐶) = 𝐴 x 𝐵 → 𝐶

= ∫
𝜇𝐴(𝑥) ∧ 𝜇𝐵(𝑦) ∧ 𝜇𝐶(𝑧)

(𝑥, 𝑦, 𝑧)⁄

𝐴′x B′; 𝐶′ = ?

𝐶′ = (𝐴′ x 𝐵′) x 𝑅𝑚

= (𝐴′ x 𝐵′) ∙ (𝐴 x 𝐵 → 𝐶)

= (𝐴′ x 𝐵′) ∧ (𝐴 x 𝐵 x 𝐶)

𝜇𝐶
′ (𝑧) = 𝑚𝑎𝑥 − 𝑚𝑖𝑛

=∨𝑥,𝑦 {[𝜇𝐴
′ (𝑥) ∧ 𝜇𝐵

′ (𝑦)] ∧ [𝜇𝐴(𝑥) ∧ 𝜇𝐵(𝑦) ∧ 𝜇𝐶(𝑧)]}

=∨𝑥,𝑦 {[𝜇𝐴
′ (𝑥) ∧ 𝜇𝐴(𝑥)] ∧ [𝜇𝐵

′ (𝑦) ∧ 𝜇𝐵(𝑦)]} ∧ 𝜇𝐶(𝑧)

=∨𝑥 [𝜇𝐴
′ (𝑥) ∧ 𝜇𝐴(𝑥)] ∧ ∨𝑦 [𝜇𝐵

′ (𝑦) ∧ 𝜇𝐵(𝑦)] ∧ 𝜇𝐶(𝑧)

= 𝜔1 ∧ 𝜔2 ∧ 𝜇𝐶(𝑧)

3) Multiple rules with multiple antecedents

Premise 1 (fact): 𝑥 is 𝐴′ and 𝑦 is 𝐵′
Premise 2 (rule 1): If 𝑥 is 𝐴1 and 𝑦 is 𝐵1 then 𝑧 is 𝐶1
Premise 3 (rule 2): If 𝑥 is 𝐴2 and 𝑦 is 𝐵2 then 𝑧 is 𝐶2

Consequence (conclusion): 𝑧 is 𝐶′

Rule 1: 𝑅1 = 𝐴1 x 𝐵1 → 𝐶1

Rule 2: 𝑅2 = 𝐴2 x 𝐵2 → 𝐶2

Fact: 𝐴′x 𝐵′

Use max min composition operator " ∘ "

𝐶′ = (𝐴′ x 𝐵′) ∘ (𝑅1 ∪ 𝑅2)

𝐶′ = (𝐴′x 𝐵′) ∧ (𝑅1 ⊔ 𝑅2)

= [(𝐴′ x 𝐵′) ∧ 𝑅1] ⊔ [(𝐴′ x 𝐵′) ∧ 𝑅2]

= 𝐶1
′ ⊔ 𝐶2

′

Theorem 2.1 Decomposition Method

𝑅 → (𝐴 x 𝐵 → 𝐶)

Given fact: 𝐴′ x B′

𝐶′ = (𝐴′x 𝐵′) ∙ (𝐴 x 𝐵 → 𝐶)

= [𝐴′ ∙ (𝐴 → 𝐶)] ⊓ [𝐵′ ∙ (𝐵 → 𝐶)]

= 𝐶1
′ ⊓ 𝐶2

′

Proof:

𝜇𝐶′ (𝑧) =∨𝑥,𝑦 {[𝜇𝐴′ (𝑥) ∧ 𝜇𝐵′(𝑦)] ∧ [𝜇𝐴(𝑥) ∧ 𝜇𝐵(𝑦) ∧ 𝜇𝐶(𝑧)]}

=∨𝑥 [𝜇𝐴′ (𝑥) ∧ 𝜇𝐴(𝑥) ∧ 𝜇𝐶(𝑧)] ∧ ∨𝑦 [𝜇𝐵′(𝑦) ∧ 𝜇𝐵(𝑦) ∧ 𝜇𝐶(𝑧)]

= 𝜇𝐴′∘(𝐴→𝐶) ∧ 𝜇𝐵′∘(𝐵→𝐶)

= 𝐶1
′ ∧ 𝐶2

′

In Summary

Degree of compatibility Compare the known facts with the antecedents of fuzzy rules to find the

degrees of compatibility with respect to each antecedent MF.

Firing strength Combine degrees of compatibility with respect to antecedent MFs in a rule using fuzzy

AND or OR operators to form a firing strength that indicates the degree to which the antecedent part of

the rule is satisfied.

Qualified (induced) consequent MFs Apply the firing strength to the consequent MF of a rule to

generate a qualified consequent MF. (The qualified consequent MFs represent how the firing strength

gets propagated and used in a fuzzy implication statement.)

Overall output MF aggregates all the qualified consequent MFs to obtain an overall MF.

Chapter 3: Fuzzy Inference Systems

neuro fuzzy system ~ fuzzy system (the main difference is related to parameter training)

Inputs: fuzzy inputs, crisp inputs (fuzzy singletons)

1) Mamdani Fuzzy Models
Rule: (𝑅1)

If (𝑥 is 𝐴1) and (𝑦 is 𝐵1)

Then (𝑧 is 𝐶1)

Rule: (𝑅2)

If (𝑥 is 𝐴2) and (𝑦 is 𝐵2)

Then (𝑧 is 𝐶2)

𝑥 = 𝑥0

𝑦 = 𝑦0

𝑧 = ?
→ 𝑧 is 𝐶′

2) Defuzzification
When we want to get back a number, instead of a membership function.

• Centroid of the area (most commonly used, dividing line drawn across the centroid of the MF)

• Bisector of the area (commonly used, dividing line such that area on LHS = RHS)

• Smallest of the maximum

• Largest of the maximum

• Mean of the maximum

1) Mamdani fuzzy model
max−min/ product

𝑅1 ∪ 𝑅2 ∪ …

2) Sugeno fuzzy models
Takagi-Sugeno-Kang (TSK): consequent part of a rule is a polynomial function of inputs.

Defuzzification:

𝑧∗ =
𝑤1𝑧1 + 𝑤2𝑧2

𝑤1 + 𝑤2

𝑧∗ =
𝑤1(𝓅1𝑥 + 𝓆1𝑦 + 𝑟1) + 𝑤2(𝓅2𝑥 + 𝓆2𝑦 + 𝑟2)

𝑤1 + 𝑤2

Type 1: TSK model (1st order)

𝑧1 = 𝓅1𝑥
1 + 𝓆1𝑦

1 + 𝑟1

𝑧1 = 𝓅1𝑥 + 𝓆1𝑦 + 𝑟1

Type 0: (or 0𝑡ℎ order TSK)

𝑧1 = 𝓅1𝑥
0 + 𝓆1𝑦

0 + 𝑟1

𝑧1 = 𝓅1 + 𝓆1 + 𝑟1

(consequent part is just a number)

𝑧1 = 𝐶1

1st order TSK and models are commonly used in modeling (forecasting) applications.

Neuro fuzzy models (NF) are fuzzy model – but they are different from conventional fuzzy systems. They

can use machine learning algorithms to update parameters.

3) Tsukamoto fuzzy models
Premise parts → same

Consequent parts → monotonic functions

Defuzzification (output):

𝑧∗ =
𝑤1𝑧1 + 𝑤2𝑧2

𝑤1 + 𝑤1

(Read by yourself for more info – Section 4.5, Book 2)

Chapter 4: System Training
The difference between a fuzzy system and a neuro fuzzy system is that we can implement the fuzzy

system like a neural network, then we can train system parameters.

We can use machine learning or training algorithms to optimize membership function parameters. This

includes the TSK model (the consequent part parameters) and system reasoning structures. Parameters

can be linear or nonlinear.

Linear: 𝑧 = 3𝑥 + 5𝑦 + 2

Non-linear: 𝑧∗ = 2𝑥2 + 3𝑦3 + 𝑥 + 2

4.1 Least Squares Estimator (LSE)
For linear parameter optimization:

𝑦 = 𝜃1𝑓(𝑢⃗ 1) + 𝜃2𝑓(𝑢⃗ 2)… 𝜃𝑛𝑓(𝑢⃗ 𝑛)

Parameters = {𝜃1 𝜃2 … 𝜃𝑛}

Output = 𝑦

Input vectors = u⃗ 1, u⃗ 2 , … , u⃗ n

(Because u⃗ = {u⃗ 1 u⃗ 2 … u⃗ n})

4.1 Least Squares Estimator
or linear parameter optimization:

𝑧∗ =
𝑤1𝑧1 + 𝑤2𝑧2

𝑤1 + 𝑤2

𝑧∗ =
𝑤1(𝑝1𝑥 + 𝑞1𝑦 + 𝑟1) + 𝑤2(𝑝2𝑥 + 𝑞2𝑦 + 𝑟2)

𝑤1 + 𝑤2

Linear parameters: 𝑝1, 𝑞1, 𝑟1, 𝑝2, 𝑞2, 𝑟2

𝜇𝐴2
= 𝑒

−
(𝑥−𝑎)2

𝑏2 ; 𝑤2 = 𝑒−(
𝑥0−𝑎

𝑏
)
2

Nonlinear: MF (membership function) parameters

𝑦 = 𝜃1𝑓1(𝑢⃗) + 𝜃2𝑓2(𝑢⃗) + ⋯+ 𝜃𝑛𝑓𝑛(𝑢⃗)

𝑢⃗ = {𝑥1, 𝑥2, … , 𝑥𝑛}𝑇

𝜃 = {𝜃1, 𝜃2, … , 𝜃𝑛}𝑇

Linear parameters:

{𝑢⃗ 1, 𝑦1}, {𝑢⃗ 2, 𝑦2},… , {𝑢⃗ 𝑚 , 𝑦𝑚}

General representation:

{𝑢⃗ 𝑖 , 𝑦𝑖} ; 𝑖 = 1, 2, … ,𝑚

𝑓1(𝑢⃗ 1)𝜃1 + 𝑓2(𝑢⃗ 1)𝜃2 + ⋯+ 𝑓𝑛(𝑢⃗ 1)𝜃𝑛 = 𝑦1

𝑓1(𝑢⃗ 2)𝜃1 + 𝑓2(𝑢⃗ 2)𝜃2 + ⋯+ 𝑓𝑛(𝑢⃗ 2)𝜃𝑛 = 𝑦2

⋮

𝑓1(𝑢⃗ 𝑚)𝜃1 + 𝑓2(𝑢⃗ 𝑚)𝜃2 + ⋯+ 𝑓𝑛(𝑢⃗ 𝑚)𝜃𝑛 = 𝑦𝑚

Matrix representation:

[

𝑓1(𝑢⃗ 1) 𝑓2(𝑢⃗ 1) ⋯ 𝑓𝑛(𝑢⃗ 1)

𝑓1(𝑢⃗ 2) 𝑓2(𝑢⃗ 2) ⋯ 𝑓𝑛(𝑢⃗ 2)
⋮ ⋮ ⋯ ⋮

𝑓𝑛(𝑢⃗ 𝑖) 𝑓𝑛(𝑢⃗ 𝑖) ⋯ 𝑓𝑛(𝑢⃗ 𝑖)
⋮ ⋮ ⋱ ⋮

𝑓1(𝑢⃗ 𝑚) 𝑓2(𝑢⃗ 𝑚) ⋯ 𝑓𝑛(𝑢⃗ 𝑚)]

[

𝜃1

𝜃2

⋮
𝜃𝑛

] = [

𝑦1

𝑦2

⋮
𝑦𝑚

]

𝜃 𝑇 = {𝜃1, 𝜃2 , … , 𝜃𝑛}

Summary:

• Vectors “→” (column representation, typically)

• Matrix 𝐴

• Scalar

𝑎 𝑖
𝑇 = {𝑓1(𝑢⃗ 1), 𝑓2(𝑢⃗ 2), … , 𝑓𝑛(𝑢⃗ 𝑖)}

{𝑢⃗ 𝑖; 𝑦𝑖}

𝐴 𝜃 = 𝑦

If 𝐴 is non-singular (det ≠ 0)

𝐴−1𝐴 𝜃 = 𝐴−1 𝑦

𝜃 = 𝐴−1𝑦

𝑚 → 𝑛

𝑚 = # of training data points

𝑛 = # of linear paramerers to be optimized

“In general, the training data points should be 5-times the number of linear data points to be optimized”

• Noise in experiments

Unavoidable (always present)

 𝐴 𝜃 + 𝑒 = 𝑦

Error vector:

𝑒 = 𝑦 − 𝐴 𝜃

Objective function:

𝐸(𝜃) = (𝑦1 − 𝑎 1
𝑇𝜃)

2
+ (𝑦2 − 𝑎 2

𝑇𝜃)
2
+ ⋯+ (𝑦𝑖 − 𝑎 𝑖

𝑇𝜃)
2
+ ⋯+ (𝑦𝑚 − 𝑎 𝑚

𝑇 𝜃)
2

𝐸(𝜃) = ∑(𝑦𝑖 − 𝑎 𝑖
𝑇𝜃)

2

𝑖=1

𝑒 𝑖 = 𝑦𝑖 − 𝑎 𝑖
𝑇𝜃 ; Where 𝑖 = 1, 2, 3, … ,𝑚

𝐸(𝜃) = 𝑒 1
𝑇𝑒 1 + 𝑒 2

𝑇𝑒 2 + ⋯+ 𝑒 𝑖
𝑇𝑒 𝑖 + ⋯+ 𝑒 𝑚

𝑇 𝑒 𝑚

𝐸(𝜃) = ∑𝑒 𝑖
𝑇𝑒 𝑖

𝑚

𝑖=1

Consider:

𝑒
𝑇𝑒 = (𝑦 − 𝐴𝜃)𝑇(𝑦 − 𝐴𝜃)

= [𝑦 𝑇 − (𝐴𝜃)𝑇](𝑦 − 𝐴𝜃)

= [𝑦 𝑇 − 𝜃 𝑇𝐴𝑇](𝑦 − 𝐴𝜃)

= 𝑦 𝑇𝑦 − 𝑦 𝑇𝐴𝜃 − 𝜃 𝑇𝐴𝑇𝑦 + 𝜃 𝑇𝐴𝑇𝐴𝜃

= 𝑦 𝑇𝑦 − 𝑦 𝑇𝐴𝜃 − 𝑦 𝑇𝐴𝜃 + 𝜃 𝑇𝐴𝑇𝐴𝜃

= 𝑦 𝑇𝑦 − 2𝑦 𝑇𝐴𝜃 + 𝜃 𝑇𝐴𝑇𝐴𝜃

𝜃 = {𝜃1, 𝜃2, … , 𝜃𝑛}𝑇

𝜕𝐸(𝜃)

𝜕𝜃
=

𝜕(𝑦 𝑇𝑦)

𝜕𝜃
− 2(𝑦 𝑇𝐴)

𝑇
+ [(𝐴𝑇𝐴) + (𝐴𝑇𝐴)

𝑇
] 𝜃

Let:

𝜕𝐸(𝜃)

𝜕𝜃
= 0 ; 𝜃 = 𝜃 ̂

Consider:

𝜕(𝑦 𝑇𝐴𝑥)

𝜕𝑥
= 𝐴𝑇𝑦

= 0 − 2𝐴𝑇𝑦 + [𝐴𝑇𝐴 + 𝐴𝑇(𝐴𝑇)
𝑇
] 𝜃 ̂

−2𝐴𝑇𝑦 + 2𝐴𝑇𝐴𝜃 ̂ = 0

𝐴𝑇𝐴𝜃 ̂ = 𝐴𝑇𝑦

(𝐴𝑇𝐴)
−1

(𝐴𝑇𝐴)

𝜃 ̂ = (𝐴𝑇𝐴)

−1
𝐴𝑇𝑦

𝜃 ̂ = (𝐴𝑇𝐴)
−1

𝐴𝑇𝑦

𝜃 ̂ =
𝐴𝑇𝑦

𝐴𝑇𝐴

Example 3.1 (Jang’s Book)

𝑚 = 7

Experiment Force (Newtons) Length of Spring (inches)
1 1.1 1.5
2 1.9 2.1
3 3.2 2.5
4 4.4 3.3
5 5.9 4.1
6 7.4 4.6
7 9.2 5.0

𝐿 = 𝑘0 + 𝑘1𝐹

{

𝑘0 + 1.1𝑘1 = 1.5
𝑘0 + 1.9𝑘1 = 2.1

⋯
𝑘0 + 9.2𝑘1 = 5.0

𝐴𝜃 ̂ = 𝑦 − 𝑒

[

1 1.5
1 2.1
⋮ ⋮
1 5.0

] [
𝑘0

𝑘1
] = [

𝑦1

𝑦2

⋮
𝑦7

] − [

𝑒1

𝑒2

⋮
𝑒7

]

𝜃 ̂ = [
𝑘0

𝑘1
] =

𝐴𝑇𝑦

𝐴𝑇𝐴

Use MATLAB (𝑖𝑛𝑣 and .∗ operators)

Or, manually (since it is a 2x2 matrix) via:

[
𝑎 𝑏
𝑐 𝑑

]
−1

=
1

𝑎𝑑 − 𝑏𝑐
[
𝑑 −𝑏
−𝑐 𝑎

]

𝜃 ̂ = [
𝑘0

𝑘1
] = [

1.20
0.44

]

𝐿 = 1.20 + 0.40𝐹

Mathworks:

MATLAB toolboxes > Fuzzy Logic

(do the tutorials)

LSE (least squares estimator) → used to optimize the linear parameters of a system

𝜃 = {𝜃1, 𝜃2 , 𝜃3, … , 𝜃𝑛}𝑇

𝑢⃗⃗𝑖 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑝}
𝑇

𝑚 − training data pairs

{𝑢⃗⃗1, 𝑦1}, {𝑢⃗⃗2, 𝑦2},… , {𝑢⃗⃗𝑚 , 𝑦𝑚}

𝑖 = 1, 2, 3, … ,𝑚

𝐴𝜃 = 𝑦⃗

𝜃 = (𝐴𝑇𝐴)
−1

𝐴𝑇𝑦⃗

This is offline training (speed of operation is not a primary concern)

- you use all the training data pairs at once.

Recursive, or online training, is when training data pairs are used one after the other, or one at a time.

4.2 Recursive Lease Squares Estimator (LSE)
Suppose 𝑚 −training data pairs.

𝑘𝑡ℎ training data pair

𝑘𝑡ℎ training operation

0 ≤ 𝑘 ≤ 𝑚 − 1
(In MATLAB: 1 ≤ 𝑘 ≤ 𝑚)

Corresponding to the 𝑘𝑡ℎ training data pair: 1, 2, … , 𝑘

[

𝑓1(𝑢⃗⃗1) 𝑓2(𝑢⃗⃗1) ⋯ 𝑓𝑛(𝑢⃗⃗1)

𝑓1(𝑢⃗⃗2) 𝑓2(𝑢⃗⃗2) ⋯ 𝑓𝑛(𝑢⃗⃗2)
⋮ ⋮ ⋱ ⋮

𝑓1(𝑢⃗⃗𝑘) 𝑓2(𝑢⃗⃗𝑘) ⋯ 𝑓𝑛(𝑢⃗⃗𝑘)

𝑓1(𝑢⃗⃗𝑘+1) 𝑓2(𝑢⃗⃗𝑘+1) ⋯ 𝑓𝑛(𝑢⃗⃗𝑘+1)]

[

𝜃1

𝜃2

⋮
𝜃𝑛

] =

[

𝑦1

𝑦2

⋮
𝑦𝑘

𝑦𝑘+1]

𝐴𝜃𝑘 = 𝑦⃗

𝜃𝑘 = (𝐴𝑇𝐴)
−1

𝐴𝑇𝑦⃗

If (𝑘 + 1)𝑡ℎ training data pair is available:

{𝑢⃗⃗𝑘+1, 𝑦𝑘+1}

Will do (𝑘 + 1)𝑡ℎ update operation:

[
𝐴

𝑎⃗𝑘+1
𝑇] 𝜃𝑘+1 = [

𝑦⃗
𝑦𝑘+1

]

𝜃𝑘+1 = [[
𝐴

𝑎⃗𝑘+1
𝑇]

𝑇

[
𝐴

𝑎⃗𝑘+1
𝑇]]

−1

[
𝐴

𝑎⃗𝑘+1
𝑇]

𝑇

[
𝑦⃗

𝑦𝑘+1
]

𝜃𝑘+1~𝜃𝑘 + update (modification)

Introduce:

𝑃𝑘 = (𝐴𝑇𝐴)
−1

𝑃𝑘
−1 = 𝐴𝑇𝐴

𝑃𝑘+1 = [[
𝐴

𝑎⃗𝑘+1
𝑇]

𝑇

[
𝐴

𝑎⃗𝑘+1
𝑇]]

−1

= [[𝐴𝑇 𝑎⃗𝑘+1
] [

𝐴

𝑎⃗𝑘+1
𝑇]]

−1

𝑃𝑘+1 = [𝐴𝑇𝐴 + 𝑎⃗𝑘+1
𝑇 𝑎⃗𝑘+1]

−1

𝑃𝑘+1
−1 = 𝐴𝑇𝐴 + 𝑎⃗𝑘+1

 𝑎⃗𝑘+1
𝑇

𝑃𝑘+1
−1 = 𝑃𝑘

−1 + 𝑎⃗𝑘+1
 𝑎⃗𝑘+1

𝑇

𝜃𝑘 = (𝐴𝑇𝐴)
−1

𝐴𝑇𝑦⃗

𝜃𝑘 = 𝑃𝑘𝐴
𝑇𝑦⃗

𝜃𝑘+1 = 𝑃𝑘+1[𝐴
𝑇 𝑎⃗𝑘+1

] [
𝑦⃗

𝑦𝑘+1
]

𝜃𝑘+1 = [𝐴𝑇𝑦⃗ 𝑎⃗𝑘+1
 𝑦𝑘+1]

From Eq. (4):

𝑃𝑘
−1𝜃𝑘 = 𝑃𝑘

−1𝑃𝑘
 𝐴𝑇𝑦⃗

𝐴𝑇𝑦⃗ = 𝑃𝑘
−1𝜃𝑘

Eq. (5) becomes:

𝜃𝑘+1 = 𝑃𝑘+1[𝑃𝑘
−1𝜃𝑘 𝑎⃗𝑘+1

𝑇 𝑦𝑘+1]

From Eq. (3):

𝑃𝑘
−1 = 𝑃𝑘+1

−1 − 𝑎⃗𝑘+1
𝑇 𝑎⃗𝑘+1

Eq. (5) becomes:

𝜃𝑘+1 = 𝑃𝑘+1[(𝑃𝑘+1
−1 − 𝑎⃗𝑘+1

 𝑎⃗𝑘+1
𝑇)𝜃𝑘 𝑎⃗𝑘+1

 𝑦𝑘+1]

= [I − 𝑃𝑘+1𝑎⃗𝑘+1
 𝑎⃗𝑘+1

𝑇]𝜃𝑘 + 𝑃𝑘+1𝑎⃗𝑘+1
 𝑦𝑘+1

= 𝜃𝑘 − 𝑃𝑘+1𝑎⃗𝑘+1
 𝑎⃗𝑘+1

𝑇 𝜃𝑘 + 𝑃𝑘+1𝑎⃗𝑘+1
 𝑦𝑘+1

𝜃𝑘+1 = 𝜃𝑘 + 𝑃𝑘+1𝑎⃗𝑘+1
 (𝑦𝑘+1 − 𝑎⃗𝑘+1

𝑇 𝜃𝑘)

From Eq. (3):

𝑃𝑘+1
−1 = 𝑃𝑘

−1 + 𝑎⃗𝑘+1
 𝑎⃗𝑘+1

𝑇

𝑃𝑘+1
 = [𝑃𝑘

−1 + 𝑎⃗𝑘+1
 𝑎⃗𝑘+1

𝑇]
−1

Formula:

(𝐴 + 𝐵𝐶)−1

= 𝐴−1 − 𝐴−1𝐵(𝐼 + 𝐶𝐴−1𝐵)−1𝐶𝐴−1

𝐴 = 𝑃𝑘
−1

𝐵 = 𝑎⃗𝑘+1

𝐶 = 𝑎⃗𝑘+1
𝑇

𝑃𝑘+1
 = 𝑃𝑘

 − 𝑃𝑘
 𝑎⃗𝑘+1

 (𝐼 + 𝑎⃗𝑘+1
𝑇 𝑃𝑘

 𝑎⃗𝑘+1
)

−1
𝑎⃗𝑘+1

𝑇 𝑃𝑘

𝑃𝑘+1
 = 𝑃𝑘

 −
𝑃𝑘

 𝑎⃗𝑘+1
 𝑎⃗𝑘+1

𝑇 𝑃𝑘

𝐼 + 𝑎⃗𝑘+1
𝑇 𝑃𝑘

 𝑎⃗𝑘+1

Use Eq. (6) and Eq. (7) to do recursive LSE and update 𝜃𝑘+1

Initialization:

𝑃0
 = 𝛼𝐼

Where 𝛼 is a larger number (1000, 10000, etc.).

From this, you can generate:

(𝜃0 …𝜃1 …𝜃2 …)

4.3 Gradient Algorithms
Non-linear parameter optimization method.

For linear parameters, LSE is the general method – not many methods are required.

Compared to linear parameter optimization, there are many optimization methods for non-linear

systems, but this one is the basic one (most general).

𝜃 = [𝜃1, 𝜃2, … , 𝜃𝑛]
𝑇

Objective function (error function):

𝐸(𝜃)

We want to minimize this function.

But, 𝜃 can have many values, and it’s possible that different numbers produce the same value:

Consider:

2𝑥1
2 + 𝑥2p

When 𝑥1 = 1, 𝑥2 = 1, 𝐸(𝜃) = 3

When 𝑥1 = 2, 𝑥2 = −5, 𝐸(𝜃) = 3

These points would be on the same ‘error height’

3.3 Gradient Methods
Suppose this parameter has a non-linear relationship with the output:

𝜃

For example (gaussian function),

𝜇𝐴(𝑥) = 𝑒
−(𝑥−𝜇)2

𝜎2

For this function, the relationship between 𝜇 and 𝜎 and the MF 𝜇𝐴 is non-linear, and by association, the

error function 𝐸.

𝜃 = [𝜃1, 𝜃2, … , 𝜃𝑛]𝑇

𝐸(𝜃)

Looking for optimal 𝜃∗

𝜃𝑛𝑒𝑥𝑡 = 𝜃𝑛𝑜𝑤 + 𝜂𝑑

𝜂 = step

𝑑 = direction vector

𝑘𝑡ℎ step:

𝜃𝑘
(𝑘 + 1)𝑡ℎ step:

𝜃𝑘 + 𝜂𝑘𝑑𝑘

Generally, 𝐸(𝜃𝑘+1) ≤ 𝐸(𝜃𝑘)

Steepest-gradient descent method:

𝑔⃗(𝜃) = [
𝜕𝐸

𝜕𝜃1

𝜕𝐸

𝜕𝜃2
⋯

𝜕𝐸

𝜕𝜃𝑛
]

𝑇

Let 𝑔⃗(𝜃) =
𝜕𝐸(𝜃⃗⃗⃗)

𝜕𝜃⃗⃗⃗
̂ |

𝜃⃗⃗⃗
̂

= 0

𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑑𝑔⃗

In general, this is a recursive (or repetitive) algorithm.

• Stopping criteria:

1) 𝐸 ≤ threshold: 10−5

2) # of iterations: ≤ 200

3.4 Genetic Algorithms (GA)
Easy to read, does not involve gradient related operations, it is a derivative free method, but it takes a

very long time to execute.

It can reach the global minimum, but all other derivative-based methods reach a local minimum

(depending on initial conditions):

- Population-based search, so it returns the best results

- But it’s very time consuming (like, 8 hours)

- Compare with gradient-based method (15 seconds)

- Evolution operation

o Reproduction, cross over, mutation

Chapter 4: Artificial Neural Networks

4.1 Introduction
Neuron networks: parallel and distributed neurons.

Artificial neural networks:

4.2 Features of Neural Networks
Layered neurons

Weighted links

(link weights 0~1.0)

1) Neural network topologies

(a) Feed forward topology (static neural network)

unidirectional links (just move in one direction, in this case from input to hidden nodes)

(b) Recurrent topology (dynamic neural network)

Outputs can move to back into itself, can mode into a different node… they can move anywhere

depending on requirements.

Much more complicated, but has some distinct advantages, specifically in terms of access to

historical data:

Consider:

- 𝑘𝑡ℎ step: 𝑥1(𝑘), 𝑥2(𝑘)
Output: 𝑦(𝑘)

- (𝑘 + 1)𝑡ℎ step: 𝑥1(𝑘 + 1), 𝑥2(𝑘 + 1)

Historical information → 𝑦(𝑘)

Output: 𝑦(𝑘 + 1)

4.2 Features of Neural Networks (Cont’d)

1) NN Topologies

- FF NNs

Simple in structure, consider two inputs and one output below:

Connections between intermediate neurons and output neurons are unidirectional.

Static modeling method (given a set of inputs, an output is generated).

- Recurrent NNs

Similar in structure, but can have feedback links.

Gives access to historical information, making the network a ‘dynamic’ network. However, training

complexity increases.

𝑥(𝑘) = 𝑂(𝑘)

Has access to inputs 𝑥1 and 𝑥2

𝑥(𝑘 + 1) = 𝑂(𝑘 + 1)

Has access to inputs 𝑥1, 𝑥2, and historical data 𝑥(𝑘)

2) Activation functions

Input: 𝑥1𝑤1𝑘 + 𝑥2𝑤2𝑘 + ⋯ + 𝑥𝑙𝑤𝑙𝑘

∑ 𝑥𝑖𝑤𝑖𝑘

𝑙

𝑖=1

𝑂𝑘 = 𝑓 (∑ 𝑥𝑖𝑤𝑖𝑘 − 𝜃𝑘

𝑙

𝑖=1

)

Where:

𝑓 = activation function

𝜃𝑘 = threshold of the kth neuron (bias)

Sigmoid function:

𝑠𝑖𝑔(𝑥) =
1

1 + 𝑒−𝑥

Signum function:

𝑠𝑔𝑚(𝑥) = ⟨
1 ; 𝑥 > 0
0 ; 𝑥 = 0

−1 ; 𝑥 < 0

Step function:

𝑠𝑡𝑒𝑝(𝑥) = ⟨
1 ; 𝑥 > 0
0 ; 𝑥 ≤ 0

3) Neural Network Learning

• Supervised learning

We have a desired output, which can be considered a teacher.

Teacher (𝑥⃗, 𝑡)

We compare the desired output and the calculated output and feed the error information back into the

system to train it. This is the general approach for engineering applications.

• Unsupervised learning

In applications where we can’t get a target, or we can’t find the desired output, we have no teacher.

Thus, we cannot do supervised learning – this is usually the case for ‘big data’.

• Reinforcement learning

Feedback information provides a guide for training, but not a target.

Can be used for special circumstances like scenarios in video games (i.e. beating a bad guy in fewer

moves to achieve a higher bonus)

Additional info:

ANFIS – adaptive neuro-fuzzy inference system

Our course will focus on the following engineering applications:

- Control

- Classification (diagnosis)

- Modeling (forecasting)

4.4 Connectionist Modeling

1) McCulloch-Pitts (MP) Modeling

𝑤1, 𝑤2, … , 𝑤𝑙 are fixed

𝑂 = 𝑓(𝑥1𝑤1 + 𝑥2𝑤2 + ⋯ + 𝑥𝑙𝑤𝑙 − 𝜃)

= 𝑓 (∑ 𝑥𝑖𝑤𝑖 − 𝜃
𝑙

𝑖=1
)

Step: ∑𝑥𝑖𝑤𝑖 = 0.001 ; 0 → 1

2) Perceptron Modeling

Train link weights (𝑤1, 𝑤2 , … , 𝑤𝑙) and the bias (𝜃), but we don’t train the activation function parameters,

it is fixed – we simply choose one.

𝑂 = 𝑓 (∑ 𝑥𝑖𝑤𝑖 − 𝜃

𝑙

𝑖=1

)

If the training data pairs are linearly separable (or separable by hyper planes) then the training process

can converge.

Meaning we can get optimal parameters by a finite number of training operations.

Consider 2-D data sets:

𝑥1, 𝑥2

𝑤1𝑥1 + 𝑤2𝑥2 − 𝜃 = 0

Summary of Perceptron training algorithm:

1. Initialize weights and thresholds to small random values

2. Choose an input-output pattern (𝑥(𝑘), 𝑡(𝑘)) from the training data.

3. Compute the network’s actual output 𝑜(𝑘) = 𝑓 (∑ 𝑤𝑖𝑥𝑖
(𝑘)

− 𝜃𝑗
𝑖=1).

4. Adjust the weights and bias according to the Perceptron learning rule:

∆𝑤𝑖 = 𝜂[𝑡(𝑘) − 𝑜(𝑘)]𝑥𝑗
(𝑘)

, and ∆𝜃 = −𝜂[𝑡(𝑘) − 𝑜(𝑘)], where 𝜂 ∈ [0, 1] is the Perceptron’s learning

rate.

If 𝑓 is the signum function, this becomes equivalent to:

∆𝑤𝑖 = {
2𝜂𝑡(𝑘)𝑥𝑗

(𝑘)
; if t(𝑘) ≠ 𝑜(𝑘)

0 ; otherwise

∆𝜃 = {−2𝜂𝑡(𝑘) ; if t(𝑘) ≠ 𝑜(𝑘)
0 ; otherwise

5. If a whole epoch is complete, then pass to the following stepl otherwise go to Step 2

6. If the weights (and bias) reached steady state (∆𝑤𝑖 ≈ 0) through the whole epoch, then stop the

learning; otherwise go through one more epoch starting from Step 2.s

Tensorflow for NNs:

http://playground.tensorflow.org/

Mackey-Glass data:

https://www.mathworks.com/matlabcentral/fileexchange/24390-mackey-glass-time-series-generator

For example:

If we have 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 , 𝑥6 , 𝑥7 , 𝑥8 , …

One -step-ahead prediction:

{(𝑥1, 𝑥2 , 𝑥3); 𝑥4}
{(𝑥2, 𝑥3, 𝑥4); 𝑥5}
{(𝑥3, 𝑥4, 𝑥5); 𝑥6}

⋮

TSK-1:

If (𝑥1 is 𝑠1) and (𝑥2 is 𝑠2) and (𝑥3 is 𝐿3) then

𝑦1 = 𝑎1𝑥1 + 𝑏1𝑥2 + 𝑐1𝑥3 + 𝑑1

Then each rule has 4 linear parameters to be updated, and we have 9 rules.

Then in total, we have 4 x 9 = 36 linear parameters to be updated.

Non-linear parameters are related to the ‘small’ and ‘large’ membership function parameters (assume

each is a sigmoid function, and has two parameters):

2 x 6 = 12

In total, there are 48 training data pairs.

Training data pairs is at least 5 times the number of non-linear parameters:

5 x 48 = 240

http://playground.tensorflow.org/
https://www.mathworks.com/matlabcentral/fileexchange/24390-mackey-glass-time-series-generator

If you have 16 rules with 4 inputs, each having 2 membership functions:

16 rules: linear

𝑅1: if (𝑥1 is 𝑠1) and (𝑥2 is 𝑠2) and (𝑥3 is 𝐿3) and (𝑥4 is 𝑠4)

Then: 𝑦1 = 𝑎1𝑥1 + 𝑏1𝑥2 + 𝑐1𝑥3 + 𝑑1𝑥4 + 𝑔1

How many linear parameters for each rule?

5 x 16 = 80

How many non-linear function parameters?

8 x 2 = 16

4.4 Connectionist Modeling
• MP Modeling

𝑂 = 𝑓(𝑥1𝑤1 + 𝑥2𝑤2 + ⋯ + 𝑥𝑙𝑤𝑙 − 𝜃)

= 𝑓 (∑ 𝑥𝑖𝑤𝑖 − 𝜃

𝑙

𝑖=1

)

Consider the general activation functions:

• Perceptron

Training algorithm (DIRECTLY FROM TEXTBOOK):

1. Initialize weights and thresholds to small random values.

2. Choose an input-output pattern (𝑥(𝑘), 𝑡(𝑘)) from the training data.

3. Compute the network’s actual output 𝑜(𝑘) = 𝑓 (∑ 𝑖=1
𝑙

𝑤𝑖𝑥𝑖
(𝑘)

− 𝜃).

4. Adjust the weights and bias according to the Perceptron learning rule:

∆𝑤𝑖 = 𝜂[𝑡(𝑘) − 𝑜(𝑘)]𝑥𝑖
(𝑘)

And:

∆𝜃 = −𝜂[𝑡(𝑘) − 𝑜(𝑘)]

Where 𝜂 ∈ [0, 1] is the Perceptron’s learning rate.

If 𝑓 is the signum function, this becomes equivalent to:

∆𝑤𝑖 = {2𝜂𝑡(𝑘)𝑥𝑖
(𝑘)

0

; 𝑖𝑓 𝑡(𝑘) ≠ 𝑜(𝑘)

; otherwise

And:

∆𝜃 = {−2𝜂𝑡(𝑘)

0

; 𝑖𝑓 𝑡(𝑘) ≠ 𝑜(𝑘)

; otherwise

5. If a whole epoch is complete, then pass to the following step; otherwise go to Step 2.

6. If the weights (and bias) reached steady state (∆𝑤𝑖 ≈ 0) through the whole epoch, then stop the

learning; otherwise go through one more epoch starting from Step 2.

Training algorithm (CLASS NOTES):

𝑥⃗(𝑘) = {𝑥1
(𝑘)

 , 𝑥2
(𝑘)

 , … , 𝑥𝑙
(𝑘)

}
𝑇

Where:

𝑡(𝑘) = target, desired output

𝑂(𝑘) = 𝑓 (∑ 𝑤𝑖
(𝑘)

𝑥𝑖
(𝑘)

− 𝜃
𝑙

𝑖=1
)

𝑤⃗⃗⃗(𝑘+1) = 𝑤⃗⃗⃗(𝑘) + ∆𝑤⃗⃗⃗

∆𝑤⃗⃗⃗ = 𝜂(𝑡(𝑘) − 𝑂(𝑘))𝑥⃗(𝑘)

If 𝑓(∙) ~ 𝑠𝑖𝑔𝑛𝑢𝑚 𝑓𝑥𝑛 ⟨
1 ; input > 0
0 ; otherwise

−1 ; input < 0

If 𝑡(𝑘) = 𝑂(𝑘) (then we don’t need to update anything)

∆𝑤⃗⃗⃗ = ⟨
0 ; 𝑡(𝑘) = 𝑂(𝑘)

2𝜂𝑡(𝑘)𝑥⃗(𝑘) ; otherwise

Otherwise, if 𝑡(𝑘) ≠ 𝑂(𝑘)

If 𝑡(𝑘) = +1, then 𝑂(𝑘) = −1 = −𝑡(𝑘)

If 𝑡(𝑘) = −1, then 𝑂(𝑘) = +1 = −𝑡(𝑘)

Similarly:

𝜃(𝑘+1) = 𝜃(𝑘) + ∆𝜃

∆𝜃 = −𝜂(𝑡(𝑘) − 𝑂(𝑘))

If AF is 𝑠𝑖𝑔𝑛𝑢𝑚 𝑓𝑥𝑛

If 𝑡(𝑘) = 𝑂(𝑘)

Otherwise 𝑡(𝑘) ≠ 𝑂(𝑘), 𝑂(𝑘) = −𝑡(𝑘)

∆𝜃 = ⟨
0 ; 𝑡(𝑘) = 𝑂(𝑘)

2𝜂𝑡(𝑘) ; otherwise

Example 4.1 (Book 1)

Train a network using the following set of input and desired output training vectors:

𝑥(1) = [1, −2, 0, 1]𝑇 ; 𝑡(1) = −1

𝑥(2) = [0, 1.5, −0.5, −1]𝑇; 𝑡(2) = −1

𝑥(3) = [−1, 1, 0.5, −1]𝑇 ; 𝑡(3) = +1

With initial weight vector 𝑤(1) = [1, −1, 0, 0.5]𝑇, learn 𝜂 = 0.1

Solution

𝜂 = 0.1

𝑤(1) = [1, −1, 0, 0.5]𝑇

𝑂 = 𝑓(𝑥1𝑤1 + 𝑥2𝑤2 + 𝑥3𝑤3 + 𝑥4𝑤4 − 𝜃) = 𝑓(𝑤⃗⃗⃗𝑇𝑥⃗ − 𝜃)

(but 𝜃 is 0 here)

Epoch 1:

𝑥⃗
(1) = [1, −2, 0, −1]𝑇, 𝑡(1) = −1

𝑂(1) = 𝑠𝑔𝑛 (𝑤⃗⃗⃗(1)𝑇
𝑥⃗)

= 𝑠𝑔𝑛 ([1 −1 0 0.5] [

1
−2
0

−1

])

= 𝑠𝑔𝑛(1 + 2 + 0 − 0.5) = 𝑠𝑔𝑛(2.5)

𝑤⃗⃗⃗(2) = 𝑤⃗⃗⃗(1) + ∆𝑤⃗⃗⃗

𝑤⃗⃗⃗(2) = [

1
−1
0

0.5

] + 2(0.1)(−1) [

1
−2
0

−1

]

𝑤⃗⃗⃗(2) = [

0.8
−0.6

0
−0.7

]

Input the 2nd training data pair 𝑥⃗(2):

𝑂(2) = 𝑓 (𝑤⃗⃗⃗(2)𝑇
𝑥⃗(2))

= 𝑠𝑔𝑛 ([0.8 −0.6 0 0.7] [

0
1.5

−0.5
−1

])

= 𝑠𝑔𝑛(0 − 0.9 + 0 − 0.7)
= 𝑠𝑔𝑛(−1.6)

= −1 = 𝑡(2) = −1

𝑤⃗⃗⃗(3) = 𝑤⃗⃗⃗(2) + ∆𝑤⃗⃗⃗ = 𝑤⃗⃗⃗(2) = [

0.8
−0.6

0
0.7

]

Input the 3rd training data pair 𝑥⃗(3):

𝑥⃗
(3) = [−1, 1, 0.5, −1]𝑇 , 𝑡(3) = 1

𝑂(3) = 𝑓 (𝑤⃗⃗⃗(3)𝑇
𝑥⃗(3))

= 𝑠𝑔𝑛 ([0.8 −0.6 0 0.7] [

−1
1

0.5
−1

])

= 𝑠𝑔𝑛(0.8 − 0.6 + 0 − 0.7)
= 𝑠𝑔𝑛(−2.1)

= −1 ≠ 𝑡(3) = 1

𝑤⃗⃗⃗(4) = 𝑤⃗⃗⃗(3) + ∆𝑤⃗⃗⃗

𝑤⃗⃗⃗(4) = [

0.8
−0.6

0
−0.7

] + 2(0.1)(1) [

−1
1

0.5
−1

]

𝑤⃗⃗⃗(4) = [

0.6
−0.4
0.1
0.5

]

End of epoch 1

Since ∆𝑤 ≠ 0, proceed to epoch 2…

(𝑥⃗(1), 𝑡(1)) (𝑥⃗(2), 𝑡(2)) (𝑥⃗(3), 𝑡(3))

↓ ↓ ↓
(𝑥⃗(4), 𝑡(4)) (𝑥⃗(5), 𝑡(5)) (𝑥⃗(6), 𝑡(6))

𝑤⃗⃗⃗(4) = [0.6, −0.4, 0.1, 0.5]𝑇

𝑂(4) = 𝑓 (𝑤⃗⃗⃗(4)𝑇
𝑥⃗(4))

= 𝑠𝑔𝑛 ([0.6 −0.4 0.1 0.5] [

1
−2
0

−1

])

= 𝑠𝑔𝑛(0.6 + 0.8 + 0 − 0.5) =

= 𝑠𝑔𝑛(0.9) = +1 ≠ 𝑡(4) = −1

𝑤⃗⃗⃗(5) = 𝑤⃗⃗⃗(4) + 2𝜂𝑡(4)𝑥⃗(4)

= [

0.6
−0.4
0.1
0.5

] + 2(0.1)(−1) [

1
−2
0

−1

]

= [

0.4
0

0.1
0.7

]

𝑥⃗(5) = 𝑥⃗(2) = [0, 1.5, −0.5, −1]𝑇

𝑂(5) = 𝑓(𝑤⃗⃗⃗(5)𝑇
𝑥⃗(5))

⋮

Epoch 3 (still doesn’t meet requirements)

𝑤⃗⃗⃗(10) = [0 0.4 0.3 0.3]𝑇

Epoch 4 (still doesn’t meet requirements)

𝑤⃗⃗⃗(12) = [−2 0.3 0.5 0.3]𝑇

After Epoch 5, we can meet the requirements.

Example 4.2 (Example 2 in Book 1)

Assume 𝜂 = 0.5, and there exists two sets of patterns to be classified:

Class 1: Target value -1:

𝑇 = [2, 0]𝑇; 𝑈 = [2, 2]𝑇 ; 𝑉 = [1, 3]𝑇

Class 2: Target value 1:

𝑋 = [−1, 0]𝑇; 𝑌 = [−2, 0]𝑇; 𝑍 = [−1, 2]𝑇

Solution:

𝑡(1) = −1

𝑤1𝑥1 + 𝑤2𝑥2 − 𝜃 = 0

𝑡(2) = +1

Assume initial values:

𝑤1 = −1, 𝑤2 = 1, 𝜃 = −1
(−1)𝑥1 + (1)𝑥2 + 1 = 0

• Pattern 𝑇 = [2, 0]𝑇 , signum AF

0 = 𝑠𝑔𝑛(𝑤⃗⃗⃗𝑇 𝑥⃗) + 1 = 𝑠𝑔𝑛 ([−1 1] [
2
0

] + 1)

= 𝑠𝑔𝑛(−2 + 0) + 1 = −1 = 𝑡(1)

• Input 𝑥⃗ = 𝑢⃗⃗ = [
2
2

]

𝑂 = 𝑠𝑔𝑛(𝑤⃗⃗⃗𝑇 𝑥⃗ − 𝜃)

= 𝑠𝑔𝑛 ([−1 1] [
2
2

] + 1)

= 𝑠𝑔𝑛(−2 + 2 + 1) = +1 ≠ 𝑡(1)

𝑡(1) = −1

𝑤⃗⃗⃗(2) = 𝑤⃗⃗⃗(1) + 2𝜂𝑡(1) [
2
2

]

= [
−1
1

] + 2(0.5)(−1) [
2
2

] = [
−3
−1

]

𝜃(2) = 𝜃(1) + ∆𝜃

= −1 + [−2(0.5)(−1)] = 0

Boundary function:

𝑤1𝑥1 + 𝑤2𝑥2 − 𝜃 = 0
−3𝑥1 − 𝑥2 = 0
𝑥2 = −3𝑥1

• Input 𝑥⃗ = [
1
3

]

𝑂 = 𝑠𝑔𝑛(𝑤⃗⃗⃗𝑇 𝑥⃗ − 𝜃)

= 𝑠𝑔𝑛 ([−3 −1] [
1
3

] − 0)

= 𝑠𝑔𝑛(−3 + 3) = −1 = 𝑡(1)

𝑤⃗⃗⃗(3) = [
−3
−1

]

𝜃(3) = 0

• Input 𝑥⃗ = [
−1
0

]

𝑂 = 𝑠𝑔𝑛(𝑤⃗⃗⃗𝑇 𝑥⃗ − 𝜃)

= 𝑠𝑔𝑛 ([−3 −1] [
−1
0

] − 0)

= 𝑠𝑔𝑛(3 + 0) = +1 = 𝑡(2)

𝑤⃗⃗⃗(4) = 𝑤⃗⃗⃗(3) = [
−3
−1

]

𝜃(4) = 0

• Input 𝑥⃗ = [
−2
0

]

𝑂 = 𝑠𝑔𝑛(𝑤⃗⃗⃗𝑇 𝑥⃗ − 𝜃)

= 𝑠𝑔𝑛 ([−3 −1] [
−2
0

] − 0)

= 𝑠𝑔𝑛(6 + 0 − 0) = +1 = 𝑡(2)

𝑤⃗⃗⃗(5) = [
−3
−1

]

𝜃(5) = 0

• Input 𝑥⃗ = [
−1
2

]

𝑂 = 𝑠𝑔𝑛(𝑤⃗⃗⃗𝑇 𝑥⃗ − 𝜃)

= 𝑠𝑔𝑛 ([−3 −1] [
−1
2

] − 0)

= 𝑠𝑔𝑛(3 − 2 − 0) = 1 = 𝑡(2)

𝑤⃗⃗⃗(6) = [
−3
−1

]

𝜃(6) = 0

Input layer ⋯ Layer (ℓ − 1) Layer (ℓ) Layer (ℓ + 1) ⋯ Output layer (L)

◯ ◯ ◯ ◯ ◯
⋮ ⋮ ⋮ ⋮ ⋮

◯ ◯ ◯ ◯ ◯

◯ ⋯ ◯ ◯ ◯ ⋯ ◯

◯ ◯ ◯ ◯ ◯
⋮ ⋮ ⋮ ⋮ ⋮

◯ ◯ ◯ ◯ ◯

If 𝑡(𝑘) = 𝑘𝑡ℎ largest target output of the NN

𝑘𝑡ℎ training data pair

𝑘 = 1, 2, … , 𝑛

𝑛 = total number of training data pairs

Error function:

𝐸(𝑘) ~ [𝑡1(𝑘) − 𝑂1
(𝐿)(𝑘)] , … , [𝑡𝑖(𝑘) − 𝑂𝑖

(𝐿)(𝑘)] , … , [𝑡𝑞(𝑘) − 𝑂𝑞
(𝐿)(𝑘)]

𝐸(𝑘) =
1

2
[(𝑡1(𝑘) − 𝑂1

(𝐿)(𝑘))
2

+ ⋯ + (𝑡𝑞(𝑘) − 𝑂𝑞
(𝐿)(𝑘))

2

]

=
1

2
∑[𝑡𝑖(𝑘) − 𝑂𝑖

 (𝑘)]2

𝑞

𝑖=1

(For simplicity, drop the "(𝐿)" from notation)

Overall error function:

𝐸𝑐 = ∑ 𝐸(𝑘)

𝑛

𝑘=1

= 𝐸(1) + 𝐸(2) + ⋯ + 𝐸(𝑘) + ⋯ + 𝐸(𝑛)

𝐸𝑐 = ∑ 𝐸(𝑘)

𝑛

𝑘=1

=
1

2
∑ ∑[𝑡𝑖(𝑘) − 𝑂𝑖

 (𝑘)]2

𝑞

𝑖=1

𝑛

𝑘=1

𝐸(𝑘) ~ online training
𝐸𝑐 ~ offline training

For online training:

min 𝐸(𝑘)

𝑤⃗⃗⃗(𝑙)(𝑘 + 1) = 𝑤⃗⃗⃗(𝑙)(𝑘) + ∆𝑤⃗⃗⃗(𝑘)
gradient descent method

∆𝑤⃗⃗⃗(𝑙) = ∆𝑤𝑖𝑗
(𝑙)

Chain rule:

𝜕𝐸(𝑘)

𝜕𝑤𝑖𝑗

∆𝑤⃗⃗⃗(ℓ) = ∆𝑤⃗⃗⃗𝑖𝑗
(ℓ)

= −𝜂
𝜕𝐸(𝑘)

𝜕𝑂𝑖
(ℓ)

∙
𝜕𝑂𝑖

(ℓ)

𝜕𝑡𝑜𝑡𝑖
(ℓ)

∙
𝜕𝑡𝑜𝑡𝑖

(ℓ)

𝜕𝑤𝑖𝑗
(ℓ)

If layer ℓ is the output layer L:

𝐸(𝑘) =
1

2
∑ [𝑡𝑖(𝑘) − 𝑂𝑖(𝑘)]2

𝑞

𝑖=1

Omit "𝑘"

𝜕𝐸

𝜕𝑊𝑖𝑗
(𝐿)

=
𝜕𝐸

𝜕𝑂𝑖
(𝐿)

∙
𝜕𝑂𝑖

(𝐿)

𝜕𝑡𝑜𝑡𝑖
(𝐿)

∙
𝜕𝑡𝑜𝑡𝑖

(𝐿)

𝜕𝑤𝑖𝑗
(𝐿)

𝑡𝑜𝑡𝑖
(𝐿)

= → 𝑂1
(𝐿−1)

𝑤𝑖1
(𝐿)

+ 𝑂2
(𝐿−1)

𝑤𝑖2
(𝐿)

+ ⋯ + 𝑂𝑗
(𝐿−1)

𝑤𝑖𝑗
(𝐿)

+ ⋯

𝑂𝑖
(𝐿)

= 𝑓 (𝑡𝑜𝑡𝑖
(𝐿)

)

𝜕𝐸

𝜕𝑤𝑖𝑗
(𝐿)

= −(𝑡𝑖 − 𝑂𝑖)𝑓′ (𝑡𝑜𝑡𝑖
(𝐿)

) 𝑂𝑗
(𝐿−1)

∆𝑤𝑖𝑗
(𝐿)

= −𝜂
𝜕𝐸

𝜕𝑤𝑖𝑗
(𝐿)

= 𝜂 (𝑡𝑖 − 𝑂𝑖
(𝐿)

) 𝑓′ (𝑡𝑜𝑡𝑖
(𝐿)

) 𝑂𝑗
(𝐿−1)

∆𝑤𝑖𝑗
(𝐿)

= 𝜂𝛿𝑖𝑂𝑗
(𝐿−1)

Given 𝑘𝑡ℎ training data pair:

{ (𝑥1(𝑘1), 𝑥2(𝑘2), …)𝑇, 𝑡(𝑘) }

𝑡𝑖(𝑘) − 𝑜𝑖
(𝐿)

 ~ error

Objective function of online training:

𝐸(𝑘) =
1

2
∑(𝑡𝑖(𝑘) − 𝑜𝑖

(𝐿)
(𝑘))

2
𝑞

𝑖=1

 ; 𝑘 = 1, 2, … , 𝑛

𝑛 = the total number of training data pairs

Objective function of offline training:

𝐸𝑐 = ∑ 𝐸(𝑘)

𝑛

𝑘=1

= ∑ ∑
1

2
(𝑡𝑖(𝑘) − 𝑜𝑖

(𝐿)
)
2

𝑞

𝑖=1

𝑛

𝑘=1

𝑊⃗⃗⃗ (𝐿)(𝑘 + 1) = 𝑊⃗⃗⃗ (𝐿)(𝑘) + ∆𝑊⃗⃗⃗ (𝐿)(𝑘)

∆𝑊⃗⃗⃗ (𝐿)(𝑘) = −𝜂
𝜕𝐸(𝑘)

𝜕𝑊⃗⃗⃗ (𝐿)(𝑘)

∆𝑊⃗⃗⃗
𝑖𝑗
(ℓ) = −𝜂

𝜕𝐸

𝜕𝑜𝑖
(ℓ)

∙
𝜕𝑜𝑖

(ℓ)

𝜕𝑡𝑜𝑡𝑖
(ℓ)

𝑡𝑜𝑡𝑖
(ℓ) = 𝑤𝑖1

(ℓ)
𝑜1

(ℓ−1)
+ ⋯+ 𝑤𝑖𝑗

(ℓ)𝑜𝑗
(ℓ−1)

+ ⋯+ 𝑤𝑖(𝑚1)
(ℓ) 𝑜𝑚1

(ℓ−1)

(See previous neural network node map)

Output layer 𝐿:

𝐸(𝑘) =
1

2
∑(𝑡𝑖

(𝐿)
− 𝑜𝑖

(𝐿)
)
2

𝑞

𝑖=1

𝐸(𝑘) = (𝑡1
(𝐿)

− 𝑜1
(𝐿)

) + ⋯+ (𝑡𝑖
(𝐿)

− 𝑜𝑖
(𝐿)

) + ⋯+ (𝑡𝑞
(𝐿)

− 𝑜𝑞
(𝐿)

)

𝑡𝑜𝑡𝑖
(𝐿)

= ⋯+ 𝑤𝑖𝑗
(𝐿)

𝑜𝑗
(𝐿−1)

+ ⋯

∆𝑊𝑖𝑗
(𝐿)

= −𝜂
𝜕𝐸

𝜕𝑜𝑖
(𝐿)

∙
𝜕𝑜𝑖

(𝐿)

𝜕𝑡𝑜𝑡𝑖
(𝐿)

∙
𝜕𝑡𝑜𝑡𝑖

(𝐿)

𝜕𝑊𝑖𝑗
(𝐿)

∆𝑊𝑖𝑗
(𝐿)

= −𝜂
1

2
∗ (2) (𝑡1

(𝐿)
− 𝑜1

(𝐿)
) (−1) ∗ 𝑓′ (𝑡𝑜𝑡𝑖

(𝐿)
) ∗ 𝑜𝑗

(𝐿−1)

𝑜𝑖
(𝐿−1)

= 𝑓 (𝑡𝑜𝑡𝑖
(𝐿)

)

• If a sigmoid AF (activation function) is used:

𝑓(𝑥) =
1

1 + 𝑒−𝑥

𝑥 = 𝑡𝑜𝑡𝑖
(𝐿)

𝑓(𝑥) = 𝑜𝑖
(𝐿)

𝑓 =
1

1 + 𝑒−𝑥

𝑓′ = [(1 + 𝑒−𝑥)−1]′ = −1(1 + 𝑒−𝑥)−2𝑒−𝑥(−1)

=
𝑒−𝑥

(1 + 𝑒−𝑥)2

=
1

1 + 𝑒−𝑥
∗ (1 −

1

1 + 𝑒−𝑥
)

Then,

𝑓′ = 𝑓(1 − 𝑓)

• If 𝑜𝑖
(𝐿)

 is a sigmoid function:

∆𝑊𝑖𝑗
(𝐿)

= 𝜂 (𝑡𝑖
(𝐿)

− 𝑜𝑖
(𝐿)

)𝑓(1 − 𝑓)𝑜𝑗
(𝐿−1)

= 𝜂 (𝑡𝑖
(𝐿)

− 𝑜𝑖
(𝐿)

) 𝑜𝑖
(𝐿)

(1 − 𝑜𝑖
(𝐿)

) 𝑜𝑗
(𝐿−1)

𝛿𝑖
(𝐿)

= (𝑡𝑖
(𝐿)

− 𝑜𝑖
(𝐿)

) 𝑓′ (𝑡𝑜𝑡𝑖
(𝐿)

)

𝛿𝑖
(𝐿)

= (𝑡𝑖
(𝐿)

− 𝑜𝑖
(𝐿)

) 𝑜𝑖
(𝐿)

(1 − 𝑜𝑖
(𝐿)

)

𝑊𝑖𝑗
(𝐿)

= 𝜂𝛿𝑖
(𝐿)

∗ 𝑜𝑗
(𝐿−1)

For 𝑊𝑖𝑗
(ℓ):

∆𝑊𝑖𝑗
(ℓ)

= 𝜂𝛿𝑖
(ℓ)

𝑜𝑗
(ℓ−1)

(𝑡𝑖
(ℓ) − 𝑜𝑖

(ℓ)) 𝑓′ (𝑡𝑜𝑡𝑖
(ℓ))

General structure:

Forward pass → 𝑜 (calculate output)

Backward pass → update 𝑊𝑖𝑗
(𝐿)

Example 5.1
To illustrate this powerful algorithm, we apply it for the training of the following network, shown in

Figure 5.4. The following htree training pattern pairs are used, with 𝒙 and 𝒕 being the input and the

output data respectively:

𝐱(𝟏) = (0.3, 0.4), 𝐭(1) = (0.88)

𝐱(𝟐) = (0.1, 0.6), 𝐭(2) = (0.82)

𝐱(𝟑) = (0.9, 0.4), 𝐭(3) = (0. 57)

Biases are treated here as connection weights that are always multiplied by (−1) through a neuron to

avoid special case calculation for biases. Each neuron uses a unipolar sigmoid activation function given

by:

𝑜 = 𝑓(𝑡𝑜𝑡) =
1

1 + 𝑒−𝜆𝑡𝑜𝑡
, using λ = 1, then 𝑓′(𝑡𝑜𝑡) = 𝑜(1 − 𝑜)

Solution

Required Steps for Backpropagation Learning Algorithm

• Step 1: Initialize weights and thresholds to small random values.

• Step 2: Choose an input-output pattern form the training input-output data set:

(𝑥(𝑘), 𝑡(𝑘))

• Step 3: Propagate the 𝑘𝑡ℎ signal forward through the network and compute the output values or all

𝑖 neurons at every layer (ℓ) using:

𝑜𝑖
ℓ(𝑘) = 𝑓 (∑ 𝑤𝑖𝑝

(ℓ)
𝑜𝑝

(ℓ−1)
𝑛ℓ−1

𝑝=0
)

• Step 4: Compute the total error value 𝐸 = 𝐸(𝑘) + 𝐸 and the error signal 𝛿𝑖
(𝐿)

 using formulae:

𝛿𝑖
(𝐿)

= [𝑡𝑖 − 𝑜𝑖
(𝐿)

] [(𝑡𝑜𝑡)𝑖
(𝐿)

]

• Step 5: Update the weights according to:

∆𝑤𝑖𝑗
(ℓ)

= −𝜂𝛿𝑖
(ℓ)

𝑜𝑗
(ℓ−1)

, for ℓ = L,… , 1 using

𝛿𝑖
(𝐿)

= [𝑡𝑖 − 𝑜𝑖
(𝐿)

] [𝑓′(𝑡𝑜𝑡)𝑖
(𝐿)

] and proceeding backward using

𝛿𝑖
(ℓ)

= 𝑜𝑖
(ℓ) (1 − 𝑜𝑖

(ℓ))∑ 𝛿𝑝
(ℓ+1)

𝑤𝑝𝑖
(ℓ+1)

𝑛ℓ

𝑝=1
 for ℓ < 𝐿

• Step 6: Repeat the process starting from step 2 using another exemplar. Once all exemplars have

been used, we then reach what is known as one epoch training.

• Step 7: Check is the cumulative error 𝐸 in the output layer has become less than a predetermined

value. If so, we say the network has been trained. If not, repeat the whole process for one more

epoch.

∆𝑤𝑖𝑗
(ℓ)

= 𝜂𝛿𝑖
(ℓ)

𝑜𝑖
(ℓ−1)

Error signal:

𝛿𝑖
(ℓ)

= 𝑓′ (𝑡𝑜𝑡𝑖
(ℓ)) [𝛿1

(ℓ+1)
𝑤1𝑖

(ℓ+1)
+ 𝛿2

(ℓ+1)
𝑤2𝑖

(ℓ+1)
+ ⋯+ 𝛿𝑝

(ℓ+1)
𝑤𝑝𝑖

(ℓ+1)
+ ⋯+ 𝛿𝑛𝑝

(ℓ+1)
𝑤𝑛𝑝𝑖

(ℓ+1)
]

𝛿𝑖
(ℓ) = 𝑓′ (𝑡𝑜𝑡𝑖

(ℓ)) ∑ 𝛿𝑝
(ℓ+1)

𝑤𝑝𝑖

(ℓ+1)

𝑛𝑝

𝑝=1

For a sigmoid AF, there is a special case:

𝑓′ = 𝑓(1 − 𝑓) → 𝑜(ℓ)(1 − 𝑜(ℓ))

4.6 Momentum
When 𝜂 is small, the convergence towards the target is slow:

Conversely, when 𝜂 is large, it can miss the target (convergence not met)

𝐸𝑚𝑖𝑛 = 0.05

∆𝑤⃗⃗ (ℓ)(𝑘 + 1) = −𝜂
𝜕𝐸(𝑘)

𝜕𝑤⃗⃗ (ℓ)
 𝜈∆𝑤⃗⃗ (𝑘)

(ℓ)

∆𝑤⃗⃗ (ℓ)
𝜈 ∈ [0, 1]

𝜈 = 0.8, 0.9

𝑓(𝑥) = 𝑥 sin(𝑥)

𝑥 = 0~10

Using more neurons in the hidden layer doesn’t necessarily improve the performance of the system, but

using more training data pairs improves system performance.

4.7 Radial Basis Function Neural Network (RBF NN)
- Special case of a feedforward neural network

1. 3 Layer FF NN

2. Unity line weights between (neurons) layer 1 and layer 2 (they have the same value).

3. AFs in the neurons in hidden layer are kernel functions.

• Gaussian function:

𝑔𝑖(𝑥) = 𝑒

−||𝑥 −𝑣⃗ 𝑖||
2

2𝜎𝑖
2

 𝑥 = input vector

𝑣 𝑖 = center vector

𝜎𝑖 = spread parameter

• Logic function:

𝑔𝑖(𝑥) =
1

1 + 𝑒

−||𝑥 −𝑣⃗ 𝑖||
2

2𝜎𝑖
2

Output:

𝑜𝑗(𝑥) = 𝑔1(𝑥)𝑤𝑗1 + ⋯+ 𝑔𝑖(𝑥)𝑤𝑗𝑖 + ⋯+ 𝑔𝑛2
(𝑥)𝑤𝑗𝑛2

 ; 𝑗 = 1, 2, … , 𝑛3

𝑜𝑗(𝑥) = ∑ 𝑤𝑗𝑖 ∗ 𝑔𝑖(𝑥)
𝑛2

𝑖=1

Training:

• Parameters in the hidden neuron AFs (centers and spreads)

• Link weights between the hidden layer & output layer

Note:

A Radial Basis Function (RBF) neural network is a neuro-fuzzy system

Chapter 5: Neuro-Fuzzy Systems

5.1 Introduction
 Fuzzy logic Neural networks

Representation Linguistic description of
knowledge

Knowledge distributed within
computational units

Adaption Some adaptation Adaptive

Knowledge Representation Explicit and easy to interpret Implicit and difficult to interpret

Learning Non-existent Excellent tools for imparting
learning

Verification Easy and efficient Not straightforward
(“black box” reasoning)

Integrated systems of fuzzy logic (FL) and neural networks (NN)

1. Neuro-fuzzy (NF) system

FL parameters can be trained by using NN training methods (back propagation, etc.)

2. Fuzzy-neuro system (RBF)

Neural network, but some neurons are fuzzified

3. Neural fuzzy systems

Just a simple combination of FL and NN (separate systems utilized in series)

NN: universal approximators

- Desired accuracy

1) Neuro-fuzzy

• Fuzzy logic system with neural network training

2) Fuzzy neural

• Neural network, some neurons are fuzzified

e.g. RBF NN (Radial basis function neural network)

3) Neural fuzzy systems

• Linear combination of fuzzy logic and neural networks

5.2 Adaptive Neuro-Fuzzy Inference Systems (ANFIS)

Consider the following general model:

Sugeno fuzzy model (TSK-1):

Consider a system with two inputs (𝑥, 𝑦), each having two memberships functions, and one output 𝑧

ℛ1: If (𝑥 is 𝐴1) and (𝑦 is 𝐵1) then (𝑧1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1)

ℛ2: If (𝑥 is 𝐴2) and (𝑦 is 𝐵2) then (𝑧2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2)

𝐴1, 𝐴2, 𝐵1 , 𝐵2 ~ fuzzy sets

𝑝1, 𝑝2, 𝑞1, 𝑞2, 𝑟1, 𝑟2 ~ parameters

𝑧 =
𝑤1𝑧1 + 𝑤2𝑧2

𝑤1 + 𝑤2
= (

𝑤1

𝑤1 + 𝑤2
) 𝑧1 + (

𝑤2

𝑤1 + 𝑤2
) 𝑧2 = 𝑤̅1𝑧1 + 𝑤̅2𝑧2

• Layer 1: Input later, adaptive layer

𝑜11 = 𝜇𝐴1(𝑥)

𝑜12 = 𝜇𝐴2(𝑥)

𝑜13 = 𝜇𝐵1(𝑦)

𝑜14 = 𝜇𝐵2(𝑦)

For example, generalized bell membership function MF:

𝜇𝐴1(𝑥) =
1

1 + |
𝑥 − 𝑐𝑖

𝑎𝑖
|

2𝑏𝑖 ; 𝑖 = 1, 2

A sigmoid, gaussian, etc. functions can be utilized instead.

• Layer 2: fixed nodes

Firing strength: (e.g., product)

𝑤1 = 𝑜11 ∗ 𝑜13 = 𝜇𝐴1(𝑥) ∗ 𝜇𝐵1(𝑦)

𝑤2 = 𝑜12 ∗ 𝑜14 = 𝜇𝐴2(𝑥) ∗ 𝜇𝐵2(𝑦)

𝑇 − norm can be product, minimum, etc.

• Layer 3: normalization layer, fixed neurons

𝑤̅1 =
𝑤1

𝑤1 + 𝑤2

𝑤̅2 =
𝑤2

𝑤1 + 𝑤2

• Layer 4: nodes are adaptive nodes

Output:

𝑤̅1𝑧1 =
𝑤1

𝑤1 + 𝑤2
(𝑝1𝑥 + 𝑞1𝑦 + 𝑟1)

𝑤̅2𝑧2 =
𝑤2

𝑤1 + 𝑤2
(𝑝2𝑥 + 𝑞2𝑦 + 𝑟2)

• Layer 5: nodes are fixed nodes

𝑧 = 𝑤̅1𝑧1 + 𝑤̅2𝑧2

Notes:

• The structure of the adaptive network is not unique.

Tsukamoto ANFIS:

𝑧 =
𝑤1𝑧1

𝑤1 + 𝑤2
+

𝑤2𝑧2

𝑤1 + 𝑤2

𝑧 = 𝑤̅1𝑧1 + 𝑤̅2𝑧2

• TSK-1

TSK-0

Tsukamoto (monotonic function)

Mamdani model (related to summation of area, difficult to utilize, so not common for making an

ANFIS)

5.6 System Training
- Non-linear MF parameters

- Linear parameters

TSK-1:

- premise MF parameters

- consequent linear parameters

𝑧 = 𝑤̅1𝑧1 + 𝑤̅2𝑧2

= 𝑤̅1(𝑝1𝑥 + 𝑞1𝑦 + 𝑟1) + 𝑤̅2(𝑝2𝑥 + 𝑞2𝑦 + 𝑟2)

= (𝑤̅1𝑥)𝑝1 + (𝑤̅1𝑦)𝑞1 + 𝑤1𝑟1 + (𝑤̅2𝑥)𝑝2 + (𝑤̅2𝑦)𝑞2 + 𝑤2𝑟2

Hybrid training (LSE + GD):

training efficiency ↑

reduce some local minima:

GA (genetic algorithm):

• Forward pass:

premise MF parameters → fixed

optimize linear parameters through LSE (least-squares estimator)

• Backward pass

Linear parameters → fixed

update → MF parameters (these are the non-linear parameters)

Tsukamoto:

Linearized consequent MF:

𝑤 = 𝑝 +
1

𝑞 − 𝑝
𝑧

𝑧∗ = (𝑤 − 𝑝)(𝑞 − 𝑝)

Example: (Book 2, Ch. 12, Sec. 6.5) – good example for a forecasting project

MG (Mackey-Glass):

𝑥̇(𝑡) =
0.2𝑥(𝑡 − 𝜏)

1 + 𝑥10(𝑡 − 𝜏)
− 0.1𝑥(𝑡)

Initial values:

𝑥(0) = 1.2

𝜏 = 17~30, 𝑑𝑡 = 1

Six-steps-ahead prediction

4-inputs

1-output

Input: {𝑥(𝑡 − 18), 𝑥(𝑡 − 12), 𝑥(𝑡 − 6), 𝑥(𝑡)}

Output: {𝑥(𝑡 + 6)}

Each has 2 MFs ⟨
𝐿
𝑆

24 = 16 rules

Mackey-glass forecasting data system:

𝑑𝑥(𝑡)

𝑑𝑡
=

0.2𝑥(𝑡 − 𝜏)

1 + 𝑥10(𝑡 − 𝜏)
− 0.1𝑥(𝑡)

𝜏 = 17~30 (dependent on individual person)

𝑑𝑡 = 1 (selected)

𝑥(0) = 1.2 (dependent on different application)

If you utilized the Mackey-Glass program to generate 2000 data points…

𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5, 𝑑6, 𝑑7, 𝑑8, 𝑑9 … 𝑑2000

If 𝑠 = 1 (one − step − ahead prediction):

1𝑠𝑡 training data pair: (𝑑1, 𝑑2, 𝑑3; 𝑑4)

2𝑛𝑑 training data pair: (𝑑2, 𝑑3, 𝑑4; 𝑑5)

3𝑟𝑑 training data pair: (𝑑3, 𝑑4, 𝑑5; 𝑑6)

⋮

997𝑡ℎ training data pair: (𝑑997 , 𝑑998, 𝑑999; 𝑑1000)

If 𝑠 = 2 (two − steps − ahead prediction):

(𝑑1, 𝑑3, 𝑑5; 𝑑7)
(𝑑2, 𝑑4, 𝑑6; 𝑑8)
(𝑑3, 𝑑5, 𝑑7; 𝑑9)

⋮
(𝑑994 , 𝑑996, 𝑑998; 𝑑1000)

𝑠 − steps − ahead prediction:

𝑥(𝑡)

{𝑥(𝑡 − 2𝑠), 𝑥(𝑡 − 𝑠), 𝑥(𝑡) ; 𝑥(𝑡 + 𝑠)}

If 𝑠 = 6:

{ 𝑥(𝑡 − 12) , 𝑥(𝑡 − 6) , 𝑥(𝑡) ; 𝑥(𝑡 + 6)}

Neural network:

• Can also do sunspot activity forecasting

RWC: Belgium World Data center

Records from 1700 ~ now

Daily, weekly, monthly, annually, etc.

Daily is very non-linear (very difficult):

Weekly, monthly, annually may produce more reliable results (annual is preferred).

In this course we used a hybrid training method:

(a combination least-squares estimator and gradient descent)

1. Initial values of linear and nonlinear parameters. Usually, nonlinear parameters are related to the

membership function parameters.

2. Choose an input-output pattern:

{ 𝑥⃗(𝑘) ; 𝑡(𝑘) }

3. Propagate inputs and calculate the related node output.

4. Calculate the error:

𝐸 = 𝐸(𝑘) + 𝐸(𝑘 − 1)

5. Train the linear consequent parameters with non-linear MF parameters fixed.

LSE (least-squares estimator):

𝐸(𝑘) =
1

2
∑ (𝑡𝑗 − 𝑦𝑗)

2
𝑛𝐿

𝑖=1

For offline training:

𝜃 = (𝐴𝑇𝐴)
−1

𝐴𝑇𝑦⃗

𝜃 = {𝑝1, 𝑞1, 𝑟1, 𝑝2, 𝑞2, 𝑟2}𝑇

For 8 rules:

Linear parameters: 4 x 8 = 32

Each sigmoid function has two MF (2 variables)

2 x 6 = 12 ~ non-linear parameters

6. Train nonlinear parameters

Linear parameters are fixed, and non-linear parameters are adjusted.

𝐸(𝑘) =
1

2
∑(𝑡𝑗 − 𝑦𝑗)

2

𝑗

Sigmoid MF:

𝑜𝑖 = 𝜇𝐴(𝑥𝑖) =
1

1 + 𝑒−𝑎𝑖(𝑥𝑖+𝑏𝑖)

(𝑎𝑖 , 𝑏𝑖)

𝑎𝑖(𝑘) = 𝑎𝑖(𝑘 − 1) − 𝜂𝑎

𝜕𝐸

𝜕𝑎𝑖

𝑏𝑖(𝑘) = 𝑏𝑖(𝑘 − 1) − 𝜂𝑏

𝜕𝐸

𝜕𝑏𝑖

𝜕𝐸

𝜕𝑎𝑖
=

1

2
(2) ∑(𝑡𝑗 − 𝑦𝑗)(−1)

𝑗

𝜕𝑦𝑗

𝜕𝑜𝑖

𝜕𝑜𝑖

𝜕𝑎𝑖

𝜕𝑜𝑖

𝜕𝑎𝑖
=

𝜕𝜇𝐴

𝜕𝑎𝑖
= (−1)(1 + 𝑒−𝑎𝑖(𝑥𝑖−𝑏𝑖))

−2
(𝑒−𝑎𝑖(𝑥𝑖−𝑏𝑖))[−(𝑥𝑖 − 𝑏𝑖)]

=
𝑒−𝑎𝑖(𝑥𝑖−𝑏𝑖)(𝑥𝑖 − 𝑏𝑖)

[1 + 𝑒−𝑎𝑖(𝑥𝑖−𝑏𝑖)]2

= 𝑑Μ𝑎𝑖 (in MATLAB)

Similarly,

𝜕𝐸

𝜕𝑏𝑖
=

1

2
(2) ∑(𝑡𝑗 − 𝑦𝑗)(−1)

𝑗

𝜕𝑦𝑗

𝜕𝑜𝑖

𝜕𝑜𝑖

𝜕𝑏𝑖

𝜕𝑜𝑖

𝜕𝑏𝑖
=

𝜕𝜇𝐵

𝜕𝑏𝑖
= (−1)(1 + 𝑒−𝑎𝑖(𝑥𝑖−𝑏𝑖))

−2
(𝑒−𝑎𝑖(𝑥𝑖−𝑏𝑖))(𝑎𝑖)

=
𝑒−𝑎𝑖(𝑥𝑖−𝑏𝑖)(𝑎𝑖)

[1 + 𝑒−𝑎𝑖(𝑥𝑖−𝑏𝑖)]2

= 𝑑Μ𝑏𝑖 (in MATLAB)

𝜕𝑦𝑗

𝜕𝑜𝑖
= 𝑑𝑦𝑜𝑖 (in MATLAB)

𝜕𝐸

𝜕𝑎𝑖
= 𝑑𝐸𝑑𝑎𝑖 = − ∑(𝑡𝑗 − 𝑦𝑗) ∗ 𝑑𝑦𝑜𝑖 ∗ 𝑑Μ𝑎𝑖

𝑗

𝜕𝐸

𝜕𝑏𝑖
= 𝑑𝐸𝑑𝑏𝑖 = − ∑(𝑡𝑗 − 𝑦𝑗)

𝑗

∗ 𝑑𝑦𝑜𝑖 ∗ 𝑑Μ𝑏𝑖

For example,

𝑎𝑖(𝑘) = 𝑎𝑖(𝑘 − 1) − 𝜂𝑎(𝑑𝐸𝑑𝑎𝑖);

𝑏𝑖(𝑘) = 𝑏𝑖(𝑘 − 1) − 𝜂𝑏(𝑑𝐸𝑑𝑏𝑖);

𝑖 = 1, 2, … , 6

 Learning Rules:

The learning rules of ANFIS are then as follows:

1. Propagate all patterns from training set and calculate the optimized consequent parameters using

the LSE method, while fixing the antecedent parameters.

2. Propagate all training patterns again and tune (through one epoch only) the antecedent parameters

using the LM/Gradient Descent method and backpropagation (as in MLP), while fixing the

consequent parameters.

3. If the error was reduced in 4 consecutive steps (heading towards the right direction), then increase

the learning rate 𝜂 by 10%.

4. If the error in 4 consecutive steps was fluctuating (up and down), then decrease the learning rate

𝜂 by 10%.

5. Stop if the error is small enough or the maximum number of epochs is reached; otherwise start over

from Step 1.

Typically, “small enough” could be:

𝐸 < 0.00001
(or 10−5)

Chapter 6

6.1 Introduction
Classical control systems:

𝑆𝑃 − setpoint

𝐶𝑚 − measured error

error = 𝑆𝑃 − 𝐶𝑚 ≤ threshold

Classical control

PI control, PD control, P control, gravitated complex control, PID control

𝑃 − proportional

𝐼 − integral

𝐷 − derivative

𝐻∞, adaptive, sliding mode

linear systems

If the system (plant) is very non-linear, parameters are time variant (e.g. process control)

environment – noisy

Plant model → linear PDEs

complex non-linear systems

I.C. ~ approximate reasoning

6.2 Fuzzy and NF Control
Fuzzy reasoning → fuzzy logic

fuzzy system parameters → trained

Question 3.3 (Book 1)
Consider the experimental setup of an inverted pendulum shown in Figure P3.3. Suppose that direct

fuzzy logic control is used to keep the inverted pendulum upright. The process measurements are the

angular position, about the vertical (ANG) and the angular velocity (VEL). The control action (CNT) is the

current of the motor driving the positioning trolley. The variable ANG takes two fuzzy states: positive

large (PL) and negative large (NL). Their memberships are defined in the support set [−30°, 30°] and

are trapezoidal. Specifically,

𝜇𝑃𝐿 = {

0 for 𝐴𝑁𝐺 = {−30°, − 10°}

linear(0, 1.0) for 𝐴𝑁𝐺 = {−10°, 20°}

1 for 𝐴𝑁𝐺 = {20°, 30°}

𝜇𝑁𝐿 = {

0 for 𝐴𝑁𝐺 = {−30°, − 20°}

linear(1.0, 0) for 𝐴𝑁𝐺 = {−20°, 10°}

1 for 𝐴𝑁𝐺 = {10°, 30°}

The variable 𝑉𝐸𝐿 takes two fuzzy states 𝑃𝐿 and 𝑁𝐿 which are quite similarly defined in the support set

[−60°/𝑠 60°/𝑠]. The control inference CNT can take two states: positive large (PL), no change (NC), and

negative large (NL). Their membership functions are defined in the support set [−3𝐴, 3𝐴] and are

either trapezoidal or triangular. Specifically,

𝜇𝑃𝐿 = {

0 for 𝐶𝑁𝑇 = {−3𝐴, 0}
linear(0, 1.0) for 𝐶𝑁𝑇 = {0, 2𝐴}

1 for 𝐶𝑁𝑇 = {2𝐴, 3𝐴}

𝜇𝑁𝐶 = {

0 for 𝐶𝑁𝑇 = {−3𝐴, − 2𝐴}
linear(0, 1.0) for 𝐶𝑁𝑇 = {−2𝐴, 0}

linear(1.0, 0) for 𝐶𝑁𝑇 = {0, 2𝐴}
0 for 𝐶𝑁𝑇 = {2𝐴, 3𝐴}

𝜇𝑃𝐿 = {

1.0 for 𝐶𝑁𝑇 = {−3𝐴, − 2𝐴}
linear(1.0, 0) for 𝐶𝑁𝑇 = {−2𝐴, 0}

0 for 𝐶𝑁𝑇 = {0, 3𝐴}

The following four fuzzy rules are used in control:

 If 𝐴𝑁𝐺 is 𝑃𝐿 and 𝑉𝐸𝐿 is 𝑃𝐿 then 𝐶𝑁𝑇 is 𝑁𝐿

elseif If 𝐴𝑁𝐺 is 𝑃𝐿 and 𝑉𝐸𝐿 is 𝑁𝐿 then 𝐶𝑁𝑇 is 𝑁𝐶

elseif If 𝐴𝑁𝐺 is 𝑁𝐿 and 𝑉𝐸𝐿 is 𝑃𝐿 then 𝐶𝑁𝑇 is 𝑁𝐶

elseif If 𝐴𝑁𝐺 is 𝑁𝐿 and 𝑉𝐸𝐿 is 𝑁𝐿 then 𝐶𝑁𝑇 is 𝑃𝐿

end if

a) Sketch the four rules in a membership function diagram for the purpose of making control

inferences using individual rule-based inference.

b) If the process measurements of 𝐴𝑁𝐺 = 5° and 𝑉𝐸𝐿 = 15 °/𝑠 are made, indicate on your sketch the

corresponding control inference.

(2) NF control:

Optimize MF parameters and consequent parameters.

If MF parameters are non-linear,

• If the consequent parameters are linear

Then → 𝐺𝐷 + 𝐿𝑆𝐸

• If the consequent parameters are non-linear

Then → 𝐺𝐷 + 𝐺𝐷 (𝑜𝑟 𝑁𝐺, 𝐿𝑀, 𝑒𝑡𝑐.)

Even if 𝐺𝐷 is used twice, it is still a hybrid method, since they are used independently (and for

different system aspects)

(3) Properties of Fuzzy Control (or NF Control)

1) Completeness

Rule base should be “complete”

Given an input, there is at least one active rule.

2) Continuity

There is no gap between MFs

3) Consistency

No contradictory rules

ℛ3: if 𝑥 is 𝐿 then 𝑦 is 𝑀

…

ℛ9: if 𝑥 is 𝐿 then 𝑦 is 𝐿

4) No interaction

Interaction: rules are coupled

if 𝐴1 and 𝐵1 then 𝐶1 and 𝐷1

else if 𝐴2 and 𝐵2 then 𝐶2 and 𝐷2

else if …

5) Other rules

Validity, …, etc.

6.3 NN-based System Identification and Control
ANNs, Recurrent NNs, feed-forward NNs

• NN-based controller

• NNs to model plant

System identification to identify system model.

Time delayed recurrent neural network:

• Series-parallel

{𝑢(𝑘), 𝑢(𝑘 − 1), 𝑢(𝑘 − 2), … , 𝑢(𝑘 − 𝑚)}

Previous output:

{𝑦(𝑘), 𝑦(𝑘 − 1), 𝑦(𝑘 − 2), … , 𝑦(𝑘 − 𝑚)}

Plant’s real output: 𝑦(𝑘 + 1)

RRN output: 𝑦̂(𝑘 + 1)

Error:

𝑒(𝑘 + 1) = 𝑦(𝑘 + 1) − 𝑦̂(𝑘 + 1)

• There is also parallel method (next page)

6.3 NN-based System Identification and Control
Highly non-linear

time-varying

dynamic coupling

time-delays

error = SP − Cm

model → plant dynamics

PDE modeling

FFNN-based

RNN-based

• Series-parallel method:

• Parallel method:

• NN-controllers

PID ~ P gain, I gain, D gain

