
Newton’s method 

Assume there is a minimum in the interval [𝑥𝐿 , 𝑥𝑈], and 𝑥0 ∈ [𝑥𝐿 , 𝑥𝑈]. 

To seek the root of 𝑓′(𝑥) = 0, the Newton’s fixed-point iteration becomes, 

𝑥𝑖+1 = 𝑥𝑖 −
𝑓′(𝑥)

𝑓′′(𝑥)
 

Iteration stops when |𝑥𝑖+1 − 𝑥𝑖| or |𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖)| is very small. 

 

Example 

Find the minimum of 𝑓(𝑥) =
𝑥2

10
− 2 sin𝑥 over the interval of [0, 4]. 

Use the “distance” based stopped criterion. For example, |𝑥3 − 𝑥1| < 10−6 for quadratic interpolation. 

Solution 

𝑓′(𝑥) =
𝑥

5
− 2 cos(𝑥) 

𝑓′′(𝑥) =
1

5
+ 2 sin(𝑥) 

Golden-section 

# of iterations 𝑥1
∗ or 𝑥2

∗ |𝑥2 − 𝑥1| 

30 1.42755134 8.21214(10−7) 
*whichever gives lower function value. 

Quadratic interpolation with 𝑥1 = 1 

# of iterations 𝑥3 |𝑥3 − 𝑥1| 

11 1.42755207 2.96747(10−7) 
 

Newton’s method with 𝑥0 = 1 

# of iterations 𝑥𝑖+1 |𝑥𝑖+1 − 𝑥𝑖| 

4 1.42755178 4.78198(10−10) 
 

The question remains how to determine the interval [𝑥𝐿, 𝑥𝑈]. 

The following bracketing scheme may be suggested, which is part of the Davies-Swann-Campey 

algorithm. 

Step 1: Select an 𝑥1 that is close to the 𝑥∗being sought. Also assign a small value close to ∆. 

Step 2: Let 𝑥0 = 𝑥1 − ∆ and 𝑥2 = 𝑥1 + ∆. Evaluate 𝑓0 = 𝑓(𝑥0), 𝑓1 = 𝑓(𝑥1), 𝑓2 = 𝑓(𝑥2). 

There are three cases. 

2a. If 𝑓0 ≥ 𝑓1 and 𝑓1 ≤ 𝑓2, then [𝑥0, 𝑥2] is the interval. Together with 𝑥1, the quadratic interpolation can 

be started. For golden-section search, [𝑥0, 𝑥2] is the [𝑥𝐿 , 𝑥𝑈]; 



2b. If 𝑓0 > 𝑓1 and 𝑓1 > 𝑓2, the following is determined: 

𝑥3 = 𝑥2 + 2∆,  𝑓3 = 𝑓(𝑥3) 

𝑥4 = 𝑥3 + 4∆,  𝑓4 = 𝑓(𝑥4) 

𝑥5 = 𝑥4 + 8∆,  𝑓5 = 𝑓(𝑥5) 

… 

Until the current 𝑓𝑖 is greater than the previous 𝑓𝑖−1. Then [𝑥0, 𝑥𝑖] is the interbal, and 𝑥𝑖−1 is 𝑥1, if 

needed. 

2c. If 𝑓0 < 𝑓1 and 𝑓1 < 𝑓2, 𝑥2 = 𝑥0 − ∆, 𝑓2 = 𝑓(𝑥2). The following is determined: 

𝑥3 = 𝑥2 − 2∆, 𝑓3 = 𝑓(𝑥3) 

𝑥4 = 𝑥3 − 4∆, 𝑓4 = 𝑓(𝑥4) 

𝑥5 = 𝑥4 − 8∆, 𝑓5 = 𝑓(𝑥5) 

… 

Until 𝑓𝑖 is greater than 𝑓𝑖−1. Then [𝑥𝑖 , 𝑥0] is the interbal, and 𝑥𝑖−1is 𝑥1 is needed. 

 

Example 

Find the minimum of 𝑓(𝑥) =
𝑥2

10
− 2 sin𝑥 over the interval of [0, 4]. 

Use the “distance” based stopped criterion. For example, |𝑥3 − 𝑥1| < 10−6 for quadratic interpolation. 

Golden-section 

# of iterations 𝑥1
∗ or 𝑥2

∗ |𝑥2 − 𝑥1| 

30 1.42755134 8.21214(10−7) 
* whichever gives lower function value 

# of iterations Interval 𝑥1
∗ or 𝑥2

∗ |𝑥2 − 𝑥1| 

29 [0, 2.8] 1.42755300 9.30125(10−7) 
* whichever gives lower function value 

Quadratic interpolation with 𝑥1 = 1 

# of iterations 𝑥3 |𝑥3 − 𝑥1| 

11 1.42755207 2.96747(10−7) 
 

# of iterations Interval 𝑥1 𝑥3 |𝑥3 − 𝑥1| 

6 [0, 2.8] 1.2 1.42755196 2.09784(10−7) 
 

Newton’s method with 𝑥0 = 1 

# of iterations 𝑥𝑖+1 |𝑥𝑖+1 − 𝑥𝑖| 

4 1.42755178 4.78198(10−10) 
 

With 𝑥0 = 1.2 

# of iterations 𝑥𝑖+1 |𝑥𝑖+1 − 𝑥𝑖| 

4 1.42755178 7.36522(10−13) 
 



Summary of one-dimensional optimization: 

Golden-search, or quadratic interpolation, together within the David-Swann-Campey bracketing 

method, are within the category of “search method” as no derivative is required. 

On the other hand, the Newton’s method belongs in the category of gradient method. 

They form the basis of solving multi-dimensional unconstrained optimization problems.  



Part 4: Optimization (III) 
Multi-dimensional unconstrained optimization means, in mathematical terms, 

min
𝑥

𝑓(𝑥)     ;      𝑓𝑜𝑟 𝑥 ∈ 𝑅𝑛 

Where 𝑓(𝒙) is a continuous real-values function. 

Some math first. 

1. Local minimum and local maximum 

If 𝑓(𝒙) > 𝑓(𝒙∗) for all 𝒙 near 𝒙∗, 𝒙∗ is the local minimum. 

If 𝑓(𝒙) < 𝑓(𝒙∗) for all 𝒙 near 𝒙∗, 𝒙∗ is the local maximum. 

2. The gradient of 𝑓(𝒙) is: 

∇𝑓(𝒙) = (
𝜕𝑓

𝜕𝑥1
… 

𝜕𝑓

𝜕𝑥𝑛
)
𝑇

 

3. Critical or stationary point: 

If the gradient vector is zero at 𝒙∗, then 𝒙∗ is  a critical or stationary point. 

4. First derivative test: 

A local minimum or maximum must be a critical point of 𝑓(𝒙). 

In other words, if 𝑓(𝒙) has a local minimum or maximum at 𝒙∗, the the first order derivatives of 𝑓(𝒙) 

exist at 𝒙∗, then: 

𝜕𝑓(𝒙)

𝜕𝑥𝑖
|
𝒙∗

= 0     ;      𝑖 = 1, 2, 3, …  

5. The Hessian (matrix) of 𝑓(𝒙) is: 

𝐻 =

[
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Or the Hessian is the Jacobian matrix of the gradient. 

• If 
𝜕2𝑓

𝛿𝑥𝑖𝜕𝑥𝑗
 is continuous, then 

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
=

𝜕2𝑓

𝜕𝑥𝑗𝜕𝑥𝑖
 

• The Hessian determinant, |𝐻|, means the determinant of the Hessian matrix 𝐻. It is sometimes 

called the discriminant of 𝐻. 

 

 



6. Second derivative test 

If 𝒙∗ is a critical point of 𝑓(𝒙), and all the second order partial derivatives of 𝑓(𝒙) are continuous, then: 

• 𝒙∗ is a local minimum if 𝐻 (evaluated at 𝒙∗) is positive definite (that is, all eigenvalues of 𝐻 are 

positive) 

• 𝒙∗ is a local maximum if 𝐻 is negative definite (all eigenvalues of 𝐻 are negative) 

• 𝒙∗ is a saddle point if 𝐻 has both positive and negative eigenvalues. 

• However, the test is inconclusive in cases not listed above. 

For two-dimensional problems: 

• 𝒙∗ is a local minimum if |𝐻| > 0 and 
𝜕2𝑓(𝒙)

𝜕𝑥1
2 |

𝒙∗
> 0; 

• 𝒙∗ is a local maximum if |𝐻| > 0 and 
𝜕2𝑓(𝒙)

𝜕𝑥1
2 |

𝒙∗
< 0; 

• 𝒙∗ is a saddle point if |𝐻| < 0. 

• However, it is inconclusive is |𝐻| = 0. 

 

7. The Taylor expansion of 𝑓(𝒙), at 𝒙∗ and up to the second order, is, 

𝑓(𝒙) = 𝑓(𝒙∗) + (∇𝑓)𝑇(𝒙 − 𝒙∗) + (
1

2
) (𝒙 − 𝒙∗)𝑇𝐻(𝒙 − 𝒙∗) + ⋯ 

Where the gradient ∇𝑓 and Hessian 𝐻 are evaluated at 𝒙∗. 

 

Examples: 

Note: in the following, 𝒙 = (𝑥, 𝑦)𝑇. 

E1: Show that 𝑓(𝑥, 𝑦) = 𝑥2 − 𝑦2 has a saddle point at (0, 0)𝑇, 

𝐻 = [
2 0
0 −2

]     ;      |𝐻| = −4 

E2: Find the local optimum of: 

𝑓(𝑥, 𝑦) = 𝑥2 + 2𝑦2 − 2𝑥𝑦 − 2𝑥 

𝐻 = [
−2 2
2 −4

]     ;      |𝐻| = 4 

𝜕2𝑓

𝜕𝑥2
=

𝜕2𝑓

𝜕𝑥1
2 = −2 < 0 

  



Categories of methods include, 

• Line search methods 

• Trust-region methods 

Trust-region methods: 

• The trust region is the neighborhood near 𝒙∗ 

• 𝑓(𝒙) is represented by a high-dimensional parabolic “surface” 

• 𝒙∗ is the 𝒙 that minimizes the high-dimensional parabolic “surface” 

Line search methods: 

A multi-dimensional problem is transformed into a sequence of one-dimensional problems. 

• Univariate searches; and 

• Steepest-descent methods 

  



Part 4: Optimization (IV) 
Line Search Methods 

The key is to transform a multi-dimensional problem into a sequence of one-dimensional problems. 

For one dimensional unconstrained optimization, we perform bracketing, then golden-search section or 

quadratic interpolation or Newton’s method. 

But all is done along one single search direction or the 𝑥 −axis. 

Line search is about searching along a direction (i.e., a line) that is hopefully effective. 

Univariate searches 

The search directions are, 𝑥1, then 𝑥2, …, and finally 𝑥𝑛 

The main steps are: 

Step 1: Initial guess 𝑥0 and ∆ 

Step 2:  Perform the following logical loop: 

for 𝑘 = 1: 𝑛 

1𝐷 unconstrained optimization along 𝑥𝑘  

end 

This step ends with an 𝒙∗ 

Step 3: Check if ||𝒙∗ − 𝒙𝟎|| meets the stopping criterion. 

If yes, 𝒙∗ and 𝑓(𝒙∗) are the solution sought. 

Otherwise, 𝒙𝟎 ← 𝒙∗, and go back to Step 2. 

Graphically, consider a 2D problem: 

𝑓(𝒙) = (𝑥1 − 1)2 + (𝑥2 − 3)2 − 1.8(𝑥1 − 1)(𝑥2 − 3) 

  



Example: 

𝑓(𝑥) = (𝑥1 − 1)2 + (𝑥2 − 3)2 − 1.8(𝑥1 − 1)(𝑥2 − 3) 

Initial guess 𝒙𝟎 = [0.75,−1.25]𝑇 and ∆ = 0.1 

Golden-section search for 1D 

Along 𝑥1, 

𝒙𝑳 = [−5.45,−1.25]𝑇 , 

𝒙𝑼 = [0.75,−1.25]𝑇 

After 30 iterations,  

𝒙∗ = [−2.825,−1.25]𝑇 

𝑓(𝒙∗) = 3.4319; 

Along 𝑥2, 

𝒙𝑳 = [−2.825,−1.25]𝑇 , 

𝒙𝑼 = [−2.825, 0.15]𝑇 

After 26 iterations,  

𝒙∗ = [−2.825,−0.4425]𝑇 

𝑓(𝒙∗) = 2.7798; 

After 61 rounds of 𝑥1 and 𝑥2, the converged solution is: 

𝒙∗ = [0.999983, 2.999982]𝑇 

𝑓(𝒙∗) = 5.752007−11 

Quadratic interpolation for 1D 

Along 𝑥1, 

𝒙𝑳 = [−5.45,−1.25]𝑇 , 

𝒙𝑼 = [0.75,−1.25]𝑇 

𝒙𝟏 = [−2.25,−1.25]𝑇 

After 2 iterations,  

𝒙∗ = [−2.825,−1.25]𝑇 

𝑓(𝒙∗) = 3.4319; 

Along 𝑥2, 

𝒙𝑳 = [−2.825,−1.25]𝑇 , 

𝒙𝑼 = [−2.825, 0.15]𝑇 

𝒙𝟏 = [−2.825,−0.65]𝑇 

After 2 iterations,  

𝒙∗ = [−2.825,−0.4425]𝑇 

𝑓(𝒙∗) = 2.7798; 

After 67 rounds of 𝑥1 and 𝑥2, the converged solution is: 

𝒙∗ = [0.999996, 2.999997]𝑇 

𝑓(𝒙∗) = 2.862871−12 

Newton’s method for 1D 

Along 𝑥1, 

𝒙𝟏 = [−2.25,−1.25]𝑇 



After 2 iterations,  

𝒙∗ = [−2.825,−1.25]𝑇 

𝑓(𝒙∗) = 3.4319; 

Along 𝑥2, 

𝒙𝟏 = [−2.825,−0.65]𝑇 

After 2 iterations,  

𝒙∗ = [−2.825,−0.4425]𝑇 

𝑓(𝒙∗) = 2.7798; 

After 66 rounds of 𝑥1 and 𝑥2, the converged solution is: 

𝒙∗ = [0.999996, 2.999997]𝑇 

𝑓(𝒙∗) = 3.524268−12 

Comparison of elapsed CPU times: 

Golden-section search: 0.140625 sec. 

Quadratic interpolation: 0.125000 sec. 

Newton’s method: 0.109375 sec. 

Other search direction? “Good” directions especially? 

There are a few options here. Conjugate direction is one; The steepest-descent is another. 

 

Steepest-descent Methods 

What is the steepest direction? The concept of directional derivative is the starting point. 

If ∇𝑓 is the gradient of 𝑓(𝒙) at any 𝒙, the direction is 𝒏, a unit vector (𝑓𝑜𝑟 𝑒𝑥𝑎𝑚𝑝𝑙𝑒, 𝑛 =

(
1

√2
, −

1

√2
, 0)

𝑇
), then the directional derivative along 𝒏 is, 

𝐷𝑛(𝒙) = (𝛁𝑓)𝑇𝒏 

Directional derivative is a scalar function. 

Treating 𝒏 as the independent variables, seeking the optimum 𝐷𝑛(𝒙) will result in the steepest 

direction. It has been proven that the steepest direction is the gradient itself. In other words, the 

optimum of 𝐷𝑛(𝒙) is obtained when: 

𝑛 = ∇𝑓 

The three main steps of the steepest-descent method are, 

Step 1: Initial guess 𝐱𝒐 and ∆ 

Step 2: evaluate ∇𝑓 at 𝑥0; 

 1D unconstrained optimization along ∇𝑓; 

 obtain a 𝒙∗ 



Step 3: check if ||𝒙∗ − 𝒙𝟎|| meets the stopping criterion 

 If yes, 𝑥∗ and 𝑓(𝑥∗) are the solution sought. 

 Otherwise, 𝑥0 ← 𝑥∗, and go back to Step 2. 

 

Some programming notes: 

Bracketing: 

• Is done along ∇𝑓 

Applying Golden-section search along ∇𝑓: 

• ℓ0 means the second norm; 

• The gradient should be normalized to a unit vector; 

• The scalar 𝑥′𝑠 are now vectors. 

Applying quadratic interpolation along ∇𝑓: 

• The gradient should be normalized to a unit vector; 

• For one dimensional problems, 

𝑥3 =
1

2

𝑓0(𝑥1
2 − 𝑥2

2) + 𝑓1(𝑥2
2 − 𝑥0

2) + 𝑓2(𝑥0
2 − 𝑥1

2)

𝑓0(𝑥1 − 𝑥2) + 𝑓1(𝑥2 − 𝑥0) + 𝑓2(𝑥0 − 𝑥1)
  

 Where 𝑓𝑖 = 𝑓(𝑥𝑖)                                                               

Now, 𝑓𝑖 = 𝑓(𝒙𝒊), 𝑥𝑗
2 is replaced by the dot product of 𝐱𝐣, or (𝐱𝐣)

𝑻
𝐱𝐣 and 𝑥𝑖 − 𝑥𝑗  is replaced by the 

second norm of 𝐱𝐢 − 𝐱𝐣. 

• x3 is 𝑥3 times the normalized gradient 

Applying Newton’s method along ∇𝑓: 

• The iteration scheme for one-dimensional problems is, 

𝑥𝑖+1 = 𝑥𝑖 −
𝑓′(𝑥𝑖)

𝑓′′(𝑥𝑖)
 

• Extending it to multi-dimension, 

𝐱𝐢+𝟏 = 𝐱𝐢 − 𝐻−1∇𝑓 

Where 𝐻 and ∇𝑓 are evaluated at 𝑥𝑖. 

 

 

 

 

 

 



Graphically, consider a 2D problem. 

𝑓(𝑥) = (𝑥1 − 1)2 + (𝑥2 − 3)2 − 1.8(𝑥1 − 1)(𝑥2 − 3)

 

Initial guess 𝐱𝟎 = [0.75.−1.25]𝑇 and ∆= 0.1. 

Golden-section search 

17 rounds of gradient computation, the converged solution is: 

𝒙∗ = [0.999992, 2.999992]𝑇 

𝑓(𝒙∗) = 5.752007−11 

cputime = 0.046875 𝑠𝑒𝑐. 

Newton’s method 

1 round of gradient computation, the converged solution is: 

𝒙∗ = [1, 3]𝑇 

𝑓(𝒙∗) = 0 

cputime = 0.031250 𝑠𝑒𝑐. 

 

Example: the Rosenbrock function (a.k.a. the banana function) is a “standard” test problem on the 

performance of any unconstrained optimization solver. 

𝑓(𝒙) = ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)

2
+ (𝑥𝑖 − 1)2]

𝑚

𝑖=1

 

𝑚 is an integer. The dimension of the problem is 𝑚 + 1. 

Set 𝑚 = 4, initial guess of 𝑥0 = [0, 0, 0, 0, 0]𝑇, and ∆= 0.1. 

 



Golden-section search: 

4214 rounds of gradient computation, cputime = 0.516525 s 

𝒙∗ =

(

 
 

0.999665
0.999331
0.998657
0.997312
0.994615)

 
 

, 𝑓(𝒙∗) = 9.46628110−6
 

Newton’s method: 

2 rounds of gradient computation, cputime = 0.3125 s 

𝒙∗ =

(

 
 

1
1
1
1
1)

 
 

, 𝑓(𝒙′) = 0 

 


