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Fixed point iteration 

The idea of the fixed-point iteration method is to: 

(1) Reformulate an equation to an equivalent fixed-point problem 

𝑓(𝑥) = 0 ↔ 𝑥 = 𝑔(𝑥) 

(2) Use iteration, with a chosen initial guess 𝑥0, to compute a sequence 

𝑥𝑛+1 = 𝑔(𝑥𝑛)(= 𝑔𝑛+1(𝑥0)),     𝑛 = 0, 1, 2, … 

in hope that 𝑥𝑛 → 𝛼 (the root of the non-linear equation). 

 

There are numerous ways to introduce an equivalent fixed-point problem for a given equation. But 

convergence to 𝛼 is not guaranteed, not to mention rapid convergence. 

 

Lemma: Let 𝑔(𝑥) be a continuous function on the interval [𝑎, 𝑏], and suppose it satisfies the property 

𝑎 ≤ 𝑥 ≤ 𝑏 → 𝑎 ≤ 𝑔(𝑥) ≤ 𝑏 

Then the equation 𝑥 = 𝑔(𝑥) has at least on solution in the interval [𝑎, 𝑏]. 

 

Theorem: Assume 𝑔(𝑥) and 𝑔′(𝑥) exist and are continuous on the interval [𝑎, 𝑏]; and further, assume 

𝑎 ≤ 𝑥 ≤ 𝑏 → 𝑎 ≤ 𝑔(𝑥) ≤ 𝑏 

𝜆 = max
𝑎≤𝑥≤𝑏

|𝑔′(𝑥)| < 1 

Then, 

𝑪𝒐𝒏𝒄𝒍𝒖𝒔𝒊𝒐𝒏 𝟏 (existence and uniqueness) The equation 𝑥 = 𝑔(𝑥) has a unique solution 𝛼 in [𝑎, 𝑏]. 

𝑪𝒐𝒏𝒄𝒍𝒖𝒔𝒊𝒐𝒏 𝟐 (convergence) For any initial guess 𝑥0 in [𝑎;  𝑏], in the iteration 

𝑥𝑛+1 = 𝑔(𝑥𝑛), 𝑛 = 0, 1, 2, …  

Will converge to 𝛼. 

𝑪𝒐𝒏𝒄𝒍𝒖𝒔𝒊𝒐𝒏 𝟑 (error bound estimate) 

|𝑥𝑛 − 𝛼| ≤
𝜆𝑛

1 − 𝜆
|𝑥1 − 𝑥0|,      𝑛 > 0 

𝑪𝒐𝒏𝒄𝒍𝒖𝒔𝒊𝒐𝒏 𝟒 



lim
𝑛→∞

𝑥𝑛+1 − 𝛼

𝑥𝑛 − 𝛼
= 𝑔′(𝛼) 

Thus, for any 𝑥𝑛 close to 𝛼, 𝑥𝑛+1 − 𝛼 ≈ 𝑔′(𝛼)(𝑥𝑛 − 𝛼)  

When converging near the root 𝛼, the errors will decrease by a constant factor of 𝑔′(𝛼). If 𝑔′(𝛼) is 

negative, then the errors will oscillate between positive and negative, and the iterates will be 

approaching from both sides. When 𝑔′(𝛼) is positive, the iterates will approach 𝛼 from only one side. 

 

When |𝑔′(𝛼)| > 1, the errors will increase as we approach the root rather than decrease in size. 

 

Let’s look at two examples: 

Example 1 

𝑥 = sin(0.9 − 0.7𝑥) = 𝑔(𝑥) which has a root of 𝛼 = 0.514192160 

𝑔(𝛼) = sin(0.9 − 0.7𝛼) = 𝛼 verified! 

𝑔′(𝛼) = −0.7 cos(0.9 − 0.7𝛼) = −0.600372506 

∴ 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒 (absolute value less than 1) 

 

Example 2 

𝑥 = sin(2.5 + 1.3𝑥) = 𝑔(𝑥) which has a root of 𝛼 = 0.277371219 

𝑔(𝛼) = sin(2.5 + 1.3𝛼) = 𝛼 verified! 

𝑔′(𝛼) = (1.3)cos(2.5 + 1.3𝛼) = −1.24899179 

∴ 𝑑𝑖𝑣𝑒𝑟𝑔𝑒 (absolute value greater than 1) 

 

But the challenge remains that the interval [𝑎, 𝑏] may not be easily identified. This leads to the localized 

fixed-point theorem as follows:  

Assume 𝑥 = 𝑔(𝑥) has a solution 𝛼, both 𝑔(𝑥) and 𝑔′(𝑥) are continuous for all 𝑥 In some interval about 

𝛼, and |𝑔′(𝛼)| < 1. Then for any sufficiently small number 𝜖 > 0, the interval [𝑎, 𝑏] = [𝛼 − 𝜖, 𝛼 + 𝜖] 

will satisfy the hypotheses of the fixed-point theorem. If we choose 𝑥0 sufficiently close to 𝛼, then the 

fixed-point iteration 𝑥𝑛+1 = 𝑔(𝑥), 𝑛 = 0, 1, 2, … will converge. 

 

 

 



Example 3 

The equation 𝑓(𝑥) = 𝑥3 + 4𝑥2 − 10 = 0 has a root of 𝛼 = 1.36523001. 

Choices of 𝑔(𝑥) are: 

𝑔1(𝑥) = 𝑥 − 𝑥3 − 4𝑥2 + 10 

𝑔2(𝑥) =
1

2
√10 − 𝑥3 

𝑔3(𝑥) = 𝑥 −
𝑥3 + 4𝑥2 − 10

3𝑥2 + 8𝑥
 

Stopping/termination criterion is |𝑥𝑛 − 𝑥𝑛+1| < 10−6. Use the fixed-point iteration method to find 𝛼. 

- We should check which one has 𝑔(𝛼) = 𝛼. 

Solution 

First off, 𝑔1(𝑥) will not converge. So, use 𝑔2(𝑥) and 𝑔3(𝑥) only. 

𝑥0 = 1; 

𝒈(𝒙) # of iterations 𝒙𝒏 |𝒙𝒏 − 𝒙𝒏−𝟏| 

𝑔2(𝑥) 21 1.36523004 6.57824 ∙ 10−7 
𝑔3(𝑥) 5 1.36523001 2.12699 ∙ 10−11 

 

𝑥0 = 1.3; 

𝒈(𝒙) # of iterations 𝒙𝒏 |𝒙𝒏 − 𝒙𝒏−𝟏| 

𝑔2(𝑥) 19 1.36523020 5.52801 ∙ 10−7 
𝑔3(𝑥) 4 1.36523001 2.70561 ∙ 10−12 

 

It is seen that 𝑔3(𝑥) outperforms 𝑔2(𝑥). 

It turns out that 𝑔3(𝑥) represents the Newton’s method or the Newton-Rhapson method, where 𝑔(𝑥) is 

𝑔(𝑥) = 𝑥 −
𝑓(𝑥)

𝑓′(𝑥)
 

Newton’s method has a quadratic convergence rate as long as 𝑥0 is sufficiently close to 𝛼. The rate of 

convergence depends on the choice of 𝑥0. 

Another drawback is requiring 𝑓′(𝑥). The secant method uses finite difference to approximate the 

derivative. The rate of convergence of the secant method is, 1.618, as long as the initial points are 

sufficiently close to 𝛼. 

 

 

 

 



The following presentation is based on https://neos‐guide.org/, and “Numerical Methods for Engineers” 

(8th Edn.), Chapra and Canale, McGraw-Hill, 2021.  

Use for educational purposes only. 

Part 4: Optimization (I) 
In mathematical terms, an optimization problem is the problem of finding the best solution from the set 

of all feasible solutions. 

Formulating an optimization problem 

The mathematical statement is as follows: 

Let 𝑓(𝒙) be a continuous real-values function, the optimization problem is stated as: 

min
𝑥

𝑓(𝒙)                             ;     𝑓𝑜𝑟 𝒙 ∈ 𝑹𝒏 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐹𝑗(𝒙) = 𝑎𝑗     ;      𝑗 = 1, 2, … , 𝑚1 

𝐺𝑘(𝒙) ≤ 𝑏𝑘                          ;      𝑘 = 1, 2, … , 𝑚2 

𝑎𝑛𝑑 𝑼𝑳 ≤ 𝒙 ≤ 𝑼𝑷 

which involves, the objective f(𝒙), the variables 𝒙, the constraints 𝐹𝑗(𝒙) and 𝐺𝑘(𝒙) of the problem, and 

the lower limit 𝑼𝑳 and upper limit 𝑼𝒑 on 𝒙. 

 

• An objective is a quantitative measure of the performance of the system that we want to minimize 

or maximize. For example, in manufacturing we may want to maximize the profits or minimize the 

cost of production; in fitting experimental data to the model, we may want to minimize the sum of 

squares of errors between the observed data and the predicted data. 

 

• The variables or the unknowns are the components of the system for which we want to find values. 

For the manufacturing example, the variables may be the amount of each resource consumed or the 

time spent on each activity, whereas in data fitting, the variables may be the parameters of the 

model. 

 

https://neos‐guide.org/


• The constraints are the functions that describe the relationships among the variables and that 

define the allowable values for the variables. For example, the manufacturing example, the amount 

of a resource consumed cannot exceed the available amount. Another example us, if a variable 

represents the number of people assigned to a specific task, the variable must be a positive integer. 

Types of Optimization Problems 

• Continuous Optimization versus Discrete Optimization 

Optimization problems with discrete variables are discrete optimization problems: on the other hand, 

problems with continuous variables are continuous optimization problems. 

Continuous optimization problems tend to be easier to solve than discrete optimization problems. 

However, recent improvements in algorithms coupled with advancements in computing technology 

have dramatically increased the size and complexity of discrete optimization problems that can be 

solved efficiently.  

• Unconstrained Optimization versus Constrained Optimization  

Unconstrained optimization is one in which there are no constraints on the variables; optimization in 

which there are constraints on the variables is known as constrained optimization. 

Both types arise directly from practical applications. Algorithm-wise, constrained optimization can be 

reformulated to become and unconstrained one. 

The constraints on the variables can be from simple bounds, to systems of equalities and inequalities 

that model complex relationships of the variables. 

• None, One or Many Objectives  

Most optimization problems have a single objective function. However, there are cases when 

optimization problems have no objective function or have multiple objective functions. 

Feasibility problems are problems in which the goal is to find values for the variables that satisfy the 

constraints of a system with no objective to optimize. 

Multi-objective optimization problems arise in many fields, such as engineering, economics, and 

logistics, when optimal decisions need to be taken I the presence of trade-offs between two or more 

conflicting objectives. For example, developing a new component might involve minimizing weight while 

maximizing strength. 

In practice, problems with multiple objectives often are reformulated as single objective problems by 

either forming a weighted combination of the different objectives or by replacing some of the objectives 

by constraints. 

• Deterministic Optimization versus Stochastic Optimization 

Deterministic optimization is optimization under certainty. It is assumed that the data for the given 

problem are known accurately. 

Stochastic optimization is optimization under uncertainty. 



 

• Local Optimization versus Global Optimization 

Local optimization seeks the optimal solution over a small neighborhood where the derivative of the 

objective is zero (or near zero). 

Global optimization finds the smallest objective value over all feasible variables. 

 

Note that each category of optimization problems has specifically developed algorithms so that the 

optimization can be done effectively. 

Also note that the above classifications are not mutually exclusive. For example, a multi-objective 

optimization problem can be continuous and unconstrained. 

 

  



Part 4: Optimization (II) 
One-dimensional unconstrained optimization means, in mathematical terms, 

min
𝑥

𝑓(𝑥)     ;      𝑓𝑜𝑟 𝑥 ∈ (−∞, ∞) 

Where 𝑓(𝑥) is a continuous real-valued function. 

Methods include: 

• Golden-section search; 

• Quadratic interpolation; and 

• Newton’s method. 

One-dimensional unconstrained optimization is important in its own right, not to mention it is the 

foundation for multi-dimensional unconstrained optimization. 

Golden-section Search 

The method is similar to the bisection method in Part 3. It is simple to use. 

Assume that there is a minimum in the interval [𝑥𝐿 , 𝑥𝑈]. 

Step 1: Let ℓ0 = 𝑥𝑈 − 𝑥𝐿. 

Step 2: Two intermediate points are needed.  

𝑥1 = 𝑥𝐿 + 𝑑  

𝑥2 = 𝑥𝑈 − 𝑑 

with 𝑑 = (√5 − 1)/2 ∙ ℓ0 = 0.618 ∙ ℓ0. 

Step 3a: If 𝑓(𝑥1) ≥ 𝑓(𝑥2), 𝑥𝑈 ← 𝑥1, go back to Step 1 until |𝑥2 − 𝑥1| or |𝑓(𝑥2) − 𝑓(𝑥1)| is very small; 

Step 3b: If 𝑓(𝑥1) < 𝑓(𝑥2), 𝑥𝐿 ← 𝑥2, go back to Step 1 until |𝑥2 − 𝑥1| or |𝑓(𝑥2) − 𝑓(𝑥1)| is very small; 

Quadratic Interpolation 

Assume that there is a minimum in the interval [𝑥𝐿 , 𝑥𝑈] = [𝑥0, 𝑥2]. 

Step 1: One intermediate point is needed; 𝑥0 < 𝑥1 < 𝑥2. 

Step 2: A parabola is fitted onto the three points. Take the derivative of the parabolics function. The 

derivative is zero at 𝑥3. 

𝑥3 =
1

2

𝑓0(𝑥1
2 − 𝑥2

2) + 𝑓1(𝑥2
2 − 𝑥0

2) + 𝑓2(𝑥0
2 − 𝑥1

2)

𝑓0(𝑥1 − 𝑥2) + 𝑓1(𝑥2 − 𝑥0) + 𝑓2(𝑥0 − 𝑥1)
 

Where 𝑓𝑖 = 𝑓(𝑥𝑖). 

Step 3a: Drop 𝑥0 is 𝑓(𝑥0) ≥ 𝑓(𝑥2), 𝑥0 ← 𝑥1 or 𝑥3, 𝑥1 ← 𝑥3 or 𝑥1, go back to Step 2 until |𝑥3 − 𝑥1| or 

|𝑓(𝑥3) − 𝑓(𝑥1)| is very small. 

Step 3b: Drop 𝑥2 is 𝑓(𝑥0) < 𝑓(𝑥2), 𝑥2 ← 𝑥1 or 𝑥3, 𝑥1 ← 𝑥3 or 𝑥1, go back to Step 2 until |𝑥3 − 𝑥1| or 

|𝑓(𝑥3) − 𝑓(𝑥1)| is very small. 

 


