
5. Attributes of an Element: 

5.1) Dimensionality: 

• 1D 

• 2D 

• 3D 

5.2) Associated with certain material and certain geometric properties such as: 

• Cross-sectional area (A) 

• Moments of inertia (𝐼𝑥, 𝐼𝑦 , 𝐼𝑥𝑦, 𝐽) 

• Thickness (𝑡) 

• Modulus of elasticity (𝐸) 

• Poisson’s ratio (𝜈) 

5.3) A number of nodes 

Each node is associated with a number of DOFs (physical unknowns) such as: 

• Temperature (1 DOF) 

• Displacement (1 or 2 or 3 DOFs) 

• Velocity (1 or 2 or 3 DOFs) 

• … 

5.4) DOFs of an element = (DOFs of a node) x (number of nodes) 

5.5) Interpolation within Element 

In FEA, DOFs at the nodes are the unknowns to be solved for. 

Between nodes (within element), the unknown variable is interpolated. 

The interpolation function is known as the shape function. 

Shape function is a key feature of FEM; its construct/form, has significant effect on the quality of the 

solution. 

 

In general, the more nodes that are used, the higher the degree of interpolation, the more accurate the 

element; but the number of DOFs of the element is increased. 

  



Lesson #1 

Not all elements are created equal; 

Some elements are better than others; 

• More accurate 

• Less sensitive to distortion of the element’s shape 

A given element does not have equal accuracy in all situations; 

 

Consider the following diagram: 

 

 



Formal (General) Approach 

1. Available principles (methods) 

a. Solid mechanics (structural mechanics) 

Variational methods 

Virtual work 

b. Field problems (e.g. heat transfer, fluid flow, electric potential, multi-physics and so on) 

Weighted residual methods 

{
 
 

 
 
Galerkin′s                                       
collocation                                      
least squares                                 
subdomain weighted residual
  …                                                        

 

2. Variational methods (principles) 

Variational principle is a principle used to find a function which minimizes or maximizes a physical 

quantity that depends upon the function to be found. 

Single variable calculus: 

 Function is given, 

1st order derivative 

2nd order derivative 

Variational principles: 

Boundary conditions and loading are known (e.g. a circular plate, being clamped along outer 

edge, and subject to a central load); 

 The unknown function is the deflection 𝓌(𝑟, 𝜃); 

 Physical quantity: work, energy; 

3. The Principle of Minimum Potential Energy 

Commonly used in solid mechanics 

Applicable to linear elastic analyses only; 

Been extended to many other “non-structural” applications. 

Statement of the principle: 

Of all the geometrically possible shapes that a body can assume, the true one, corresponding ot the 

satisfaction of stable equilibrium of the body, is identified by the minimum value of the total 

potential energy. 

2 key issues:  

• total potential energy 

• finding a function giving a minimum value of energy 

        Total potential energy: 

𝜋𝑝 = 𝑢 + Ω 

 𝑢: strain energy due to deformation 

Ω: potential energy of external forces (including body forces, surface loads, and concentrated 

forces/moment, etc.) 

Ω = −(work done by external forces) 



Finding a function that minimizes 𝜋𝑝 by variational calculus. 

4. The Principles of Momentum Potential energy as Applied to an Elastic Body 
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Where {𝜖} and {𝜎} are strain and stress vectors, respectively. 

[𝐸] is the elastic matrix, such that: 

{𝜎} = [𝐸]{𝜖} 

{𝑃}: concentrated forces/moments vector 

{𝜙}: surface load vector 

{𝐵𝑓}: body force components vector 

{𝑢}: displaces at nodes where {𝑝} is applied. 

{𝑢̅}: displacement evaluated on the surface of the body where {𝜙} is applied 

{𝑢⏟}: displacement within the body 

 

5. The Finite Element Form of the Principle of Minimum Potential Energy 

The volume of the body is divided into NE elements, each having a volume of 𝑉𝑒 

Similarly, 𝑆, the surface, is divided based on element formation 

∴ 𝜋𝑝 =∑∫
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−∑∫
1

2
{𝑢̅)𝑇{𝜙} 𝑑𝑆𝑒

 

𝑆𝑒

𝑁𝐸

𝑗=1

 

−{𝑢)𝑇{𝑝} 

Within an element, 

{𝑢⏟} = [𝑁]{𝑢} 

[𝑁]: shape function matrix 

 



Then  {𝜖} can be written as, symbolically 

{𝜖} = [𝜕] {𝑢⏟} 

       = [𝜕][𝑁]{𝑢} 

       = [𝐵]{𝑢} 

[𝐵]: strain-displacement matrix 

[𝜕]: a matrix of partial differentiation operators 

Eqn. (1) becomes: 

∴ 𝜋𝑝 =∑∫
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Where [𝑈] = ∑{𝑢} (symbolically) 

And [𝑁̅] is [𝑁] but evaluated over 𝑆𝑒 

Minimization: 
𝜕𝜋𝑝

𝜕{𝑈}
= {0} 

Finally: 

(∑∫ [𝐵]𝑇[𝐸][𝐵]𝑑𝑉𝑒
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In Eqn. (2): 

∫ [𝐵]𝑇[𝐸][𝐵]𝑑𝑉𝑒

 

𝑉𝑒

= [𝑘] 

The element stiffness matrix 

∑[𝑘]

𝑁𝐸

𝑗=1

= [𝐾] 

The structure stiffness matrix 



∑∫ [𝑁]𝑇[𝐵𝑓] 𝑑𝑉𝑒
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= {𝑓𝑒𝑞} 

The element equivalent nodal force vector 

∑ [𝑓𝑒𝑞]
𝑁𝐸
𝑗=1 = [𝐹𝑒𝑞] 

The structure equivalent nodal force vector 

Eqn. (2) can be further written as: 

[𝐾]{𝑈} = {𝑃} + {𝑓𝑒𝑞} 

 

 

 

 

 

  



4-Noded Quadrilateral Element (Q4) 
 

 

4 nodes, 1, 2, 3, and 4 

     {

counter − clockwise
1 in the 3rd quadrant
1 − 2 defined local x
2 − 3 defines local y

 

2DOFs per node: 

𝑢 − displacement in the 𝑥 −direction 

𝑣 −displacement in the 𝑦 −direction 

8DOFs per element: 

∴ [𝑘]8x8            {𝑓𝑒𝑞}8x1
 

Element nodal DOFs: 

{𝑢}𝑒 = [ 𝑢1 𝑣1 𝑢2 𝑣2 𝑢3 𝑣3 𝑢4 𝑣4 ]
𝑇 

Within the element, any point (𝑥, 𝑦) will have displacements. 

𝑢(𝑥, 𝑦)  and  𝑣(𝑥, 𝑦) 

𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) are related to {𝑢}𝑒 via shape functions. 

𝑁1(𝑥, 𝑦),   𝑁2(𝑥, 𝑦),   𝑁3(𝑥, 𝑦),   𝑁4(𝑥, 𝑦) 

Such that, 

𝑢(𝑥, 𝑦) =∑𝑁𝑖(𝑥, 𝑦)𝑢𝑖

4

𝑖=1

 

𝑣(𝑥, 𝑦) =∑𝑁𝑖(𝑥, 𝑦)𝑣𝑖

4

𝑖=1

 

 



Putting into matrix form: 

{
𝑢
𝑣
} = [

𝑁1 0 𝑁2 0 𝑁3 0 𝑁4 0
0 𝑁1 0 𝑁2 0 𝑁3 0 𝑁4

]
2x8

{𝑢}𝑒 

 

Where: 

𝑁1(𝑥, 𝑦) =
1

4𝑎𝑏
(𝑎 − 𝑥)(𝑏 − 𝑦) 

𝑁2(𝑥, 𝑦) =
1

4𝑎𝑏
(𝑎 + 𝑥)(𝑏 − 𝑦) 

𝑁3(𝑥, 𝑦) =
1

4𝑎𝑏
(𝑎 + 𝑥)(𝑏 + 𝑦) 

𝑁4(𝑥, 𝑦) =
1

4𝑎𝑏
(𝑎 − 𝑥)(𝑏 + 𝑦) 

Next, [𝐵] = [𝜕][𝑁] 

 

From theory of elasticity: 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
     ;     𝜀𝑦 =

𝜕𝑣

𝜕𝑦
 

𝛾𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
 

∴ {𝜀} = {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

} =

{
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𝜕𝑣

𝜕𝑦
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥}
  
 

  
 

 

=

[
 
 
 
 
 
 
𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑦
𝜕

𝜕𝑦

𝜕

𝜕𝑋]
 
 
 
 
 
 

{
𝑢
𝑣
} 

 

 

= [𝜕][𝑁]{𝑢}𝑒 

 

 



∴ [𝐵] for 𝑄4 is: 

[𝐵] =

[
 
 
 
 
 
 
𝜕
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0

0
𝜕
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𝜕
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𝜕
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3x2

∙ [
𝑁1 0 𝑁2 0 𝑁3 0 𝑁4 0
0 𝑁1 0 𝑁2 0 𝑁3 0 𝑁4

]
2x8

 

[𝐵] =

[
 
 
 
 
 
 
𝜕𝑁1
𝜕𝑥

0
𝜕𝑁2
𝜕𝑥

0
𝜕𝑁3
𝜕𝑥

0
𝜕𝑁4
𝜕𝑥

0

0
𝜕𝑁1
𝜕𝑦

0
𝜕𝑁2
𝜕𝑦

0
𝜕𝑁3
𝜕𝑦

0
𝜕𝑁4
𝜕𝑦

𝜕𝑁1
𝜕𝑦

𝜕𝑁1
𝜕𝑥

𝜕𝑁2
𝜕𝑦

𝜕𝑁2
𝜕𝑥

𝜕𝑁3
𝜕𝑦

𝜕𝑁3
𝜕𝑥

𝜕𝑁4
𝜕𝑦

𝜕𝑁4
𝜕𝑥 ]

 
 
 
 
 
 

3x8

 

[𝑘] = ∫ [𝐵]𝑇[𝐸][𝐵]𝑑𝑉𝑒

 

𝑉𝑒

 

If constant thickness (plane stress 𝑡 = const., plane strain− analyzing a thin slice of constant thickness 𝑡) 

Then, 

[𝑘] = ∫ ∫ [𝐵]𝑇[𝐸][𝐵]𝑑𝑥 ∙ 𝑑𝑦
𝑎

−𝑎

𝑏

−𝑏

 

[𝐵]: 1st order polynomials in 𝑥 or in 𝑦 

∴ integrands are 2nd order polynomials 

∴ analytical (closed-form) solutions are obtainable 

Plane stress: 

[𝐸] =
𝐸

1−𝜈2
[

1 𝜈 0
𝜈 1 0

0 0
1−𝜈

2

]      (linear, elastic, isotropic) 

and: 𝜀𝓏 = −
𝜈

𝐸
(𝜎𝑥 + 𝜎𝑦) 

Plane strain: 

[𝐸] =
𝐸

(1+𝜈)(1−2𝜈)
[

1 − 𝜈 𝜈 0
𝜈 1 − 𝜈 0

0 0
1−2𝜈

2

]       

and: 𝜎𝑧 = 𝜈(𝜎𝑥 + 𝜎𝑦) 

  



Properties of Shape Functions: 

1) ∑ 𝑁𝑖𝑖 = 1 for any given point within the element, including the nodes and edges/surfaces where 

applicable 

2) 𝑁𝑖 = {
1       at node i                  
0        at all other nodes

 

Put them in a more mathematical way: 

1) Is known as the partitions of unity property. 

2) Is known as the 𝛿 −function property. 

Other properties include, 

Consistency: to include the complete order of monomial  

(Second order: 𝑥2, 𝑦2, 𝑥𝑦 ) 

(Third order: 𝑥3, 𝑦3, 𝑥𝑦2, 𝑥2𝑦 ) 

Linear dependence: 𝑁𝑖′𝑠 should be linearly independent 

 

 


