
doThe Wave Equation 

𝜕2𝑢

𝜕𝑡2
= 𝑐2

𝜕2𝑢

𝑑𝑥2
,     𝑥 ∈ [0, 𝐿], 𝑡 ≥ 0 

Boundary conditions: Dirichlet, Neumann, Mixed or Robin.  

For example: 

𝑢(0, 𝑡) = 𝐴,     𝑢(𝐿, 𝑡) = 𝐵 

Initial conditions: 

𝑢(𝑥, 0) = 𝑓(𝑥),    
𝜕𝑢

𝑑𝑡
(𝑥, 0) = 𝑔(𝑥) 

Applying central difference spatially and temporally, 

𝜕2𝑢

𝑑𝑡2
= 𝑐2

𝜕2𝑢

𝑑𝑥2
 

Becomes: 

𝑢𝑛
𝑘+1 − 2𝑢𝑛

𝑘 + 𝑢𝑛
𝑘−1

∆𝑡2
= 𝑐2

𝑢𝑛+1
𝑘 − 2𝑢𝑛

𝑘 + 𝑢𝑛−1
𝑘  

∆𝑥2
+ 𝑂(∆𝑡2, ∆𝑥2) 

Neglecting big O, and solving for 𝑢𝑛
𝑘+1: 

𝑢𝑛
𝑘+1 = 2𝑢𝑛

𝑘 − 𝑢𝑛
𝑘−1 + 𝑐2

∆𝑡2

∆𝑥2
 (𝑢𝑛+1

𝑘 − 2𝑢𝑛
𝑘 + 𝑢𝑛−1

𝑘 ) 

Note that 2 time-steps, 𝑘  and 𝑘 − 1, must be determined before the above iteration scheme can be 

applied. 

Stability conditions: 

𝑐
∆𝑡

∆𝑥
≤ 1 

Boundary conditions: dealt with the same way as the Heat Equation.  

Initial conditions: 𝑢(𝑥, 0) = 𝑓(𝑥) and 
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝑔(𝑥) are discretized in the temporal domain: 

𝑢𝑛
0 = 𝑓(𝑥𝑛) 

𝑢(𝑥, 0 + ∆𝑡) − 𝑢(𝑥 − ∆𝑡)

2∆𝑡
= 𝑔(𝑥) 

The latter leads to: 

𝑢𝑛
−1 = 𝑢𝑛

1 − 2∆𝑡𝑔(𝑥𝑛) 

 

 



The iteration scheme: 

𝑢𝑛
𝑘+1 = 2𝑢𝑛

𝑘 − 𝑢𝑛
𝑘−1 + 𝑐2

∆𝑡2

∆𝑥2
(𝑢𝑛+1

𝑘 − 2𝑢𝑛
𝑘 + 𝑢𝑛−1

𝑘 ) 

When 𝑘 = 0 becomes: 

𝑢𝑛
1 = 𝑢𝑛

0 + ∆𝑡𝑔(𝑥𝑛) + 𝑐
2
∆𝑡2

2∆𝑥2
(𝑢𝑛+1

0 − 2𝑢𝑛
0 + 𝑢𝑛−1

0 ) 

The iteration steps: (for Dirichlet boundary conditions) assign initial condition 𝑢𝑛
0: 

𝑢0
1 ← 𝐴 

𝑢𝑁
1 ← 𝐵 

for 𝑛 = 1,… ,𝑁 − 1 

 𝑢𝑛
1 ← 𝑢𝑛

0 + ∆𝑡𝑔(𝑥𝑛) + 𝑐
2 ∆𝑡

2

∆𝑥2
(𝑢𝑛+1

0 − 2𝑢𝑛
0 + 𝑢𝑛−1

0 ) 

end 

 

for 𝑘 = 1,… , 𝐾 − 1 
𝑢0
1 ← 𝐴 
𝑢𝑁
1 ← 𝐵 

 for 𝑛 = 1,… ,𝑁 − 1 

 𝑢𝑛
𝑘+1 ← 2𝑢𝑛

𝑘 − 𝑢𝑛
𝑘−1 + 𝑐2

∆𝑡2

∆𝑥2
(𝑢𝑛+1

𝑘 − 2𝑢𝑛
𝑘 + 𝑢𝑛−1

𝑘 ) 

end 
end 
 

Example 

𝑐 = 3 

𝐿 = 1 

𝑁 = 10 

∆𝑡 = 0.025 𝑠𝑒𝑐 

𝑡 ∈ [0 ,10] 

𝑢(0, 𝑡) = 0, 𝑢(𝐿, 𝑡) = 0 

𝑢(𝑥, 0) = 𝑓(𝑥) = 𝑡ℎ𝑒 𝑏𝑙𝑢𝑒 𝑙𝑖𝑛𝑒 

𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝑔(𝑥) = 𝑓(𝑥) 

An excel sheet will accompany this file. The sheet has results computed with ∆𝑥 = 0.1, ∆𝑡 = 0.025 for 

10 time-steps. 

Check against stability condition: 

𝑐
∆𝑡

∆𝑥
= 3

0.025

0.1
= 0.75 ≤ 1 

 



The Poisson’s Equation 

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
= −𝐹(𝑥, 𝑦),      𝑥 ∈ [0, 𝑎],   𝑦 ∈ [0, 𝑏] 

If 𝐹(𝑥, 𝑦) = 0, the Poisson’s equation becomes the Laplace’s equation. They are to describe the 

diffusion (or spread) of 𝐹(𝑥, 𝑦) (which may be, for example, a heat source, an electric charge, etc.) For 

the Lapalce’s equation, one investigates the diffusion of boundary conditions. 

Boundary conditions: Dirichlet, Neumann, Mixed or Robin. 

Focusing on the Dirichlet boundary conditions: 

𝑢(𝑥, 0) = 𝑓1(𝑥), 𝑢(𝑥, 𝑏) = 𝑓2(𝑥) 

𝑢(0, 𝑦) = 𝑔1(𝑦), 𝑢(𝑎, 𝑦) = 𝑔2(𝑦) 

Discretizing the rectangular spatial domain so that the node points (mesh points) are: 

𝑥𝑛 = 𝑛∆𝑥, 𝑛 = 0, 1, … ,𝑁 

𝑦𝑚 = 𝑚∆𝑦, 𝑚 = 0, 1,… ,𝑀 

Assuming central for the second derivatives, the Poisson’s equation: 

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
= −𝐹(𝑥, 𝑦) 

becomes, denoting 𝑢(𝑥𝑛, 𝑦𝑚) by 𝑢𝑛,𝑚 

𝑢𝑛+1,𝑚 − 2𝑢𝑛,𝑚 + 𝑢𝑛−1,𝑚
∆𝑥2

+
𝑢𝑛,𝑚+1 − 2𝑢𝑛,𝑚 + 𝑢𝑛,𝑚−1

∆𝑦2
+ 𝑂(∆𝑥2, ∆𝑦2) = −𝐹(𝑥, 𝑦) 

Defining 𝛽 = ∆𝑥/∆𝑦, neglecting the big O, and solving for 𝑢𝑛,𝑚: 

𝑢𝑛,𝑚 =
1

2(1 + 𝛽2)
[𝑢𝑛+1,𝑚 + 𝑢𝑛−1,𝑚 + 𝛽

2𝑢𝑛,𝑚+1 + 𝛽
2𝑢𝑛,𝑚−1 + ∆𝑥

2𝐹(𝑥, 𝑦)] 

The problem with the above approach is, 𝑢𝑛+1,𝑚 𝑎𝑛𝑑 𝑢𝑛,𝑚+1 are unknown. The scheme is therefore 

implicit. 

There are a number of approaches. 

• Direct Solution 

• Jacobi Iteration 

• Successive Over Relaxion (SOR) 

• … 

 

 

 

 



Direct Solution: 

Put the (𝑀 − 1) ∗ (𝑁 − 1) unknowns in a vector U; 

Each equation of: 

𝑢𝑛,𝑚 =
1

2(1 + 𝛽2)
[𝑢𝑛+1,𝑚 + 𝑢𝑛−1,𝑚 + 𝛽

2𝑢𝑛,𝑚+1 + 𝛽
2𝑢𝑛,𝑚−1 + ∆𝑥

2𝐹(𝑥𝑛, 𝑦𝑚)] 

is a row in a matrix 𝑨 and an element in vector 𝑹; 

𝑨 ∙ 𝑼 = 𝑹 is formed; 

𝑼 is then solved. 

Jacobi Iteration: 

𝑢𝑛,𝑚
(𝑘+1)

=
1

2(1 + 𝛽2)
[𝑢𝑛+1,𝑚
(𝑘)

+ 𝑢𝑛−1,𝑚
(𝑘)

+ 𝛽2𝑢𝑛,𝑚+1
(𝑘)

+ 𝛽2𝑢𝑛,𝑚−1
(𝑘)

+ ∆𝑥2𝐹(𝑥𝑛, 𝑦𝑚)] 

Step 1: 

Boundary nodes are assigned boundary conditions; 

𝑘 = 0; 

Interior nodes are assigned zero value, 𝑢𝑛,𝑚(0) ← 0; 

𝒖𝑜𝑙𝑑 ← 𝒖(0); 

Step 2: 

Compute all interior nodes’ values by evaluating 𝑢𝑛,𝑚
(𝑘+1)

; 

Compute ∆= ||𝒖(𝑘+1) − 𝒖𝑜𝑙𝑑||; 

Step 3: 

If ∆ ≤ tolerance, 𝐮old ← 𝐮(𝑘+1), 𝑘 ← 𝑘 + 1, go back to Step 2. 

Successive Over Relaxation (SOR): 

Point SOR: 

From: 

𝑢𝑛,𝑚
(𝑘+1)

=
1

2(1 + 𝛽2)
[𝑢𝑛+1,𝑚
(𝑘)

+ 𝑢𝑛−1,𝑚
(𝑘) + 𝛽2𝑢𝑛,𝑚+1

(𝑘)
+ 𝛽2𝑢𝑛,𝑚−1

(𝑘)
+ ∆𝑥2𝐹(𝑥𝑛, 𝑦𝑚)] 

The SOR scheme is: 

𝑢𝑛,𝑚
(𝑘+1)

= (1 − 𝑤)𝑢𝑛,𝑚
(𝑘)

+
𝑤

2(1 + 𝛽2)
[𝑢𝑛+1,𝑚
(𝑘)

+ 𝑢𝑛−1,𝑚
(𝑘)

+ 𝛽2𝑢𝑛,𝑚+1
(𝑘)

+ 𝛽2𝑢𝑛,𝑚−1
(𝑘)

+ ∆𝑥2𝐹(𝑥𝑛, 𝑦𝑚)] 

Where 1 < 𝑤 < 2 for over relaxation, and 0 < 𝑤 < 1 for under relaxation. 

What is the best value to use for 𝑤? It depends. 

There is also Line SOR. 



    

Example: 

    

 

 



Introduction 

1. 

{
 
 

 
 

Finite Element Method (FEM)
(𝑓𝑜𝑟 𝑎𝑐𝑎𝑑𝑒𝑚𝑖𝑎,

                      𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟𝑠… )

Finite Element Analysis (FEA)

(𝑓𝑜𝑟 𝑢𝑠𝑒𝑟𝑠)

 

 

2. What is FEM/FEA? 

Physically (physical systems’ perspective)  

The continuous physical model is divided into finite pieces (a.k.a. the elements), and the laws of 

nature/physics/chemistry are applied. The results are subsequently recombined to represent the 

continuum. 

Mathematically, 

The differential equation representing the system is converted into a variational form, which is 

approximated by the combination of a finite set of trial functions (a.k.a. shape functions). 

It has been proven that ,as long as the elements meet certain conditions, then as the elements get 

smaller and smaller, the finite element result will converge to the “exact” solution. 

4. Steps in FEA: 

Discretization (Pre-processing): 

• Divide the physical domain into pieces (or elements whose attributes are appropriate for the 

problem at hand)  

• Constrain the mesh by appropriate boundary conditions 

• Apply loads (forces, moments, temperature, pressure, …) 

Solution: 

• Solve: the system of equations 

𝑒. 𝑔.   [𝐾]{𝑈} = {𝐹} 

           {𝑈} = [𝐾]−1{𝐹} 

Post-processing:  

• Calculate: displacements, strains, stresses, and plot results 


