
Part 4: Optimization (V) 
A multi-dimensional constrained optimization is one that, in mathematical terms, 

min
𝒙

𝑓(𝒙)      𝑓𝑜𝑟 𝒙 ∈ 𝑹𝒏 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐹𝑗(𝒙) = 𝑎𝑗 ,     𝑗 = 1, 2, … , 𝑚1 

                    𝐺𝑘(𝒙) ≤ 𝑏𝑘,     𝑘 = 1, 2, … , 𝑚2 

                    𝑎𝑛𝑑 𝑼𝑳 ≤ 𝒙 ≤ 𝑼𝑷 

Where 𝑓(𝒙) is a continuous real-valued function.  

The bounds can be expressed as inequalities such that the constraints are either equality-type or 

inequality-type. 

Linear Programming: 

If 𝑓, 𝐹𝑗 and 𝐺𝑘 are linear functions, that is, 

𝑓(𝒙) = 𝒄𝑇𝒙 

𝑭(𝒙) = 𝑨𝒙 − {𝑎𝑗} = 𝟎 

𝑮(𝒙) = 𝑩𝒙 − {𝑏𝑘} ≤ 𝟎 

𝒙 ≥ 𝟎 

Where c is a vector, and A and B are matrices), the optimization problem can and should be solved by 

linear programming as it is the most effective method for such optimizations. 

Quadratic Programming: 

If 𝑓 is a quadratic function, while 𝐹𝑗 and 𝐺𝑘 remain linear, that is: 

𝑓(𝒙) = 𝒄𝑇𝒙 +
1

2
𝒙𝑇𝑸𝒙 

𝐹(𝒙) = 𝑨𝒙 − {𝑎𝑗} = 0 

𝐺(𝒙) = 𝑩𝒙 − {𝑏𝑘} ≤ 0 

𝒙 ≥ 𝟎 

 Where 𝒄 is a vector, 𝑸, 𝑨 and 𝑩 are matrices, and 𝑸 is positive definite o rnegative definite), the 

optimization problem can and should be solved by quadratic programming as it is the most effective 

method for such optimizations.  

General multi-dimensional nonlinear constrained optimization: 

• Method of Lagrange multipliers 

• Method of penalty functions 

• Exterior penalty 

• Interior penalty 

  



Method of Lagrange multipliers: 

Construct the Lagrange function as follows: 

ℒ(𝒙, 𝝀, 𝝁) = 𝑓(𝒙) + ∑ 𝜆𝑗(𝐹𝑗(𝒙) − 𝑎𝑗)

𝑚1

𝑗=1

+ ∑ 𝜇𝑘(𝐺𝑘(𝒙) − 𝑏𝑘)

𝑚2

𝑘=1

 

Where 𝝀 and 𝝁 contain the 𝜆𝑗 and 𝜇𝑘, respectively. 𝒙 is known as the primal variables, while 𝝀 and 𝝁 are 

the dual variables. 

The Lagrange function transforms the constrained optimization problem into an unconstrained one but 

increases the dimension to 𝑛 + 𝑚1 + 𝑚2. 

Mathematically, the duality theorem stipulates the conditions on the optimal solution. 

For not-too vigorous take at the theorem: 

1. Zero gradient: ∇ℒ = 𝟎, or 
𝜕ℒ

𝜕𝒙
= 𝟎, 

𝜕ℒ

𝜕𝝀
= 𝟎 and 

𝜕ℒ

𝜕𝝁
= 𝟎 

2. Constraints are met. 

3. 𝝀𝑇(𝑨𝒙 − 𝒂) = 0, 𝝁𝑻(𝑩𝒙 − 𝒃) = 0, with 𝝀 ≥ 𝟎, and 𝝁 ≥ 𝟎 

  



Example: minimizing the following: 

𝑓(𝑥) = (𝑥1 − 1)2 + (𝑥2 − 3)2 − 1.8(𝑥1 − 1)(𝑥2 − 3) 

Subject to 𝑥1 = 1 and 𝑥1 − 𝑥2 ≥ 0 

The Lagrange is: 

ℒ(𝒙, 𝝀, 𝝁) = (𝑥1 − 1)2 + (𝑥2 − 3)2 − 1.8(𝑥1 − 1)(𝑥2 − 3) + 𝜆(𝑥1 − 1) + 𝜇(𝑥2 − 𝑥1) 

Applying Condition 1: 

𝑥1 = 1, 𝑥2 = 1, 𝜆 = 0.4, 𝜇 = 0.4 

Check with Condition 2: 

𝑥1 = 1,   𝑡𝑟𝑢𝑒 
𝑥1 − 𝑥2 ≥ 0,   𝑡𝑟𝑢𝑒 

Check with Condition 3: 

𝝀𝑇(𝑨𝒙 − 𝒂) = 0,   𝑡𝑟𝑢𝑒 
𝝁𝑇(𝑩𝒙 − 𝒃) = 0,   𝑡𝑟𝑢𝑒 
𝝀 ≥ 𝟎,   𝑡𝑟𝑢𝑒 
𝝁 ≥ 𝟎,   𝑡𝑟𝑢𝑒 

Steepest-descent with Newton’s method yields: 

𝒙∗ = [ 1, 1, 0.4, 4]𝑇 , 𝑓(𝒙∗) = 4 

  



Method of exterior penalty functions: 

Feasible region means the region, within the 𝑛 −dimensional space, where all constraints are met. 
Constraints define the boundaries of the feasible region. 

The exterior penalty functions method is applicable when the iteration points 𝒙𝑖 are outside the feasible 
region. 

The method works well with both the equality-type and inequality-type of constraints. 

As to what penalty functions to use, it is heuristic. 

Example: Minimizing the following: 

𝑓(𝑥) = (𝑥1 − 1)2 + (𝑥2 − 3)2 − 1.8(𝑥1 − 1)(𝑥2 − 3) 

Subject to 𝑥1 = 1, and 𝑥1 − 𝑥2 ≥ 0. 

The penalty functions may be: 

For 𝑥1 − 𝑥2 ≥ 0: Φ(𝒙) = (𝑥1 − 𝑥2)𝑝 

For 𝑥1 = 1: 𝜓(𝒙) = (𝑥1 − 1)𝑞 

With 𝑝 = 2, 4, … and 𝑞 = 2, 4, … 

Then a Lagrange function is formed, say,  

ℒ(𝒙;  𝜆, 𝜇) = 𝑓(𝒙) + 𝜆𝜓(𝒙) + 𝜇𝜙(𝒙) 

Which is optimized, treating 𝜆, 𝜇 as parameters of increasing values. 

Setting 𝑝 = 4, 𝑞 = 2, 𝜆 = 1, 𝜇 = 100, 𝒙𝟎 = [0, 1]𝑇 , ∆= 0.1 

Using steepest descent + Golden-section search. 

𝒙∗ = 

1.149322837308608 

1.356474098102844 

𝓛∗ = 

3.371661647463247 

𝒇∗ = 

3.165223411499403 

 

 



Now, 𝜆 = 10000, 𝜇 = 10000 

𝒙∗ = 

1.000018513959687 

1.046050470120337 

𝓛∗ = 

3.862886413499447 

𝒇∗ = 

3.817983881276812 

Method of interior penalty functions: 

The interior penalty functions method is applicable if and only if the solutions points 𝑥𝑖 are within the 

feasible region.  

The method works better with inequality-type of constraints. 

The penalty functions are to force the points to move away from the boundaries. They are gence known 

as the barrier functions. 

Again, the choices of penalty functions are heuristic. 

 

Example: Minimizing the following: 

𝑓(𝑥) = (𝑥1 − 1)2 + (𝑥2 − 3)2 − 1.8(𝑥1 − 1)(𝑥2 − 3) 

Subject to 𝑥1 − 𝑥2 ≥ 0. 

The interior penalty functions may be: 

Φ(𝑥) =
1

(𝑥1 − 𝑥2)2
 

Or 

Φ(𝑥) = − ln(𝑥1 − 𝑥2) 

Note that both functions approach +∞ when 𝑥1 approaches 𝑥2 while meeting the constraint. 

The Lagrange function is then formed, 

ℒ(𝑥; 𝜇) = 𝑓(𝑥) + 𝜇Φ(𝑥) 

Which is optimized, treating 𝜇 as a parameter of decreasing values. 



Summary: 

• The method of penalty functions does not yield exact solutions. 

• Optimization performance is heavily dependent on the choices of penalty functions and penalty 

parameters. 

• Hessians may become ill-conditioned due to large penalty parameters. 

• The method of Lagrange multipliers gives rise to exact results (or as close to exact as possible). The 

dimension of the problem is increased from 𝑛 to 𝑛 + 𝑚1 + 𝑚2. 

Visual Explanation: 

 

  



Part 5: Finite Difference Method 
This part concerns itself with finite difference method as a numerical tool for solving differential 

equations (DEs). 

The Big O Notation 

In mathematics, the big O notation, such as O(𝛿𝑛), is used to indicate the order of accuracy or order of 

error. For example, if 𝑛 = 2, one says that it is second order accurate. 

Overview 

Finite difference method comes with explicit and implicit versions, and the combinations of as well. 

Explicit schemes are easy to use but the stability conditions must be adhered to. Explicit schemes are in 

general less accurate than the implicit ones. 

Incorporating boundary conditions may be tedious but is the key to success. 

Finite Difference Method for One-Dimensional DEs 

Here, dimensions refer to spatial dimension. For one-dimensional DEs, the spatial coordinator is 𝑥. The 

temporal “coordinate” may come into the picture, depending on the DE. 

Finite Difference for first-order derivatives 

Forward difference: 

𝑓′(𝑥) =
𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)

∆𝑥
+ 𝑂(∆𝑥) 

Backward difference: 

𝑓′(𝑥) =
𝑓(𝑥) − 𝑓(𝑥 + ∆𝑥)

∆𝑥
+ 𝑂(∆𝑥) 

Central difference (first order): 

𝑓′(𝑥) =
𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥 − ∆𝑥)

2∆𝑥
+ 𝑂(∆𝑥2) 

The central difference is one-order more accurate than the forward or backward difference. 

Finite Difference (FD) for second-order derivatives 

Central difference (second order): 

𝑓′′(𝑥) =
𝑓(𝑥 + ∆𝑥) − 2𝑓(𝑥) + 𝑓(𝑥 + ∆𝑥)

∆𝑥2
+ 𝑂(∆𝑥2) 

That is, the error is of the order ∆𝑥2. 

The Hear Equation 



𝜕𝑢

𝜕𝑡
= 𝜅

𝜕2𝑢

𝜕𝑥2
,     𝑥 ∈ [0, 𝐿], 𝑡 ≥ 0 

Assume forward difference for the temporal domain and central difference for the spatial domain, then 

the heat equation is discretized as: 

𝑢(𝑥, 𝑡 + ∆𝑡) − 𝑢(𝑥, 𝑡)

∆𝑡
= 𝜅

𝑢(𝑥 + ∆𝑥, 𝑡) − 2𝑢(𝑥, 𝑡) + 𝑢(𝑥 − ∆𝑥, 𝑡)

∆𝑥2
+ 𝑂(∆𝑡, ∆𝑥2)  

The spatial domain is divided into N even intervals such that 𝑥𝑛 = 𝑛∆𝑥 with 𝑛 = 0, 1, 2, … , 𝑁 

The temporal domain is discretized by ∆𝑡 such that 𝑡𝑘 = 𝑘∆𝑡, where 𝑘 = 0, 1, 2, … , 𝐾. 

Denoting 𝑢(𝑥𝑛, 𝑡𝑘) by 𝑢𝑛
𝑘, the above equation becomes, neglecting the big O,  

𝑢𝑛
𝑘+1 − 𝑢𝑛

𝑘

∆𝑡
= 𝜅

𝑢𝑛+1
𝑘 − 2𝑢𝑛

𝑘 + 𝑢𝑛−1
𝑘

∆𝑥2
  

Solving for 𝑢𝑛
𝑘+1 , 

𝑢𝑛
𝑘+1 = 𝑢𝑛

𝑘 + 𝜅
∆𝑡

∆𝑥2 (𝑢𝑛+1
𝑘 − 2𝑢𝑛

𝑘 + 𝑢𝑛−1
𝑘 ) 

This is the iteration scheme to go from time step 𝑘 to time step 𝑘 + 1. 

Stability condition of the scheme: 

𝜅∆𝑡

∆𝑥2
≤

1

2
 

  



Dirichlet Boundary Conditions 

𝑢(0, 𝑡) = 𝐴,     𝑢(𝐿, 𝑡) = 𝐵 

After initial condition: 𝑢(𝑥, 0) = 𝑓(𝑥) 

Initial condition: 𝑢𝑛
0 = 𝑓(𝑥𝑛) where 𝑛 = 0, 1, 2, … , 𝑁. 

Boundary conditions: 𝑢0
𝑘 = 𝐴,   𝑢𝑁

𝑘 = 𝐵 for all 𝑘 > 0. 

 

 

The iteration steps: 

Assign initial condition 𝑢𝑛
0  

for 𝑘 = 0, … , 𝐾 − 1 

𝑢0
𝑘+1 ← 𝐴  

𝑢𝑁
𝑘+1 ← 𝐵 

for 𝑛 = 1, … , 𝑁 − 1 

     𝑢𝑛
𝑘+1 ← 𝑢𝑛

𝑘 + 𝜅
∆𝑡

∆𝑥2
 (𝑢𝑛+1

𝑘 − 2𝑢𝑛
𝑘 + 𝑢𝑛−1

𝑘 ) 

end 

end 

  



Neumann Boundary Conditions 

𝜕𝑢

𝜕𝑥
(0, 𝑡) = 𝐶,    

𝜕𝑢

𝜕𝑥
(𝐿, 𝑡) = 𝐷 

And initial condition: 𝑢(𝑥, 0) = 𝑓(𝑥) 

Using central difference on 
𝜕𝑢

𝜕𝑥
 

𝜕𝑢

𝜕𝑥
(0, 𝑡) =

𝑢(∆𝑥, 𝑡) − 𝑢(∆𝑥, 𝑡)

2∆𝑥
=

𝑢1
𝑘 − 𝑢−1

𝑘

2∆𝑥
= 𝐶  

The mesh point 𝑥 = −∆𝑥 does not exist. However, 𝑢−1
𝑘  can be determined as follows 

𝑢−1
𝑘 = 𝑢1

𝑘 − 2∆𝑥𝐶 

∴ 𝑢0
𝑘+1 = 𝑢0

𝑘 + 𝜅
∆𝑡

∆𝑥2 (−2𝑢0
𝑘 + 2𝑢1

𝑘 − 2∆𝑥𝐶) 

By the same token, 𝑥 = 𝐿 + ∆𝑥 does not exist but 

𝑢𝑁+1
𝑘 = 𝑢𝑁−1

𝑘 + 2∆𝑥𝐷 

∴ 𝑢𝑁
𝑘+1 = 𝑢𝑁

𝑘 + 𝜅
∆𝑡

∆𝑥2 (2𝑢𝑁−1
𝑘 − 2𝑢𝑁

𝑘 + 2∆𝑥𝐷) 

The iteration scheme remains the same as with Dirichlet boundary conditions. 

Mixed boundary conditions; Robin boundary conditions 

Apply the principles shown above. 

Example: 𝜅 = 0.835, 𝐿 = 10, 𝑁 = 10; ∆𝑡 = 0.5 𝑠, 𝑡 ∈ [0, 10] 

𝑢(0, 𝑡) = 100,     𝑢(𝐿, 𝑡) = 50,     𝑎𝑛𝑑 𝑢(𝑥, 0) = 0 

Note these boundary conditions are maintained at all times. 

This example is available from “Numerical Methods for Engineers”, Chapter 30. An excel sheet will 

accompany this file. The sheet has results computed with ∆𝑥 = 2, ∆𝑡 = 0.1 for 5 time steps. 

Stability condition: 

𝜅∆𝑡

∆𝑥2
=

(0.835)(0.5)

12
= 0.4175 ≤

1

2
 

 



 

 



Example: 𝜅 = 0.835, 𝐿 = 10, 𝑁 = 10; ∆𝑡 = 0.5 𝑠, 𝑡 ∈ (0, 10] 

𝜕𝑢

𝜕𝑥
(0, 𝑡) = 0 𝑜𝑟 1,     𝑢(𝐿, 𝑡) = 85,     𝑎𝑛𝑑 𝑢(𝑥, 0) = 50 

Stability condition: 

𝜅∆𝑡

∆𝑥2
=

(0.835)(0.5)

12
= 0.4175 ≤

1

2
 

      

 

 

  



For assignment (wave equation): 

 


