
 

 

Part I: Least Square Analysis 
Case I: Curve Fitting 

 

Case 2: 𝐴𝑚∙𝑛𝑥⃗𝑛∙1 = 𝑏⃗⃗𝑚∙1 

𝑚 > 𝑛 (when the matrix has more equations than unknown, the matrix A is a tall matrix – so there is 

usually no solution): 

[

 
 
𝐴
 
 

] [𝑥⃗] =

[
 
 
 

 
 

𝑏⃗⃗
 
 ]
 
 
 

 

Then the error vector can be written as: 

𝑒 = 𝑏⃗⃗ − 𝐴𝑥⃗ 

As it turns out, both cases have the same solution method. 

1. Linear Regression 
Given data pairs:  

(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛), 𝑛 > 2  

Find the best fit line: 

𝑦 = 𝑎𝑜 + 𝑎1𝑥 + 𝑒 

We try to find a way to define the ‘best fit’ - we can use the length of the error vector itself, defined as 

an object function. 

For each pair (𝑥𝑖, 𝑦𝑖), the error  

𝑒𝑖 = 𝑦𝑖 − 𝑎𝑜 − 𝑎1𝑥𝑖,    𝑖 = 1, 2,… , 𝑛 

𝑎0, 𝑎1; constants to be determined 

 



 

 

Object function 

𝑆𝑟 = 𝑒1
2 + 𝑒2

2 + 𝑒3
2 +⋯+ 𝑒𝑛

2 =∑ 𝑒𝑖
2

𝑛

𝑖=1
= ∑𝑒𝑖

2 

 

Or 

𝑆𝑟 = ∑(𝑦𝑖 − 𝑎𝑜 − 𝑎1𝑥𝑖)
2 

Minimizing 𝑆𝑟 

𝛿𝑆𝑟
𝛿𝑎𝑜

= 0,
𝛿𝑆𝑟
𝛿𝑎1

= 0 

𝛿𝑆𝑟
𝛿𝑎𝑜

= ∑2(𝑦𝑖 − 𝑎0 − 𝑎1𝑥) ∙ (−1) 

𝛿𝑆𝑟
𝛿𝑎𝑜

= (−2) ∑(𝑦𝑖 − 𝑎0 − 𝑎1𝑥) 

𝛿𝑆𝑟
𝛿𝑎1

= ∑2(𝑦𝑖 − 𝑎0 − 𝑎1𝑥)(−𝑥𝑖) 

𝛿𝑆𝑟
𝛿𝑎1

= (−2) ∑ (𝑦𝑖 − 𝑎0 − 𝑎1𝑥) ∙ 𝑥𝑖   

Substituting into the original equation: 

∑(𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖) = 0 

∑𝑦𝑖 −∑𝑎0 − ∑𝑎1𝑥𝑖 = 0 

And 

∑(𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖)𝑥𝑖 = 0 

∑𝑥𝑖𝑦𝑖 − ∑𝑎0𝑥𝑖 − ∑𝑎1𝑥𝑖
2 = 0 

→     𝑛 ∙ 𝑎0 + (∑𝑥𝑖)𝑎1 = ∑𝑦𝑖  

    (∑𝑥𝑖)𝑎0 + (∑𝑥𝑖
2)𝑎1 = ∑𝑥𝑖𝑦𝑖  

Thus, from Gauss-Jordan elimination: 

𝑎1 =
𝑛∑𝑥𝑖𝑦𝑖 − ∑𝑥𝑖∑𝑦𝑖

𝑛∑𝑥𝑖
2 − (∑𝑥𝑖)

2
 

𝑎0 =
1

𝑛
[∑𝑦𝑖 − (∑𝑥𝑖)𝑎1] = 𝑦̅ − 𝑥̅ ∙ 𝑎1 

Here 

𝑥̅ =
∑𝑥𝑖
𝑛
    ;       𝑦̅ =

∑𝑦𝑖
𝑛

 



 

 

𝐴𝑥⃗ = 𝑏⃗⃗ − 𝐴𝑥⃗ 

𝐴 is a tall matrix (no unique solution – more unknown than equations, or no solutions at all) 

Define error vector 

𝑒 = 𝑏⃗⃗ − 𝐴𝑥⃗ 

We try to find the smallest error vector length using the error vector itself. We use the dot product, or 

transpose multiplied by itself. 

Minimize  

𝑆𝑟 = 𝑒
𝑇𝑒 

= (𝑏⃗⃗ − 𝐴𝑥⃗)
𝑇
(𝑏⃗⃗ − 𝐴𝑥⃗) 

= (𝑏⃗⃗𝑇 − 𝑥⃗𝑇𝐴𝑇)(𝑏⃗⃗ − 𝐴𝑥⃗) 

= 𝑥𝑇⃗⃗ ⃗⃗⃗𝐴𝑇𝐴𝑥⃗ − 𝑥𝑇𝐴𝑇𝑏 − 𝑏𝑇𝐴𝑥 + 𝑏𝑇𝑏 

Two vectors 𝑥 and 𝑦 (It’s a scalar so order doesn’t matter, so the order can be switched with no issues) 

𝑥𝑇𝑦 = 𝑦𝑇𝑥 

𝑆𝑟 = 𝑥
𝑇𝐴𝑇𝐴 𝑥 − 2𝑥𝐴𝑏 + 𝑏𝑇𝑏 

**Where 𝐴𝑇𝐴 is a symmetric matrix 

Note: This is a typical quadratic equation 

Sr is a function of vector x⃗⃗ 

𝑥⃗ = (𝑥1, 𝑥2, … , 𝑥𝑛) 

Minimizing Sr 

𝛿𝑆𝑟

𝛿𝑥1
= 0      

𝛿𝑆𝑟

𝛿𝑥2
= 0      …      

𝛿𝑆𝑟

𝛿𝑥𝑛
= 0 

Or (another form): 

𝛿𝑆𝑟
𝛿𝑥⃗

=

{
  
 

  
 
𝛿𝑆𝑟
𝛿𝑥1
𝛿𝑆𝑟
𝛿𝑥2…
𝛿𝑆𝑟
𝛿𝑥𝑛}

  
 

  
 

= 0 

𝛿𝑆𝑟
𝛿𝑥⃗

= 2𝐴𝑇𝐴𝑥⃗ − 2𝑎𝑇𝑏 

From calculus, we knowthe minimum value of this expression is when it is equal to 0. 

 

 



 

 

Find 𝑥⃗ such that 

𝐴𝑇𝐴𝑥⃗ = 𝐴𝑇 𝑏⃗⃗ 

This is how we solve a set (or system of linear equations) when there is no solution. 

- We call this the least-squares method 

- Essentially, we’re just multiplying each side by 𝐴𝑇 

  



 

 

Example 
Find the closest line to the points (0, 6), (1,0), (2,0) 

 

 

 

 

 

 

 

Solution 
Line 

𝑦 = 𝑎0 + 𝑎1𝑡 

Point (0,6): 𝑎0 + 𝑎1(0) = 6 

Point (1,0): 𝑎0 + 𝑎1(1) = 0 

Point (2,0): 𝑎0 + 𝑎1(2) = 0 

In matrix form: 

[
1 0
1 1
1 2

] {
𝑎0
𝑎1
} = {

6
0
0
} 

Convert to: 

𝐴𝑇𝐴𝑥⃗ = 𝐴𝑇 𝑏⃗⃗ 

[
1 1 1
0 1 2

] [
1 0
1 1
1 2

] {
𝑎0
𝑎1
} = [

1 1 1
0 1 2

] {
6
0
0
} 

[
3 3
3 5

] {
𝑎0
𝑎1
} = {

6
0
} 

{
𝑎0
𝑎1
} = [

3 3
3 5

]
−1

{
6
0
} = {

5
−3
}  

The line: 

𝑦 = 5 − 3𝑡 

  



 

 

Geometric explanation 

Another way of thinking about the least-squares solution: 

[
1 0
1 1
1 2

] {
𝑎0
𝑎1
} = {

6
0
0
} 

𝑎0 {
1
1
1
} + 𝑎1 {

0
1
2
} = {

6
0
0
} 

The column vectors of 𝐴: {
1
1
1
} and {

0
1
2
} will expand a plane in 3D (3 dimensions) 

𝑏 = {
6
0
0
} does not belong to the plane. 

 

 

 

 

 

 

 

 

 

 

 

𝑏⃗⃗ = 𝑝 + 𝑒 

And: 

Ax⃗⃗̂ = p⃗⃗ 

𝑒 = 𝑏⃗⃗ − 𝑝 

Is the smallest value when 𝑝 is a projection of 𝑏⃗⃗ onto the plane formed by the columns of matrix 𝐴. 


