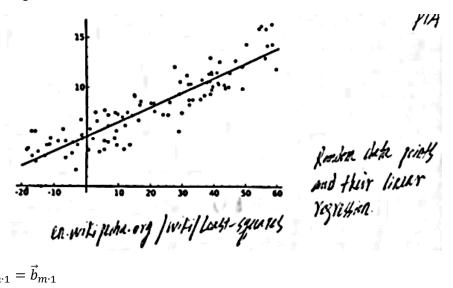
Part I: Least Square Analysis

Case I: Curve Fitting



Case 2:
$$A_{m \cdot n} \vec{x}_{n \cdot 1} = \vec{b}_{m \cdot 1}$$

m > n (when the matrix has more equations than unknown, the matrix A is a tall matrix – so there is usually no solution):

$$\begin{bmatrix} A \\ [\vec{x}] = \vec{b} \end{bmatrix}$$

Then the error vector can be written as:

$$\vec{e} = \vec{b} - A\vec{x}$$

As it turns out, both cases have the same solution method.

1. Linear Regression

Given data pairs:

$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n), n > 2$$

Find the best fit line:

$$y = a_0 + a_1 x + e$$

We try to find a way to define the 'best fit' - we can use the length of the error vector itself, defined as an object function.

For each pair (x_i, y_i) , the error $e_i = yi - a_o - a_1x_i$, i = 1, 2, ..., n a_0, a_1 ; constants to be determined

Object function

$$S_r = e_1^2 + e_2^2 + e_3^2 + \dots + e_n^2 = \sum_{i=1}^n e_i^2 = \sum e_i^2$$

Or

$$S_r = \sum (y_i - a_o - a_1 x_i)^2$$

Minimizing S_r

$$\frac{\delta S_r}{\delta a_o} = 0, \qquad \frac{\delta S_r}{\delta a_1} = 0$$

$$\frac{\delta S_r}{\delta a_o} = \sum 2(y_i - a_0 - a_1 x) \cdot (-1)$$

$$\frac{\delta S_r}{\delta a_o} = (-2) \sum (y_i - a_0 - a_1 x)$$

$$\frac{\delta S_r}{\delta a_1} = \sum 2(y_i - a_0 - a_1 x)(-x_i)$$

$$\frac{\delta S_r}{\delta a_1} = (-2) \sum (y_i - a_0 - a_1 x) \cdot x_i$$

Substituting into the original equation:

$$\sum (y_i - a_0 - a_1 x_i) = 0$$
$$\sum y_i - \sum a_0 - \sum a_1 x_i = 0$$

And

$$\sum (y_i - a_0 - a_1 x_i) x_i = 0$$

$$\sum x_i y_i - \sum a_0 x_i - \sum a_1 x_i^2 = 0$$

$$\rightarrow n \cdot a_0 + (\sum x_i) a_1 = \sum y_i$$

$$(\sum x_i) a_0 + (\sum x_i^2) a_1 = \sum x_i y_i$$

Thus, from Gauss-Jordan elimination:

$$a_1 = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2}$$
$$a_0 = \frac{1}{n} [\sum y_i - (\sum x_i) a_1] = \bar{y} - \bar{x} \cdot a_1$$

Here

$$\bar{x} = \frac{\sum x_i}{n}$$
 ; $\bar{y} = \frac{\sum y_i}{n}$

$$A\vec{x} = \vec{b} - A\vec{x}$$

A is a tall matrix (no unique solution – more unknown than equations, or no solutions at all)

Define error vector

$$\vec{e} = \vec{b} - A\vec{x}$$

We try to find the smallest error vector length using the error vector itself. We use the dot product, or transpose multiplied by itself.

Minimize

$$S_r = \vec{e}^T \vec{e}$$

$$= (\vec{b} - A\vec{x})^T (\vec{b} - A\vec{x})$$

$$= (\vec{b}^T - \vec{x}^T A^T) (\vec{b} - A\vec{x})$$

$$= \vec{x}^T A^T A \vec{x} - x^T A^T b - b^T A x + b^T b$$

Two vectors x and y (It's a scalar so order doesn't matter, so the order can be switched with no issues)

$$x^{T}y = y^{T}x$$

$$S_{r} = x^{T}A^{T}A x - 2xAb + b^{T}b$$

**Where $A^T A$ is a symmetric matrix Note: This is a typical quadratic equation

 S_r is a function of vector \vec{x}

$$\vec{x} = (x_1, x_2, ..., x_n)$$

Minimizing S_r

$$\frac{\delta S_r}{\delta x_1} = 0 \qquad \frac{\delta S_r}{\delta x_2} = 0 \qquad \dots \qquad \frac{\delta S_r}{\delta x_n} = 0$$

Or (another form):

$$\frac{\delta S_r}{\delta \vec{x}} = \begin{cases} \frac{\delta S_r}{\delta x_1} \\ \frac{\delta S_r}{\delta x_2} \\ \frac{\delta S_r}{\delta x_n} \end{cases} = 0$$

$$\frac{\delta S_r}{\delta \vec{x}} = 2A^T A \vec{x} - 2a^T b$$

From calculus, we knowthe minimum value of this expression is when it is equal to 0.

Find $\vec{\hat{x}}$ such that

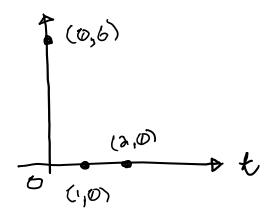
$$A^T A \vec{\hat{x}} = A^T \vec{b}$$

This is how we solve a set (or system of linear equations) when there is no solution.

- We call this the least-squares method
- Essentially, we're just multiplying each side by A^{T}

Example

Find the closest line to the points (0, 6), (1,0), (2,0)



Solution

Line

$$y = a_0 + a_1 t$$

Point (0,6):
$$a_0 + a_1(0) = 6$$

Point (1,0): $a_0 + a_1(1) = 0$
Point (2,0): $a_0 + a_1(2) = 0$

In matrix form:

$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{Bmatrix} a_0 \\ a_1 \end{Bmatrix} = \begin{Bmatrix} 6 \\ 0 \\ 0 \end{Bmatrix}$$

Convert to:

$$A^{T}A\vec{x} = A^{T}\vec{b}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{Bmatrix} a_{0} \\ a_{1} \end{Bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{Bmatrix} 6 \\ 0 \\ 0 \end{Bmatrix}$$

$$\begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix} \begin{Bmatrix} a_{0} \\ a_{1} \end{Bmatrix} = \begin{Bmatrix} 6 \\ 0 \\ 3 & 5 \end{bmatrix}^{-1} \begin{Bmatrix} 6 \\ 0 \end{Bmatrix} = \begin{Bmatrix} 5 \\ -3 \end{Bmatrix}$$

The line:

$$y = 5 - 3t$$

Geometric explanation

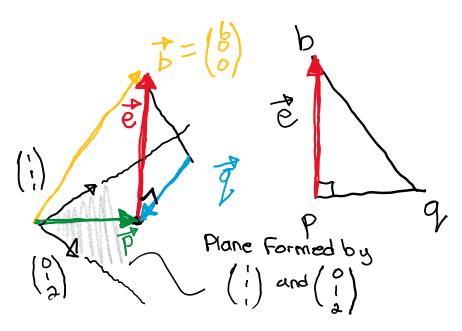
Another way of thinking about the least-squares solution:

$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{Bmatrix} a_0 \\ a_1 \end{Bmatrix} = \begin{Bmatrix} 6 \\ 0 \\ 0 \end{Bmatrix}$$

$$a_0 \begin{Bmatrix} 1 \\ 1 \\ 1 \end{Bmatrix} + a_1 \begin{Bmatrix} 0 \\ 1 \\ 2 \end{Bmatrix} = \begin{Bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$$

The column vectors of A: $\begin{cases} 1 \\ 1 \\ 1 \end{cases}$ and $\begin{cases} 0 \\ 1 \\ 2 \end{cases}$ will expand a plane in 3D (3 dimensions)

 $b = \begin{cases} 6 \\ 0 \\ 0 \end{cases}$ does not belong to the plane.



$$\vec{b} = \vec{p} + \vec{e}$$

And:

$$A\vec{\hat{x}} = \vec{p}$$

$$\vec{e} = \vec{b} - \vec{p}$$

Is the smallest value when \vec{p} is a projection of \vec{b} onto the plane formed by the columns of matrix A.