Part I: Least Square Analysis
Case I: Curve Fitting
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Case 2: AppnXn1 = bt

m > n (when the matrix has more equations than unknown, the matrix A is a tall matrix — so there is
usually no solution):

Then the error vector can be written as:
é=b— A%
As it turns out, both cases have the same solution method.

1. Linear Regression
Given data pairs:

(le yl)l (XZJ yZ)J ey (xn' yn):n > 2
Find the best fit line:
y=a,+ax+e

We try to find a way to define the ‘best fit’ - we can use the length of the error vector itself, defined as
an object function.

For each pair (x;, y;), the error
eg=yl—a,—a;x;, i=12,..,n
ay, aq; constants to be determined



Object function

n
Sr=612+ezz+e32+---+en=z el = Yef
i=1

Or
Sy = Z(Yi —Qp — alxi)2
Minimizing S,
6S, o, 6S, _ 0
da, da,
oS,
5a, =220y —ag —asx) - (—1)
oS
5o, = D X0~ a - arx)
oS
5617; =220y —ap — a1 x)(—x;)
oS
Saz =(=2)YX i—ap—a1x)x;

Substituting into the original equation:
XOi—ap—ax) =0
2Yi —2ao — xaix; =0
And
2 —ap—agx)x; =0
Xy — Yaox; — Raxf =0

- n-ay+ Q@xda; =y
Ex)ag + (Tx?)a;s = Txy;

Thus, from Gauss-Jordan elimination:

0 = nYXy; — XX Y
bonnad - (Bx)?

1
ap = E[Zyl’ - Cxdal=y—x-a4
Here

X =

xx o
n'y

i
n



AR =b — A%
A is a tall matrix (no unique solution — more unknown than equations, or no solutions at all)
Define error vector
é=b— A%

We try to find the smallest error vector length using the error vector itself. We use the dot product, or
transpose multiplied by itself.

Minimize
s, =&Té
b d = T - -
= (b —Ax) (b—Ax
= (b” — %7AT)(b — A%)
= xTATA% — xTATb — bTAx + bTh
Two vectors x and y (It’s a scalar so order doesn’t matter, so the order can be switched with no issues)
xTy =yTx
S, =xTATAx — 2xAb + b"b

**Where AT A is a symmetric matrix
Note: This is a typical quadratic equation

S, is a function of vector X

J-C) = (xl,xz, ...,xn)

Minimizing Sy
8 _ o 3Se_ g 85 _
5xq 8x, B
Or (another form):
(0S5
oxq
58S, < 85, L _
5% 5_9_5_2 B
oS,
5xp
oS,

= 24TAX — 2a"b

85X

From calculus, we knowthe minimum value of this expression is when it is equal to 0.



Find % such that
ATA% = ATh

This is how we solve a set (or system of linear equations) when there is no solution.
- We call this the least-squares method
- Essentially, we’re just multiplying each side by AT



Example
Find the closest line to the points (0, 6), (1,0), (2,0)

F (0,6)

(3.0
> %
o
Solution
Line
Y = Qg + alt

Point (0,6): ay + a;(0) = 6
Point (1,0) (2N + al(l) =0
Point (2,0): ap + a;(2) =0

In matrix form:

el

Convert to:
ATA% = ATb
1 0 6
| O (W R PR
HE[RRY
-1
(=1 3 (=13
The line:

y=5-3t



Geometric explanation

Another way of thinking about the least-squares solution:

b e-{
wofi o i)

1 0
The column vectors of A: {1} and {1} will expand a plane in 3D (3 dimensions)
1 2

6
b= {0} does not belong to the plane.
0
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And:

Is the smallest value when p is a projection of b onto the plane formed by the columns of matrix A.



Example
Fit a straight line to the x and y
X; 1 2 3 4 5 6 7
Vi 0.5 2.5 2.0 4.0 3.5 6.0 5.5
Solution
y=ay+ a;x (+e)
Here
0 = nyxi y; — (Xx) Cyi)
! nyx? — (Ix;)?
Ay =y — a1x
Since
n=7
Yx;=14+2+--4+7=28
Yy;=05+25+--+55=24
_ in 28
= = 4
x n 7
_ Xy 24
=—=—=23.428571429
y n 7
Yx;y; = 1(0.5) + 2(2.5) + - 119.5
YxF=12+4224+--+72 =140
Therefore

_ (D(119.5) — (28)(24)
M= T (140) — (28)2
a, = 0.8392857
a, = (3.428571429) — (0.8392857)(4)
ap = 0.07142857

~y =0.07142857 + 0.8392857x




Estimate of the linear regression (error from the sampling data to the straight line):
S, =Y(i —ap — a;x;)*  which (= Zef)

Under some conditions, the least squares regression will provide the best estimation of a5 and a;.
According to research found in:

Draper & Smith, 1981

Applied regression analysis

Standard error of the estimate (how spread out the data is around the best fit line):

Sylx

It quantifies the spread around the straight line.

Forthedatay;,i = 1,2,3,...,n, define
Se =i — }_’)2

Standard deviation (the quantified spread around the mean):

Define the coefficient of determination:

r is called the correlation coefficient.

What does the value of 72 represent:
* 1st case: S, = 0, v? = 1, all the data are on the straight line.
* 2nd case: S, = S;, 2 = 0, straight line fit represents no improvement (equal or worse result)

Another way to calculate 7:

nyxiy; — Cx)Cyi)
(et = Ex? [n5e - Sy

T =




Example
Estimate the least-squares fit

X; 1 2 3 4 5 6 7
Vi 0.5 2.5 2.0 4.0 3.5 6.0 5.5
Solution

y = 3.428571429

Se =i — }_’)2
Sy = (0.5 — 3.428571429)% + (2.5 — 3.428571429)? + --- + (5.5 — 3.428571429)2
S = 22.7143

a, = 0.8392857
a, = 0.07142857

Y — ap — a;x;)?
0.5 —0.07142857 — 0.8392857(1))2 + -+ (5.5—0.07142857 — 0.8392857(7))2
2.9911

S,
s,
S,

2SSy _ 22714329911

S, 227143 0868

Then around 87% of the data can represented with a straight line —there’s still some uncertainty.

Standard deviation (error from mean to data point)

S feames o
T n-1 T 71 T ¢

Standard error (error from line of best fit to data point)

S [t
S T =2 T (71 T

Sy > Sy|x
Thus, straight line distribution is better than the average fit — consider the following diagram:
(5]
e
-
m’—
®
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®
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Linearization of Non-linear Relationships

Case 1
y = ayefr*
Iny =In(e; + eﬁlx)
Iny =Ina; +Inefr*
Iny =lna; + f1x
Thus,
a, =Ina,
a; =By
Linearizing:
y=Iny
xX=x
Now:

y=ay+ax

Thus, In y and x are linearly related — we can get similar relationships in other cases.

Case 2
This is a typical power function:
y = ayxPe
Becomes:
logy =loga, + f,logx
Thus,
ap =loga,
a; =,
Linearizing:
y =logy
x = logx
Case 3
These relationships are usually used for rates of change, in disciplines such as chemical engineering:
x
=a
y 3 Bs+x
Becomes:
1 pBz+x 1 +ﬁ3 (1)
y  azx a3 a3 \x
Thus,
ag =1/a3
a; = Bz/az
Linearizing:
y=1/y

x=1/x



Polynomial Regression
Consider the following set of data:

Where the data cannot be represented by a linear line of best fit, so a second order polynomial

(quadratic) line of best fit can be used. < e (\O)
K%
The least-squares procedure to fit the data: ( e O\\\)J \2 \OO 00'\
y=ay+ax+ azxz@ U_)\(\eg\b\o\é G

Define @ ) Q 0 <

2
Sy =%ef = Z(¥i — a0 — arx; — axx})

The stationary conditions:

6S

&1; =%2(y;i —ao — a1x; — axx{) - (=1) =0

éS

&11 =%2(y; —ao — a1x; — apx{) - (=x;) = 0
6S

&1; =Y2(yi — ao — arx; — apxf) - (=xf) = 0

Consider:
Y(ao + ayx; + ayx? —y;) =0
Yao + Xaix; + Yaxxf —Yy; =0
(m)ay + Ex)a; + (inz)az =2y *
Z(aoxi + alxiz + ale-z — xiyl-) =0

(Zxdag + (Zxf)ay + (X7 )az = Txiy; **
(Xxf)ao + (Xxf)ar + (i) ay = Tafy; ***
Note: As long as at least two x; are different, you can find a unique solution — they can’t all be the same!

The standard error:
Sy
Syly = |[————=
i n—(m+1)
Where n is the number of data points
Where m is the degree of the polynomial



Example

)C\L@Jllgx 3‘”_

5 a1 ] 77| 1»elaz.a | 4eaq

Fit a second order polynomial to the data.

Solution:

4

[

T 1

1
na,  QCwa () = Ty

Cxdag  (Exf)a; (Tx)a, = Tyix
(inz)ao (inB)Ch (fo)az = Z}’ixiz
n==~6

le' =15
le-z =55

Yx} =225

Yxt =979
Yy; =152.6
Zyl-xi = 5856

Yyix? = 2488.8

6 15 55)(% 152.6
jis 55 asflal -f s

55 225 979)\a; 2488.8

The linear equations:



Then:

ay = 2.47857
a, = 2.35929
a, = 1.86071
L y = 2.47857 + 2.35929x + 1.86071x2 )
Since
1526
_ L —=2 = 25.433

\n

n
y =2 —y)* =2513.39
L= 3y — ap — agx; — azx?)’ = 3.74657

[95)

Standard error:

_ S, _ | 374657 _ .
YT T mr D -2+ D

The coefficient of determination:

LSS
Sy
,  2513.39 — 3.74657
= 2513.39
2 = 0.99851

What do you do if you have a polynomial? It’s the same procedure:

y=ag+ax?+ax*+-+a,xm"+e

T 1

m + 1 unknown: a4 a; ...a,,



Multiple linear regression

y=ag+a;x; +ax,+e

8\‘0; (DCMZCz;)%:‘ aa+0?9¢>*0‘2°“>

/ S 67-’- 0\04*01'I-, + a'zxz

‘I’]

Xz

Given data:
(11 X1 Y1)
(12 X2 ¥2)
(xln Xon yn)
Consider:

Sy = Zeiz =Y —ap—agxq; — azxzi)2
Sr = Sr(ag, a1, a3)

55,

Sa. 22(yi —ag — a1xy; — azx;) * (=1) =0
Qo

55..

Sa. 22(yi —ag — axq; — Azxz;) * (—x1;) =0
a,

55,

S, 22y —ag — arxy; — Axp;) - (—x;) =0
a

2o + Xagxy; + Yazxp; = Yy,

nao XEx1)aq XExzi)a, = XY
Xx1)ag (lezi)al Cx1ixz)a, = XXy
QCxzi)ae  Xxqixz)ay (2x§i)a2 = XX2Yi

y=ag+ax;+ax,+--+aux,te



Each data point:

X1y X2i - Xmipy ¥Vi (1 = 1,2, ...,n)

Sy = Zelz =Y i — o — ayx; — = ApXymy)?
Standard error:

Sylx = n—(m+1)

General linear least-squares__
y=agzg+az; +-+anz, t+e

T 1

Zy, Z1, Zy- the basis functions
In the multiple linear regression:

zg=1,21 =Xq1,2y) = X3, Zm = Xy
Polynomial regression:

y=ag+ax+ax’+-+apx™+e
Zo =1,z =x,2, = X%, ..., Zp = x™

For example:

zog =1,z = coswt,z, = sinwt

Z;::Ms wt + a, sin wt ?
Note: this is the first three terms of the Fourier expansion.

Fort the sample point

Z0ir Z1ir 0 Zmipy Vi (1 = 1,2, ..., n)

doton

€ =Yi — QAoZo; — A121; — " — AmZmi
i=12,..,n
Sy = Zezz
6S 6S 6S
=0, —=0, .. T =0
da, oaq oa,;,

In the matrix form:

S L[Z]T[Z]{A} - 2" \




Here

Qo
w={"t m-= }

am
Zo1  Z11 Z21

Zo2 Z12  Z22 - Zm2
[Z] =|203 Z13 Z23 - Zm3

|~ZOn Zin  Zon e Zanﬂ b’ L“\ * \)

[Z] is a tall matrix

To solve the final linear equations,
LU decomposition
Cholesky’s method

{4} = (Z]"[zD~ 2] (v}

Let
-1 -1 -1
211 Z12 Z1,m+1
r L 21 21 71
(Z17[ZzD~t = 12 22 2,m+1
-1 -1 -1
Zm+1,1  Zm+12 - Zm+1m+1

The diagonal of the matrix:
zj;': Thevarianceofa;_; (i=1,2,..,m+1)

The off-diagonal of the matrix (basically, not the diagonal):
Zi}l: The covariance of a;_; and a;_4

— 77142
var(ai—l)_ Zij y|x
52
cov(a;-1,aj-1) =z z;j Sylx
S7

Syl = n—(m+1)



For one independent variable, the linear regression:
y=agt+ax+e

———

The lower and upper bounds of a,:
L=ag =ty 2n-2"5s(ao)
U=ay+tyon2s(a)
The lower and upper bounds of a;:
L=ay —taon-—2"s(ay)

U=a, — ta/Z,n—Z ) S(al)

. the student distribution
ta/z,n-

two sided interval

s(a;) = the standard error of the coefficient a;

s(a;) =/var (a;) (i=0,1)



() (W)

Time, s Measured v, m/s Model-calculated v, m/s
(a) (b)
1 10.00 8.953
2 16.30 16.405
3 23.00 22.607
4 27.50 27.769
5 31.00 32.065
6 35.60 35.641
7 39.00 38.617
8 41.50 41.095
9 42.90 43.156
10 45.00 44.872
11 46.00 46.301
12 45.50 47.490
13 46.00 48.479
14 49.00 49.303
15 50.00 49.988
Mned-suiE
l y=a,+ax+e ‘
T N
‘(_/(‘('\Oéel W No\)ﬁ \6

Since

Yn = Qo + A1 Xy

\\
y=ao+ax+e 8
; D
V1 - o + aixq QQOC,
Y2 = Qo +ax;

Y1

a V2

}{

Yn
1 x Y1
=2 W=} m=y"
1 Xn In

[Z]1{A} = {Y}

[Z]"[Z){A} = [Z]"{Y}

E [5483 2251498i.321]{32}={2§i§i7.j3}



y=agt+ax+e

nedel { Ak 00,
N

[Z]"[Z1{A} = [Z]"{y}

siss 2219121 ) = {2242143)

(-l Sam] s

(112D

_ {—0.85872}
1.031592
a, = —0.85872
a; = 1.031592
Standard error of the estimation:
Sy

Sylx = n—(m+1)

Here
S, =X — ap — ax;)?
S, =9.69104
9.69104
Sylx = m = 0863403
Since

zi{ = 0.688414
755 = 0.000465

sap) = |77 (sypx)

s(ap) = 1/(0.688414)(0.863403)2
s(ap) = 0.716372

22421.43



s(ay) = ,/zgzl(sy|x)2

s(a;) = +/(0.000465)(0.863403)2
s(a;) = 0.018625

For a 95% confidence interval,
n =15
a = 0.05

tas2, n-2 = toos/2, 13 = 2.160368

NOTE: You can find this value in excel by using TINV(0.05, 13)

For ay:

The lower bound

L(ag) = ag — tasz, n—2S(ao)

L(ay) = (—0.85872) + (2.160368) - (0.716372)
L(ay) = —2.40634

The upper bound

Uag) = ag + tg/z, nzS(ag)

U(ay) = (—0.85872) + (2.160368) - (0.716372)
U(ay) = 0.688912

s —2.40634 < ag < 0.688912

Foray:

The lower bound

L(ay) = a1 — tayz, n-2"S(a1)

L(a,) = (1.031592) — (2.160368) - (0.018625)
L(a;) = 0.991355

The upper bound

Uay) = ay +tgs nzS(ag)

U(a,) = (1.031592) + (2.160368) - (0.018625)
U(a;) =1.071828

~ 0.991355 < a; < 1.071828
ANNANAANAANLANAAN

NOTE: Lets look at the slope — when we use our hypothesis testing, and we provide our model, we try to
test our model. Ideally the measured data fits the model exactly. So, we expect the slope of the fit line to
be close to 1, or equal to 1. By our estimation, we find that our slope is between 0.99 and 1.07.

Therefore, the test result support our hypothesis from the slope point of view because the target slope

equals 1 and by our estimation the 1 is between our interval for a,.



Non-linear regression
fx) =aog(1—e™™%)

Using Gauss-Newton method to solve the problem.

Data:
(xlr Y1), (xz; yz), vy (xn, yn)
Curve to fit:
y = f(xi’ aO' al) '"'am) + e
y1 = f(xl' aO' al) "';am) + 61
Y2 = f(xZ' Ay, A1y oiey am) + (=)
yTl = f(xn: aOP alP ey am) + en
yvi=fx)+e  (i=12,..,n)
Iteration:

o) .
o =’f(xl-),-§+ao HULYY

j=123, ..
Note: we're using the first few terms of the Taylor expansion to determine approximate results.

The error equation:

yi— f(x) =¢
— 5f(x); . 6f(x);
% \yi_f(xi)j= 8a01Aa0+ 6a11Aa1+ei
Herem =1
{D} = [Z]{AA} + {E}
Here

(Vi _f(x1)j\

(D} = {3’2 _f(xz)j}
In _}l(xn)j



ey
(£} =1{"
eTl

(A4} = {Zi}
[8f (x1);  6f(x1);7

2] = da, daq
Sf(xn)j 6f(xn)j
L day da; |

\ [21"1z]{a4} = (]" (D}
{84} = ([2]"[z)"*(2]" (D}

(ap)j+1 = (ag)j + Aay
(a)j+1 = (@) + Aay

Find the error:

(ak)j+1 - (ak)j
(ak)j+1

€x +100% (k=0,1)

Example pd \ O.Qi[ O.?5| ).95 ) \.75 l 1.25
9 \ 0.32' 0.57 l 0. 68 , 0.‘7u| .79

Use the data to fit:
y = ao(1 - e™%)
Using the initial guessof ap = 1anda; =1
Solution
f(x) = ap(1—e™™%)

The partial derivatives are:

5f

A 1 — p—aq1X
day ¢

1)

—f = qpxe N¥

a;

da, da, )‘M
5f(x2)j 5f(x2)j

(

.+

GCevesaty:

0 waﬂ)



The first iteration

ap =1
a, =1
0f (x1)  6f (x1)7
5010 6a1 1— e—a1x1 apx,e
6f(x2) OfC)| [1—e %2 gyxe
] = da, Sa; |~ .
8f(xs) Of(xs)| 1T aoxse
L Jday, da; |

0.2212 0.1947
0.5276 0.3543
[Z] =]0.7135 0.3581
0.8262 0.3041
lo.soas 02371

—a1Xq

—a1X3

—Qa1Xs

y1—f(x1) y1 — ap(1 — e~ %1%1)
{D}O — Y2 _f(xz) _ Yo — ao(l _ e_a1x2)

ys— fxs))  \ys —ag(1 — emoams)

0.0588
0.0424

(D}, ={ —0.0335
—0.0862
~0.1046

[Z]5[Z]0{2A} = [Z}([D}

[2.3193 0.9489 {Aao}
0.9489 0.4404l|Aa,

(Cooace)

{Aao} _ {—0.2714}
Aa, 0.5019
)=+ (osone 1 = (1 2200)

The relative error

For ay:
|O'7286 _ 1| 100% = 37%
0.7286 0T o

Foray:

|1.5109 -1

. 0/, — 330
1.5019 | 100% = 33%



The second iteration:

a, = 0.7286
a; = 1.5019

1—e %% gox;e” U™
[Z]1 = [ ™ - ]
1—e %  qgyxge”®%s
0.3130 0.1251
0.6758 0.1771
[Z]; =(0.8470 0.1393
0.9278 0.09204
l0.9659 0.05585J

(0.05194
Y1 =ao(l—e " 4* 0.07765
{D}, = { } ={0.06293
Vs = ao(1 — e~ N 0.06407
0.08630

taa)= {06916725582}

{ao} _ {0.7286} N {0.06252} _ {0.7910}

a, 1.5019 0.1758 )~ \1.6777

The relative error
For ay:

|O.7910 —0.7286

. 0% = 7.99
07910 |100A) 7.9%

Fora,:

|1.6777 —1.5019

+100% = 10.50°
1.6777 | 00% 0-5%

The 3" iteration:

o) =070

Relative errors are 0.1% and 0.15%

(e} =070

The 4™ iteration:

Thus,

~y = f(x) =0.7919(1 — e~ 16751x) ‘




Total Least Squares

Definition:
Given a matrix 4,,,.,, m > n (tall matrix), and a vector b € R™, find residuals E € R™™ andr € R™ that

minimize the Frobenius norm ||E : r||F subject to the conditions b +r € [,,,(A + E)

AN N
The least-squares

y=a0+a1x+E

Given data set:

(xli yl)' (XZJ yZ)J L] (xm' ym)

Least N
square ~
idea

Fit Line

— — L

Total
least
square
idea

Fit Line




Distance of a point to a line:
Equation of the line

nx+ry—7r-w=>0

4

? = (7’1:7'2):‘/_‘; = (Wl’WZ)

(wq,w, ) is a point on the line

re+ri=1

3 \j/llrzllz =1
A

Take Z = (x,y)

Equation:

7-(Z—-w)=0

d=|7(Z-w)|

D e

S 1
N N .
w

-%,

—
w

~a

—

\
Total least squares: find # and w that minimizing the (error) functional

SE7) = Z_(F G-W))

Here
z, = (x3, ¥;)

Define:
7= (1)
w = (W, w,)



S w) = Z,(ﬁxi + 1oy — Wy — 1wp)?
l

The centroid of the data set:

X
x__

n
_:Z%
y n

ST w) = Z (r (x; = %) + 12(y; = §) F X + 1y — rywy — ryw,)?

= zi{[rl(xi — )+ 1, = PP+ [ E—wy) + 1§ = wp)]?
+2[r(x; — %) + 12 (y; = MK —wy) + 1 (F — w)l}

= Zi{[rl(xi = %) + 1, = N + nlr(F = wy) + 1T = w)l? + 2[r G — %) + 12 (i — Y]

'Z[H(xi —x) + 1y — }_’)]}

M

Since

D I =0 + o0 = 7))

i

- Zrl(xi — %) +Zr1(yi - 5)
= rlz(xi —x)+n Z(J’i -

= rl(El:ixi — i %) +T2(lZiyi - 2%iy)
=rQix —nx) +n, (X y; — ny)
=0

SEW) = Y G = D) + 10 = PP + 1l (8= wy) + 1o = wy)]?

L
The centroid Z = (%, ¥) minimizes(r; (X — wy) + 1, (¥ — WZ))2
So,

Wy =X, W, =Y

Therefore the fitting line passes though the centroid of the data.

SGW) = ) 0 — B + 1,0 = D)

4



Define

x1—7f }’1—32
B = xz__x V2—y
xn_f :Vn_y

T
r= {é}
S@w)=Br)I(Br)

=rTBTBr

L1

Find the vectorr = {
2

}with 2 + 17 = 1 minimizing

S@wW)=rTBTBr

The right singular vector of B corresponding to the smaller singular value of B, g5, is the vector 7.

For matrix B,, , », the singular value decomposition is given by:
B=Upx2X2x2 Vszz
Where

0
Y2x2 = [001 o ]where 01 = 0, = 0 (singular values)
2

The columns of U,, , , are the left singular vectors, the columns of V are the right singular vectors.

BTB = (USVD)T(UXVT)

= VyTUTUSVT
= VyTyvT
— 0-12 0 VT
0 o2
2
BTBV=V["1 02]
0 oy

* The TLS (total least square) solution always exists and is given by the line through the centroid
orthogonal to the smaller singular vector of B.

* The solution is unique if oy # 7,



Example: (1, 1), (-1, 1), (1, -1), and (-1, -1)

The least squares is the line:

y=20
ST w) = 2(a? + p?)

1, = —sinf
1, = cos @

a=|r-(z—w)|
a=|(z-w)|

a=|—sinf (1) + cosd (1)]
a = |cos 8 — sin 0|

B =177
=|—sinf(1) + cosb (—1)
= |cos 6 + sin 6|

a? + B% = (cos O — sin0)? + (cos 8 + sin 6)?

=2

->SFHw)=4

Example
X 1 2 3 4 5 6 7
y 0.5 2.5 2 4 3.5 6 3.5
Using TLS fit a line
Solution:
_in_1+2+---+7_
= n 7 -
. 05+25+--4+35
y = & = = 3.42857
n 7
X1 —X Y1—)y 1—4 0.5-3.42857
B = X=X Y=y _|2—4 2.5 —3.42857
X3—X Y3—Y 7—4 3.5-3.42857
-3 —2.9285
B == —:2 —0.9:2857
3 2.07142861;, 5
o [ 28 23.5
BB = [23.5 22.714286




Eigenvalues 1.70900 and 49.005286 the corresponding eigenvectors are:

Lo 2725

—0.666424
. = 0.666424
r, = —0.745573
Wi = X =4

w, =¥ = 3.42857

The line
X+ nry—rnw —rnw, =0
0.666424x — 0.745573y — 0.109447 = 0
+
14
4
)
14
I
(F . .
I : S ‘ H N =

/f‘ﬁé‘}’ {ﬂ' £4 j/:’-: p-d’?/(}]?/rf "A);f’?ég/t



Part 2: Interpolation

Given a data set:

Fit a polynomial of degree n:

%o |8 (S

Yo ¥ ¥

(xOI yo)' (xll yl)' L] (xn' yn)

f(x) =ayt+ax+ azx2 + o4 anxn = v,
f(xo) = ag + arxo + azxf + -+ apxf =y,

f(xn) = ag + a1xn + axxi + -+ apxy = ¥y

2 2
[T xo x5 - X5] (% Yo
[1 xoxf xlz‘ al_n
1 x, x2 - x21\@n Vn

T Vandermonde matrix

2.1 Newton’s divided difference interpolating polynomials

Liner interpolation:

Slope:

y=f()
f(x1) = f(xo)

X1 — Xo

)’1—)’0=)’—YO

X1 —Xy X—Xp

Y1—Yo
=y, +
Y=DYo —

(x — xo)
0

flx) = fxo) +

X1

f ) = f(xo)
—x

(x — )

:the first finite divided dif ference




Quadratic interpolation:

f2(x) = bg + by (x — x¢) + by (x — x¢) (x — x1)

f2(x0) = by = f(x,)

f2(x1) = bg + by (x1 — x0) = f(x1)

f2(x2) = bg + by(x3 — xo) + by (xz — x0) (X2 — x1) = f(x2)

by = f(x0)
b = f (1) — f(x0)

SO = f o)

X1~ X
by = oy 0 - a0 - L )
f (1) — f(x0)
(Xz o) [f(xz) f ) + f Q) — fxo) — —xo( - xo)]
Xo

— G e — re + £ — ) - (1- 2222

_ 1 B 3 _ X2~ Xo
—Yh_%¥%_ﬂﬂﬂh)f&0+ﬂﬂ)f@&@ )

[ = £ + 1) = £ (=32

- (2 — x0) (2 — x1)

1 _ (f(xz) — f(x1) _ f(x) — f(x0)>

_xz—xo Xy, — X1 X1 — Xg
1 f(xz) — f(xq1) _ f(x1) = f(x0)
_xz—xo X, — Xq X1 — Xg

This is the second finite divided difference

Example: Fit data points
szl,f(xO)=0

xl = 4‘,f(x1) = 1386294
Xy = 6, f(xZ) = 1791759

using quadratic polynomial.

Solution: f,(x) = by + by (x — xg) + by (x — x0) (x — x1)

by =f(x0) =0
1.386294 — 0
p, = LED) =S (x0) — 04620981
X1 — Xo 4-1

- 1.791759 — 1.386294

fa) = fla) = 0.2027325
Xy — X1 6—4

fx2) = f(xq1) _ f(x1) — f(x0)

b, = X2~ X1 X1~ %o

X2 — Xo
0.2027325 — 0.4620981
2= 6—1




o fo(x) = 0.4620981(x — 1) — 0.0518731(x — 1)(x — 4)

Use this polynomial to evaluate f(2):
f(2) = f2(2) = 0.5658444

f(x) =Inx

f(2) =In2 = 0.6931472

Relati _10.5658444 — 0.6931472 100%
elative error = 06931472 0

Relative error = 18.4 %

Using the first two data points to find f(2):
fi(x) = by + by (x — x5) = 0.4620981(x — 1)
f1(2) = 0.4620981

Relati _10.4620581 — 0.6931472 100%
elative error = 06931472 0

Relative error = 33.3%

General form of Newton’s interpolation:
fa(x) = bg + by (x — x¢) + by (x — x0)(x — x1) + - + by (x — x0) (x — x1) ... (x — X7)

Here:

bo = f(XO)

_fl) —flxo) A
b el
p, = [Pzl bl 8 g,

Xy — Xp
by = (sl T Rl B, o)
3~ Xo

Recursive

flxn Xn—1, o, X1] — f[Xpn—1, «-r X1, X0 ]
f[xn' xn—l'xlvxo] =
Xn — Xo

T nth finite divided dif ference




Example: Estimate f(2) using a third-order Newton’s interpolating polynomial:
xo=1 ; f(x)=0
x;=4 ; f(x) =1.386294
X, =6 ; f(xy)=1.791759
x3=5 ; f(x3)=1.609438

i Xi f(x) f[xi»xj] f[xi;xj:xk] f[xi:xjrxk:xl]
_ fox) —f(x) _ flxi %) = flxg %]
(xi —x;) (2 — xx)
0 1 0
1 4 1.386 0.4620981
2 6 1.792 0.2027326 —0.05187311
3 5 1.609 0.1823266 —0.0204110 0.007865539 n

= fz(x) = 0.4620981(x — 1) — 0.0518711(x — 1)(x — 4) + 0.007865539(x — 1)(x — 4)(x — 6)

f2(x) = 0.6287686
RE = 9.3%

Errors (Newton’s interpolating polynomial)

f&) = fu(x) + Ry (x)
A

The error:

n+1
R = L0 xp) =) )

Here c is the interval containing the data using the finite divided difference.

Ry = flx1, Xp, Xpg1s s X1, X0 ] (6 — x0) (X — x1) ... (x — Xy)
(n+ 1)t

If there is extra data. [x,41, f(Xns1)]:
Then:

R, = f[xn+1 s Xy eees X ) (X — X0) oo (X — X))



Example: Using quadratic polynomial: f,(x) = 0.4620981(x — 1) — 0.0518731(x — 1)(x — 4) using \66(\’*

x3 =5, f(x3) = 1.609438 to estimate the error. ,C A 7
0\0\6 c& :
Solution: W <g6
Ry = flx3,x2, %1, X0l (23 — x0) (3 — x1) (X3 — X3) k \Qco

R, = 0.00786553(5 - 1)(5 —4)(5 - 6)
Erroratx = 2:

Ry = flx3.%2,%1,%0](2 —1)(2 —4)(2 - 6)
R, = 0.0629



What we’ve looked at so far:

(xO' YO)' (xl) yl)) R (xn! yn)

e t
. - ° v,
: o 1 . |
: gl 1oL
? '1 : L '
] _.-__ v ¥ '__*
¥ - -

fa(x) = ag + ajx + azx? + -+ apx™

fa(X) = f(xo) + flxg, x0](x — x0) + flxz, %1, x0](x — x0) (x — x1) + -+
+ fxn, X1, e X1, X0 (x — x0) (X — x1) ... (x — X3)

f(x0) =g

f(xl) - f(xo) Y1 — Yo
f[XIJXO] B X1 — Xp N X1 — Xo
Fla ) = 222 L0

Lagrange Interpolating Polynomial

A~
T

Given (xo, f(xo)), (xl, f(xl)), fitting line.




Lo(x1) =0

Lo(x) = bo(x — x)
Lo(x) = fo(xo —x) =1

b0=

Xo — X1

X—xl
Lo(x) =x

0 — X1

4

Sl nis
—r/—’; —?’I
l ;ZF z;

[ (x):

li(xg) =0
Li(x) =1

X — Xg
Li(x) = .

1~ Xo

| f1(x) = f(xo) - Lo(x) + f(x1) - Ly (x) |

Given (xo, f(x0)), (x1, f(x1)), (x2, f(x3)) fitting polynomial of degree 2:

e =y
Lk




!

-
o~

N

~
=

—
I

—

(@]

| f2(x) = f(x0) " Lo(x) + f(x1) - L1(x) + f(x2) Lo (x) |

Lo(x) = bo(x — x1)(x — x3)
Lo(x) = bo(xg — x1)(xg — x2) = 1

1

b0 = oo —x0) Cxo — 1)
_ (x —x1)(x — x3)
Lo = G T o — 1)
_ (r=x9)(x —x3)
) = G ) —x)
Lz(x) _ (x - xo)(x - x1)

(2 — x0) (2 — x1)

X X
X X1
X X
X = Xo
X = Xq
X = Xy
X Xo
X = X1
x—x2



Example

Given the following data, use the Lagrange interpolating polynomial to fit the data.
xo=1; flx)=0
x; =4 ; f(x;)=1386294
X, =6 ; f(x) =1791760

Solution
Lo(x) = % - (1—15) (x2 — 10x + 24)
Li(x) = % = (%) (x* = 7x +6)
L, (x) = % = (1—10) (x% = 5x +4)

“ f2(0) = f(x0) " Lo(x) + f1(x) - L1 (%) + fo(x) - Lo (x)

lfi#il'im _ ..ﬁﬂ
Lo(x)={%) ;; f;fcol ) Xp
L@ ={y | hre
L@ =) ] Seher

(Where i =0,1,...n)

(x = x0) o (0 = 232 1) (¢ = X341) o (X — xp)

40 = o ) G = ) Ot = ) - Gt — )

=| |xi—xj

j=0

(Where j =0,1,..n ; butj #1i)
fr(lx) = f(x)Lo(x) + f(x)Ly (x) + -+ f(x) L (%)

= Z fxe)Li(x)
i=0

Estimate error:

n
X — X;
n zf[xlrxn:xn—lr---:xo]l_[( i)
i=0



Inverse Interpolation

X 1 2 3 4 5 6

1
feo) == 1 0.5

0.3333 0.25 0.2 0.16667

0.1428

Find x such that f(x) = 0.3

1. Interchange x & f(x), construct the interpolation polynomial
2. Using a few point construct a polynomial then solving the equation to find x.

Using (2,0.5), (3,0.3333), (4, 0.25) to construct a polynomial:

fo(x) = 1.08333 — 0.375x + 0.041667x>
0.3 = f,(x) = 1.08333 — 0.375x + 0.041667x>

— x = 3.295842,5.704158

The exact value of x is:

1
f(x) == 0.3 » x = 3.333

Spline Interpolation

fm 4 , '
S E _=i H : 5 _'l;-x
Rl Zg«] A M M

prEL

Given a set of n + 1 data points (x;, y;) where no two x; are thesameand a = xq < x; < "X, = b,

the spline S(x) is a piecewise function satisfying:

1. S(x) € C?[a,b](S(x),S’(x),S" (x) exist and continuous
2. Oneachinterval [x;_4, x;], S(x) is a cubic polynomiali = 1,2, ..., n
3. S(x)=f(x)=y;, i=0,1,..,n
Assume that
Ci(x) ; xp<x<ux,

Sx)=<XC(x) ; x<x<2xy

Cr(x) 5 xpy1 <x < 2xy




And

Ci(x) = ag; + ag;x + az;x? + az;x3
i=12,..,n
as; #* 0
There are a 4n unknowns

The equations:

Ci()x=x;_, = Ci(xi—1) = flx —D(= yi—1)

Ci(‘xi—l) = Yi—l (l = 1I 2; 31 e n— 1)
Ci(x) =y (i=123..n-1)
(xi) = Ci,+1(xi) (l = 1) 21 3; v, — 1)
Ci"(xi) = Cilj.l(xi) (l =1,2,3,..,n— 1)

Total of 4n — 2 equations — boundary conditions are needed.
Case 1: The first derivatives at the endpoints are given

Consider clamped boundary conditions

C1(x0) = fo
Crn(xy) = fn,
Case 2: The second derivatives at the endpoints are given.

Y (o) = !
Crl (xn) = fo"
Special case f' = f,,"" is called natural or simple B.C.’s

Case 3: Periodic conditions

C1(x0) = Cn(xn)
C1(x0) = Cp(xn)
C1'(xo) = Cn”(xn)






To find S(x) In the interval x;_; < x < x;:

’ Xi—X X —Xij—1 .
C'x)y=M;y———+M;—— i=12,..,n
Xi = Xi—1 Xi = Xi—1
Integrate the moment function twice:
(x; — x)? (x — x;_1)?
C{ =-M,_ 4 ———+M,——
(x) i—-1 Zhl + l Zhl + a
Here h; = x; — x;_4
(x; —x)* (x —x;1)°
Ci(x) =M;_ l6hi + M; 6hll- +alx—x;_1)+p
Atx = x;_1:
Ci(x) = yi—q1 = f(xi-1)
(x; — 1)3
~ Ci(xi—q) = My T+0+0+ﬁ f(xi—1)
L
hi
B =f(xi—1) — M4 3
Atx = x;:
Ci(x) =y = f(x;)
] (xi l+1)

= Ci(xy) = MLT +a(x; —xi-1) + B = f(x)

a=(M;_,— M)— f ) — f(xi-1)

h;
The cubic function:
i 3 - Aj- 3 i i-1 hLZ
) = iy E g T [(Ml M) W]( —xi0) + f ) — M
_ (x; — x)° (x —x;1)° hi\xi—x h¥\x — x4
Ci(x) = M;_, 6h,; + M; 6h,; <f(xz 1) — M4 6> h; <f(x1) M; > h;

The first derivative of C;(x):

, (x; — x)? (x —x;_1)? h2\ 1 h2\ 1
Ci(x) = =M, 2 +M; oh. <f(x ) =M — ; f(xi)_MiZ>E




At x = x;, we have:

, (x; —x-1)*  f(x) — f(xi-1) h; h;
QQ0=O+Mi12d + lhil +Mll6 A@é

h.
= (M;_; +2M;) gl + flxi xi-1]

Forintervali +1,x; <x<x;4; (i=12,..,n—1)

(xi+1 - x)z (x - xi)z hi2+ 1 h12+1 1
C; = —M; + M, - D) — M;_ —+ M —
i+1 (x) 2 2hi+1 i ZhH_l f(xl) i—1 6 h1+1 f(xl+1) i+1 6 hi+1
At x = x;:
(Xig1 — xi)z f(xi—1) = f(x) hiyq hiyq
C! )=—M,———+0+ + M; - M, —
l+1(xl) i 2hi+1 hz+1 i 6 i+1 6
! 1
Claa () = —(2M; + Myy1) = MLy )

Since C; (x;) = Ciy1'(xp) (i=1,2,...,n—1)

(M;— 1+2M) +f[xuxl 1]

l+1

= —(@M; + My )~ Flxier. 1]

M;_1h; + 2M;(h; + hipq) + Mipqhivg = 6(f[xi41, %] — flxi xi-1])

h; h; flxivxi] = flxi, xi-4]
M;_ — +2M; + M; =6
-1 hi + hiyq “Thi 4 hi hi + hiyq
Define:
h;
o =— .
bRt hig ((=l)3‘"“)“")
h:
=1, +H;11
l i+1

And ai + Bl’ =1

Since:

hi =x; — x4
hiy1 = xi11 — x;
hi + hiy1 = Xj41 — X1

aiMiq +2M; + BiMiq = 6f [Xip, x4l =y 5 1=12,..,n—1
~ 1 ™

The boundary conditions



Case 1: The clamped

GivenCi(xo) = fo ; Cp(xy) = fn,

, _ (1 = x0)° (x0 — x,)? h\ 1 hi\ 1
Ci(xp) = _MOZ—h1+M12—hl_ f(xo) —Mog h_1+ f(x1) —Mlg Iy
- 0/ .e')

< o

, (x — x,)? (X, — Xp41)? hZ\ 1 hZ\ 1
Cn(xn) = _Mn—l . “ + Mn . 2h:+1 - f(xn+1) - Mn+1 ?n h_n + f(xn) - Mn?n h_n
= fn’

S — X, Xno1] A
N Mn_1+2Mn=6fn f[hn n 1]=Yn
n

All the equations:

2My + M{ =7y,

aMy + 2My + B1M, =y,
a;My +2M, + B, M3 =y,

An_1Mp_ +2M,_; + Bn—an =Vn-1
M, _1 +2My =y,

For the first row By = 1, and for the last row a;,, = 1 (f, is added to make the equation look consistent)

2 0
w3 5 (M) (7o)
" . . M, Y1
’ ) M, _ Yn—
Ant1 2 Pn-a 1\7,; ! ;nl
0 a, 2 n

{an=Bn=1)



Case 2, the natural boundary conditions:

Given:
Mo = fo'
My = £
Let:
Bo=a,=0

Yo = 2Mo = 2fy’
Yn = 2M, = 2f;

Error and convergence:

Assume that f(x) € C*[a, b], S(x) is the cubic spline interpolating function that satisfies clamped or
natural boundary conditions.

Leth =maxh; (1 <i<n)
Where h; = x; — x;_4

Then,

[ ) [a; nlIf& = sl < ¢ |, ) [aci( o R

Fork = 0,1, 2 with:

7384 ’ T4 27 g

Co
The interpolation is much better for the function itself, and it becomes worse for the derivatives.

As with all other functions, the accuracy of a derivative function is worse than the original function itself.
Consider the coefficients as well, which get much larger as the order of the derivatives increases.

Consider k = 0, the function converges very quickly, at h*
Consider k = 1, the derivative function converges more slowly, converging at h3

Consider k = 2, the derivative functions converges even more slowly, converging at h?



Part 3: Roots of equations

Bisection method:

Open method:
o f

>

Convergence speed for iterative methods

(how do we measure the convergence speed of iterative methods?)
1. Order of convergence
2. Rate of convergence

(X0} X0, X1, Xy ey Xy eevy oen

LeCoc\\/e(gfg Xo \’

4& —— — ] A

:"'o @ X, }"'\ L

|xn+1 - Ll: |xn - Ll

. lxner — L]
llm —_— =

n—oo |xn —L|

; 0<u<i1

1°': 0 < pu < 1:the sequence {x,} is said to converge Q — linearly to L
2"y =0:Q — superlinearly to L
39:u=1:Q — sublinearly to L



If the sequence converges Q — sublinearly to L, and

|%n42 = Xn41 |
lim n+2 n+1 =1

n-o |xn+1 _xnl

Q€ x
Converges logarithmically to L. X O‘Q
N Ca
Order of convergence: ‘/\ O
X —L
] | n+1 | <M

g = 1:linear convergence
g = 2 : quadratic convergence
g = 3 : cubic convergence



Example

1% sequence:

1
xn:?’—n ; n=0,1,2,
x, — L= ;. N> o

li <1
noo [xn — L| 1_0| 3
371
| %741 — LI ,
71_)00 . — L7 3 Q — linearly
2" sequence:
) {1 11 1 }
) =13797 81" 37
1
Xn = 32" v Xn+1 T Xn
X, > L= ;N> o
1
. |xn+1 L| 32"+1 0
lim
n—oo |xn —Ll n—oco i_ 0
32"
lim —=0 ; Q — superlinearly
n—oo 32
3 sequence:
) =1 111 1 }
SO A R
1
= ) = 0' 1’ 2'
*n n+1 n
X, 2L=0 ; n-oo
| L] :
x —
| ntl = lim |Z +2)_ 1 ; @Q — sublinearly
n—oo |xn — | n—-oo 1
n+1
1 1
Xpto — X -
lim |2~ lim nt3 nt2f_ 1 ; convergeslogarithmically




Functional iteration and orbit
If f:R - R,
Fo) S
f00) S £(x)
1260 & NG = f(f ()
30 == (f°fH) = f(f(x)

100 2 (pony () = £ )

f™(x) : the n —th iteration of f(x),n =0

Example:
1t
fx)=x+a
PO =ff@)=fx+a)=x+a)+a
=x+ 2a
) =f(f2()=f(x+2a) =(x+2a)+a
=x+3a
|;f"(x)=x+na|; n=1
2nd:
X
f(x)=1+bx
_xX
20y — — ___1+bx
£ =60 =1 () = 12 Py
X
1+ 2bx .
fn(x)=1+nbx
3
Fe =220 % ac)
(a® + b)x + ab + bc
200 = (a+ c)x + b?

Let xg€ R, the orbit of xy under function f(x) is defined as the sequence of points:

x0, f(x0), f2(x0), ooer f(x0), e

Xo: seed of the orbit



Example f(x) = cosx, x, = 0.5

The orbit
cos(0.5) = 0.8775825619
cos(cos(0.5)) = 0.6390124942
c0s3(0.5) = c0s(0.6390 ...) = 0.8206851007

c0s°%(0.5) = 0.7390851332
cos°7(0.5) = 0.7390851332

Example f(x) = x% —1,x, = 0.5

xo =0.5

x1 = f(xy) = —0.75

X, = f(x1) = —0.4375

x3 = f(x,) = —0.80859375

x19 = f(x18) = —1
Xz0 = f(x19) =0
X1 = f(x30) = —1
Xz2 = f(x21) =0

does not converge

Fixed point

c is a fixed point of function f(x):
fle)=c

b4

—> r
\j(ﬂ




Example:

1% f(x) =x3—09x%2 + 1.2x — 0.3
x = 1is a fixed point

f(1)=1-09+12-03=1

2 f(x)=x+1
no fixed point

A periodic point:
f™(xy) = x, for some n

Example: f(x) = x?—4x+5
xo = 1, f(1) = 2 not a fixed point
f2)=1

- f2(1) =1,n = 2, x, = 1is afixed point of period 2.

Theorem: xq, f (%), f2(x0), ..., f™(x0), ...
If rlli_{rolofn(xo) =a

Then a is a fixed point of f(x)

fl@)=a

For example, f(x) = cosx, x, = 0.5
f™(x) - 0.7390851332 = a

Therefore, from the theorem,
cosa=a

(In other words, a is a fixed point of cos x)



Logistic map:

>
4>

A |- -

f)=rx(1—-x), 0<x<1
0<r<4

| \ N\ \‘/

Choose seed xy = % =0

<
[}‘\‘O.S‘

LX)
a1
ELT
002434515847
Q0I2990124%4
000631 12267%
gooesRanNn
SOOI
0 O LTI
Rleeair e dit )
00001919234993
0 00C0TIITIIN
© 00004 T eael
000002158223 144
0200011990893 14
1m0t
19Temes 0=t
1 4vE2419) n"
samnon e’
PRI TR o
1E7I60887¢ 10~
p3e7031120 107!
s et
2340 1370
1170953698 13!
ssraar et
1m0t
1asiemon st
7318060409 15
3 ssameaa o™

L4
\
/4 !
X0s X1 X2, eeny Xpyy oen

Xpe1 =Tx,(1—x,), n=0,1,2,..

5

1.0 1. 2.0 2.5 3.0 3.2 3.5 3.57 3.83

0 03 as as (X (Y] o3 as o1
o o 01 o (55 0800 ors o ot

DIITIND ORIl 0%00coo)  QAASIYS 0830000  GNI0D  GJINMM 83T GlytasTeld
DI4IITE0 B MIMILETD 04000000000 0 60TIEMTD O TEIIIIN 0 WHINN0 G IIWHEILS BISTOCIMII 6 SINEREINET
DLI1ISIIE DIITII0NE 0400000000 0 SMASITEN 05 AA1ITT AILSERAINE! 8 IONTIERE) 8 ACALMIET 8 9STHILON
QUIZIM249Y O VIMSIMIS 0 SO00000000 0 GI1ASIIEES O TIORIIIRY 0 9413058 §ETEMITITI O TRA1NA04] 0 1 DN
00131467 [ 1341632818 0 3300000000 0 $PIAIITT 3 UITTISAN G SUISISTIC SILINLINM 0IIININAES G S4TSR
0cav 1507108 |3 131046877 0 000000000 & EBAIEITIS 8 TITIINIIT SIVAITAIE BIAEITE SSCIMIA 8TIOEI
QSITIETINNR 110GI20Y 04000000030 8 IFTVIINE BNTLIMIM 03133EAT S.AEIITHY B ETATEOOATT O L3I
00792093563 RARAST1I00 6 4000000000 © GIHITT 0 TIIAETTEHD O VLI SITINITIAN 6 I9C3ITINN 2 anumenes
SOESSTITINT §1)1)77I0T 0 SXOO0NC0D © SPFITINED 6ESITINETE OSIIININS BIIIMTET EILITY TR
206443748721 0301)48)14) 0 400000000 © EOCO36ETT O TIBAMINED 0 TPRSML QEIESAITET O SICEMIMIZ © 1843 Eost
D0BOHT™TES ©331MFIIT 0 SO0ICONND 0 4PIIEMAL 0 OE1S0APE0 0.51)0HHMY 0 SUEBIIIN BATASIIIEE 8 1046410E
QO88THEI1S 0 FIIMIITI 0 2300000000 & SUCCLES1AH 0 TLITANINE 0 VBISND OFTISTTION BBEAMRSON §9TTAITITY
S 081ETCAIEI0 0 1313ITIII @ 400000000 § SHPRETAIT O AITIEIMID O S1ISA4AID B IESIINANG QMGCVINIEE £ 1610
204300136 23333141318 £ 4000000000 © (O0001ETI0 O TSI O PISMIT O IINT) QIITIITHA BISMSMISL
SOINIIA3IET O TTITMTILS 04000000000 § 1RPRRIESI S E1NICHIES O SIIOMIITI 8 A00RLLS O $1E3TeY oy
SOUSIIITIEE) ©INIIIIENY 0000000000 & E3CO0AITI © T11aMA4N S TVRISINE SETOYTION RIS 141N
OOUTIAIIIE 011113441 0 000000000 © 19PIYTIAA 0 41SEISIATD 8 91ISH00N0 ©)IITIMINT 8 HIMIIIT) 0 SN
004132307200 033313 3445) 0 $O00000000 0 S000001E1E 6 TOPTITIETS 0UWRISINA 0 ESARATTIAY 0RO o9l
05820462771 01331311913 G 300000000 0 $XHHIALIS 0 413CCSIITE 04135440040 0 STNEICITE 8 26D1LEITD 8 1M
QEAITTIP 0 133131I648 0 $300000000 O AIOCONIH 0 JMIIIE0NY 0 PHAIINE O AT AETTRAS
S EETTIZINE 0 1IFHITIAD 8 4300000000 @ SHOWRTTY 8 SN 0S1NSNNY O IIIE] B IR
001480631338 013FFTIMIZ 9000000000 @ KINOCOGED § THLSTIN) 0 FMILICL 3 I3SaTe M :
SOMINLILET 03TIIINTI € 4500000000 © I 0 EIIITEAT SIOMUNNT 80 B i
SONI1INAZY DIIIIFIIIL 04000000000 § 6300000044 LIS cmm
001334974629 0331333I34) 04000000000 mw mm
003183191477 O ITITIIIIN 0400000000 0 600000000 SURLISISE 07w 1M%e
QAXOATIATY 0 TIITINII 05000000000 O SIETIV QUUUNL astssusm ¢
082916479771 83333111114 @ $a00000000 9 500000003 .

P

s anasrenon 1= 5 4 ast11a1eN 0 1INININM 0 4300000000 mml 3139

4
(0

Famous literature by Li & Yorke,

Period of implies chaos

T 1







The following presentation uses materials from Numerical analysis (9™ Edn.) by Burden & Faires,
Brooks/Cole, 2011.

Use for educational purposes only.

Fixed point iteration

The idea of the fixed-point iteration method is to:

(1) Reformulate an equation to an equivalent fixed-point problem
fG)=0ex=gx)

(2) Use iteration, with a chosen initial guess x,, to compute a sequence

xn+1 = g(xn)(: gn+1(x0))l n= 01 1; 21 e
in hope that x,, = « (the root of the non-linear equation).

There are numerous ways to introduce an equivalent fixed-point problem for a given equation. But
convergence to a is not guaranteed, not to mention rapid convergence.

Lemma: Let g(x) be a continuous function on the interval [a, b], and suppose it satisfies the property
a<x<b-a<gkx)<bhb

Then the equation x = g(x) has at least on solution in the interval [a, b].

Theorem: Assume g(x) and g'(x) exist and are continuous on the interval [a, b]; and further, assume

a<x<b-a<gkx)<bhb

A= max|g'(x)| <1
max |g'(x)]

Then,
Conclusion 1 (existence and uniqueness) The equation x = g(x) has a unique solution « in [a, b].
Conclusion 2 (convergence) For any initial guess x; in [a; b], in the iteration

Xne1 = 9(x),n=0,1,2,..
Will converge to a.

Conclusion 3 (error bound estimate)

n

1-4

|, —al < [x; —x9l, n>0

Conclusion 4



Xns1— @
lim 2~ = g' (@)
n-ow X, —a

Thus, for any x,, close to @, xp,+1 — @ = g' (@) (x, — @)

When converging near the root a, the errors will decrease by a constant factor of g'(@). If g'(a) is
negative, then the errors will oscillate between positive and negative, and the iterates will be
approaching from both sides. When g'(@) is positive, the iterates will approach a from only one side.

When |g'(a)| > 1, the errors will increase as we approach the root rather than decrease in size.

Let’s look at two examples:

Example 1

x = sin(0.9 — 0.7x) = g(x) which has a root of @ = 0.514192160
g(a) =sin(0.9 — 0.7a) = a verified!

g'(a) = —0.7cos(0.9 — 0.7a) = —0.600372506

=~ converge (absolute value less than 1)

Example 2

x = sin(2.5 + 1.3x) = g(x) which has a root of @ = 0.277371219
g(a) =sin(2.5 + 1.3a) = a verified!

g'(a) = (1.3)cos(2.5 + 1.3a) = —1.24899179

=~ diverge (absolute value greater than 1)

But the challenge remains that the interval [a, b] may not be easily identified. This leads to the localized
fixed-point theorem as follows:

Assume x = g(x) has a solution @, both g(x) and g'(x) are continuous for all x In some interval about
a,and |g'(a)| < 1. Then for any sufficiently small number € > 0, the interval [a,b] = [a — €, a + €]
will satisfy the hypotheses of the fixed-point theorem. If we choose x, sufficiently close to «, then the
fixed-point iteration x,,,1 = g(x), n =0, 1, 2, ... will converge.



Example 3
The equation f(x) = x3 + 4x2 — 10 = 0 has a root of @ = 1.36523001.
Choices of g(x) are:

g1(x) =x —x3—4x% + 10

1
g2(x) = E\/10 —x3
x3 +4x% - 10

gs(x) = x = 3x2 + 8x

Stopping/termination criterion is |x, — x,41| < 107°. Use the fixed-point iteration method to find a.

- We should check which one has g(a) = a.

Solution \\)5(6
First off, g, (x) will not converge. So, use g,(x) and gz (x) only. O.\QQO<<O<
(2
xXo = 1;
gx) # of iterations Xn [xn — Xp_1]
g (x) 21 1.36523004 6.57824-1077
g3 (x) 5 1.36523001 2.12699-10°11
xo = 1.3;
gx) # of iterations Xn [xn — xp—1]
g2(x) 19 1.36523020 5.52801-1077
g3(x) 4 1.36523001 2.70561-10"12

It is seen that g3 (x) outperforms g, (x).

It turns out that g;(x) represents the Newton’s method or the Newton-Rhapson method, where g(x) is

f'e0)
Newton’s method has a quadratic convergence rate as long as x is sufficiently close to a. The rate of
convergence depends on the choice of x;.

Another drawback is requiring f'(x). The secant method uses finite difference to approximate the
derivative. The rate of convergence of the secant method is, 1.618, as long as the initial points are
sufficiently close to a.




The following presentation is based on https://neos-guide.org/, and “Numerical Methods for Engineers”
(8™ Edn.), Chapra and Canale, McGraw-Hill, 2021.

Use for educational purposes only.

Part 4: Optimization (I)
In mathematical terms, an optimization problem is the problem of finding the best solution from the set
of all feasible solutions.

Formulating an optimization problem
The mathematical statement is as follows:

Let f(x) be a continuous real-values function, the optimization problem is stated as:

min f(x) ; forx €R™

X
Subjectto Fj(x) =a; ; j=12,...,m
Gk(x) < bk ; k= 1, 2, e, My

and U, <x < Up

which involves, the objective f(x), the variables x, the constraints Fj(x) and G, (x) of the problem, and
the lower limit U and upper limit U, on x.

X, XL Ku I T L
X

e An objective is a quantitative measure of the performance of the system that we want to minimize
or maximize. For example, in manufacturing we may want to maximize the profits or minimize the
cost of production; in fitting experimental data to the model, we may want to minimize the sum of
squares of errors between the observed data and the predicted data.

e The variables or the unknowns are the components of the system for which we want to find values.
For the manufacturing example, the variables may be the amount of each resource consumed or the
time spent on each activity, whereas in data fitting, the variables may be the parameters of the
model.


https://neos‐guide.org/

e The constraints are the functions that describe the relationships among the variables and that
define the allowable values for the variables. For example, the manufacturing example, the amount
of a resource consumed cannot exceed the available amount. Another example us, if a variable
represents the number of people assigned to a specific task, the variable must be a positive integer.

Types of Optimization Problems
e Continuous Optimization versus Discrete Optimization

Optimization problems with discrete variables are discrete optimization problems: on the other hand,
problems with continuous variables are continuous optimization problems.

Continuous optimization problems tend to be easier to solve than discrete optimization problems.

However, recent improvements in algorithms coupled with advancements in computing technology
have dramatically increased the size and complexity of discrete optimization problems that can be
solved efficiently.

e Unconstrained Optimization versus Constrained Optimization

Unconstrained optimization is one in which there are no constraints on the variables; optimization in
which there are constraints on the variables is known as constrained optimization.

Both types arise directly from practical applications. Algorithm-wise, constrained optimization can be
reformulated to become and unconstrained one.

The constraints on the variables can be from simple bounds, to systems of equalities and inequalities
that model complex relationships of the variables.

o None, One or Many Objectives

Most optimization problems have a single objective function. However, there are cases when
optimization problems have no objective function or have multiple objective functions.

Feasibility problems are problems in which the goal is to find values for the variables that satisfy the
constraints of a system with no objective to optimize.

Multi-objective optimization problems arise in many fields, such as engineering, economics, and
logistics, when optimal decisions need to be taken | the presence of trade-offs between two or more
conflicting objectives. For example, developing a new component might involve minimizing weight while
maximizing strength.

In practice, problems with multiple objectives often are reformulated as single objective problems by
either forming a weighted combination of the different objectives or by replacing some of the objectives
by constraints.

o Deterministic Optimization versus Stochastic Optimization

Deterministic optimization is optimization under certainty. It is assumed that the data for the given
problem are known accurately.

Stochastic optimization is optimization under uncertainty.



e Local Optimization versus Global Optimization

Local optimization seeks the optimal solution over a small neighborhood where the derivative of the
objective is zero (or near zero).

Global optimization finds the smallest objective value over all feasible variables.

Note that each category of optimization problems has specifically developed algorithms so that the
optimization can be done effectively.

Also note that the above classifications are not mutually exclusive. For example, a multi-objective
optimization problem can be continuous and unconstrained.



Part 4: Optimization (l1)

One-dimensional unconstrained optimization means, in mathematical terms,
min f(x) ; forx € (—oo,0)
X
Where f(x) is a continuous real-valued function.

Methods include:

e Golden-section search;

e Quadratic interpolation; and
e Newton’s method.

One-dimensional unconstrained optimization is important in its own right, not to mention it is the
foundation for multi-dimensional unconstrained optimization.

Golden-section Search
The method is similar to the bisection method in Part 3. It is simple to use.

Assume that there is a minimum in the interval [x;, x].
Step 1: Let £y = xy — x|
Step 2: Two intermediate points are needed.

X1=XL+d
x2=xU—d
withd = (/5 — 1)/2 - £, = 0.618 - £,.

Step 3a: If f(x1) = f(x,), xy < x4, go back to Step 1 until |x, — x4 | or |f(x3) — f(x1)] is very small;
Step 3b: If f(x1) < f(x3), X, < x5, go back to Step 1 until |[x; — x1] or |[f(x3) — f(x1)] is very small;

Quadratic Interpolation
Assume that there is a minimum in the interval [x;, x| = [xo, x2]-

Step 1: One intermediate point is needed; x5 < x; < Xx5.

Step 2: A parabola is fitted onto the three points. Take the derivative of the parabolics function. The
derivative is zero at x3.

_ lfo(x% —x2) + f1(x2 — x3) + fo,(x% — x?)
2 folxs —x2) + f1(xz — x0) + f2(xo — x1)

X3

Where f; = f(x;).

Step 3a: Drop xg is f(xg) = f(x3), Xo < X1 Or X3, X; < X3 or X1, go back to Step 2 until [x3 — x4| or
|f (x3) — f(x1)] is very small.

Step 3b: Drop x5 is f(xg) < f(x3), X, < X1 Or X3, X1 < X3 or X1, go back to Step 2 until |x3 — x| or
|f (x3) — f(x1)| is very small.



Newton’s method
Assume there is a minimum in the interval [x;, xy], and xq € [x1, xy]-

To seek the root of f'(x) = 0, the Newton’s fixed-point iteration becomes,

Cf
7@

Iteration stops when |x;,1 — x;| or |[f(x;41) — f(x;)] is very small.

Xit1 = Xj

Example

2
Find the minimum of f(x) = % — 2 sinx over the interval of [0, 4].

Use the “distance” based stopped criterion. For example, |x3 — x;| < 107° for quadratic interpolation.

Solution
f'tx) = g— 2 cos(x)
f"(x)= %+ 2 sin(x)

Golden-section

# of iterations X1 or x5 |25 — xq]

30 142755134 8.21214(1077)

*whichever gives lower function value.

Quadratic interpolation with x; = 1

# of iterations X3 |3 — xq|

11 1.42755207 2.96747(1077)

Newton’s method with xy = 1

# of iterations Xit1 | %41 — Xi]

4 1.42755178 4.78198(10719)

The question remains how to determine the interval [x;, xy].

The following bracketing scheme may be suggested, which is part of the Davies-Swann-Campey
algorithm.

Step 1: Select an x, that is close to the x*being sought. Also assign a small value close to A.
Step 2: Let xy = x; —Aand x, = x; + A. Evaluate f = f(xp), f1 = f(x1), f2 = f(x3).
There are three cases.

2a.If fy = f1 and f; < f5, then [xg, x5 ] is the interval. Together with x;, the quadratic interpolation can
be started. For golden-section search, [xy, ;] is the [x;, xy];



2b. If fu > f1 and f; > f,, the following is determined:

X3 =Xy + 24, f3 = f(x3)
Xq = X3+ 44, fo = f(x4)
X5 = X4 + 84, f5 = f(x5)

Until the current f; is greater than the previous f;_;. Then [x,, x;] is the interbal, and x;_; is x4, if

needed.

2c.Iffo < fiand f; < fo, x5 = x5 — A, 5, = f(x3). The following is determined:

X3 = x5 — 24, f3 = f(x3)
X4 =2x3— 4, fy = f(x4)
Xs = X4 — 84, f5 = f(x5)

Until f; is greater than f;_1. Then [x;, x¢] is the interbal, and x;_;is x4 is needed.

Example

2
Find the minimum of f(x) = % — 2 sinx over the interval of [0, 4].

Use the “distance” based stopped criterion. For example, |x3 — x;| < 107° for quadratic interpolation.

Golden-section

# of iterations X1 or x5 |25 — xq]
30 1.42755134 8.21214(1077)
* whichever gives lower function value
# of iterations Interval X7 orx; [xy — 4]
29 [0,2.8] 1.42755300 9.30125(1077)
* whichever gives lower function value
Quadratic interpolation with x; = 1
# of iterations X3 [x3 — x|
11 1.42755207 2.96747(1077)
# of iterations Interval X1 X3 [x3 — xq|
6 [0,2.8] 1.2 1.42755196 2.09784(1077)
Newton’s method with xy = 1
# of iterations Xit1 [xii1 — x|
4 1.42755178 4.78198(10710)
W|th Xog = 1.2
# of iterations Xit1 [xii1 — x|
4 1.42755178 7.36522(10713)




Summary of one-dimensional optimization:
Golden-search, or quadratic interpolation, together within the David-Swann-Campey bracketing
method, are within the category of “search method” as no derivative is required.

On the other hand, the Newton’s method belongs in the category of gradient method.

They form the basis of solving multi-dimensional unconstrained optimization problems.



Part 4: Optimization (Ill)

Multi-dimensional unconstrained optimization means, in mathematical terms,
minf(x) ; forx€R"
X
Where f(x) is a continuous real-values function.

Some math first.

1. Local minimum and local maximum
If f(x) > f(x*) for all x near x*, x* is the local minimum.

If f(x) < f(x*) for all x near x*, x* is the local maximum.
2. The gradient of f(x) is:
of  ofy
V() = (52 )

ox,  0x,

3. Critical or stationary point:
If the gradient vector is zero at x*, then x* is a critical or stationary point.

4. First derivative test:

A local minimum or maximum must be a critical point of f(x).

In other words, if f(x) has a local minimum or maximum at x*, the the first order derivatives of f(x)

exist at x*, then:

0
f&) =0 ; i=1273,..
axi X"
5. The Hessian (matrix) of f(x) is:

[ 9%f %f 92f
0x?  0x,0x, 0x,0x,
0%f 0%f 9%f

H=9x,0x, 0x2 0x,0x,

0% f 0% f 0% f

[0x,0x,, 0x,0x, ox2

Or the Hessian is the Jacobian matrix of the gradient.
a%f
* If Sxiaxj

is continuous, then

0°f  0%f

axiaxj B axjaxi

e The Hessian determinant, |H|, means the determinant of the Hessian matrix H. It is sometimes

called the discriminant of H.



6. Second derivative test
If x* is a critical point of f(x), and all the second order partial derivatives of f (x) are continuous, then:

e x"isalocal minimum if H (evaluated at x*) is positive definite (that is, all eigenvalues of H are
positive)

e x™isalocal maximum if H is negative definite (all eigenvalues of H are negative)

e x™isasaddle pointif H has both positive and negative eigenvalues.

e However, the test is inconclusive in cases not listed above.

For two-dimensional problems:

. - . 82
e x"isalocal minimum if |[H| > 0 and %(f) > 0;
1 x*
. . . a2
e x"isalocal maximum if |H| > 0 and %(Zx) < 0;
1 £

X

e x"isasaddle pointif |[H| < 0.
However, it is inconclusive is |[H| = 0.

N

The Taylor expansion of f(x), at x* and up to the second order, is,

1
FG) = F() + @O (=) + (3) = 2)THGE = x) + -

Where the gradient Vf and Hessian H are evaluated at x™*.

Examples:
Note: in the following, x = (x,y)T.

E1: Show that f(x,y) = x? — y? has a saddle point at (0, 0)7,
y y

2 0

H:[O -2

] ; |Hl=—4
E2: Find the local optimum of:

flx,y) = x%+2y? — 2xy — 2x

_[~2 27 . _
n=[Z 3]+ s
02 02
A PP

0x2  9x?



Categories of methods include,
e Line search methods
e Trust-region methods

Trust-region methods:

e The trust region is the neighborhood near x*

e f(x) isrepresented by a high-dimensional parabolic “surface”

e x™isthe x that minimizes the high-dimensional parabolic “surface”

Line search methods:

A multi-dimensional problem is transformed into a sequence of one-dimensional problems.
e Univariate searches; and

e Steepest-descent methods



Part 4: Optimization (IV)

Line Search Methods
The key is to transform a multi-dimensional problem into a sequence of one-dimensional problems.

For one dimensional unconstrained optimization, we perform bracketing, then golden-search section or
quadratic interpolation or Newton’s method.

But all is done along one single search direction or the x —axis.
Line search is about searching along a direction (i.e., a line) that is hopefully effective.

Univariate searches
The search directions are, x4, then x5, ..., and finally x,,

The main steps are:

Step 1: Initial guess xy and A

Step 2: Perform the following logical loop:
fork =1:n

1D unconstrained optimization along x;,

end

This step ends with an x*

Step 3: Check if ||x* — xq|| meets the stopping criterion.
If yes, x* and f(x*) are the solution sought.
Otherwise, xp < x*, and go back to Step 2.

Graphically, consider a 2D problem:

f) = (g — D+ (x2 = 3)* = 1.8(x; — D) (a2 — 3)
MANS AN

X2




Example:
f) = (g = 1%+ (x; = 3)* — 1.8(x; — D(x, — 3)
Initial guess x¢ = [0.75,—1.25]T and A = 0.1

Golden-section search for 1D
Along x4,

x; = [-5.45,—1.25]7,
xy = [0.75,-1.25]T
After 30 iterations,
x* =[-2.825,—1.25]T
f(x*) = 3.4319;
Along x,,
x; = [-2.825,—1.25]7,
xy = [-2.825,0.15]7
After 26 iterations,
x* =[-2.825,—0.4425]T
f(x*) = 2.7798;

After 61 rounds of x; and x,, the converged solution is:

x* =[0.999983,2.999982]7
f(x*) =5.752007"11
Quadratic interpolation for 1D
Along x4,

x; = [-5.45,—1.25]7,
xy = [0.75,—1.25]T
x, = [-2.25,—-1.25]T
After 2 iterations,
x* =[-2.825,—1.25]T
f(x*) =3.4319;
Along x,,
x; = [—2.825,—-1.25]7,
xy = [-2.825,0.15]T
x, = [-2.825,-0.65]"
After 2 iterations,
x* = [-2.825,—0.4425]T
f(x*) =2.7798;

After 67 rounds of x; and x,, the converged solution is:

x* = [0.999996,2.999997]"
f(x*) = 2.862871712
Newton’s method for 1D
Along x4,

x1 = [-2.25,—1.25]T



After 2 iterations,
x* =[-2.825,—1.25]T
f(x*) = 3.4319;
Along x,,
x; = [-2.825,-0.65]T
After 2 iterations,
x* = [-2.825,—0.4425]"
f(x*) =2.7798;

After 66 rounds of x; and x,, the converged solution is:

x* = [0.999996,2.999997]7
F(x*) = 3.524268712

Comparison of elapsed CPU times:
Golden-section search: 0.140625 sec.
Quadratic interpolation: 0.125000 sec.
Newton’s method: 0.109375 sec.

Other search direction? “Good” directions especially?

There are a few options here. Conjugate direction is one; The steepest-descent is another.

Steepest-descent Methods
What is the steepest direction? The concept of directional derivative is the starting point.

If Vf is the gradient of f(x) at any x, the direction is n, a unit vector (for example,n =

1 1 T L L .
(ﬁ' L 0) ), then the directional derivative along n is,
Dp(x) = (V)™n
Directional derivative is a scalar function.

Treating n as the independent variables, seeking the optimum D,,(x) will result in the steepest
direction. It has been proven that the steepest direction is the gradient itself. In other words, the
optimum of D,,(x) is obtained when:

n=Vf
The three main steps of the steepest-descent method are,
Step 1: Initial guess X, and A
Step 2: evaluate Vf at x;

1D unconstrained optimization along Vf;
obtain a x*



Step 3: check if ||x* — x¢|| meets the stopping criterion
If yes, x* and f(x*) are the solution sought.

Otherwise, x, < x*, and go back to Step 2.

Some programming notes:

Bracketing:
e Isdonealong Vf

Applying Golden-section search along Vf:

e £, means the second norm;

e The gradient should be normalized to a unit vector;
e The scalar x's are now vectors.

Applying quadratic interpolation along Vf:
e The gradient should be normalized to a unit vector;
e For one dimensional problems,

_ 1foGef —=x3) + (0 — x§) + foa(x§ —xF)
2 folxy —x2) + fi(xz — x0) + f2(xo — x1)
Where fi = f(xl-)

X3

T
Now, f; = f(x;), x]-2 is replaced by the dot product of x;, or (xj) xj and x; — x; is replaced by the
second norm of X; — X;j.

® X3 is x3 times the normalized gradient

Applying Newton’s method along Vf:
e The iteration scheme for one-dimensional problems is,

f'(x)
Xi+1 Xi _f”(X')
L
e Extending it to multi-dimension,

Xit1 = X; — H7'Vf
Where H and Vf are evaluated at x;.



Graphically, consider a 2D problem.

fx) = (g — 1%+ (x; —3)% = 1.8(x; — 1)(x2 — 3)
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Initial guess x¢ = [0.75.—1.25]7 and A= 0.1.

Golden-section search
17 rounds of gradient computation, the converged solution is:
x* =[0.999992,2.999992]"
f(x*) =5.752007"11
cputime = 0.046875 sec.

Newton’s method
1 round of gradient computation, the converged solution is:
x*=1[1,3]"
f(x*) =0
cputime = 0.031250 sec.

Example: the Rosenbrock function (a.k.a. the banana function) is a “standard” test problem on the
performance of any unconstrained optimization solver.

f@) = i [100(xiss = )" + G~ 7]
i=1

m is an integer. The dimension of the problem is m + 1.

Set m = 4, initial guess of x, = [0,0,0,0,0]7, and A= 0.1.



Golden-section search:
4214 rounds of gradient computation, cputime = 0.516525 s

0.999665
0.999331
x*=|0998657 |,  f(x*) =9.4662811°"°
0.997312
0.994615

Newton’s method:
2 rounds of gradient computation, cputime =0.3125 s

, fGx)=0

=
*
Il
[ S U G



Part 4: Optimization (V)

A multi-dimensional constrained optimization is one that, in mathematical terms,
minf(x) forx € R™
X
subject to Fj(x) = a;, j=1,2,..,m

Gk(X) < bk! k= 1,2, ., my
and U, < x < Up

Where f(x) is a continuous real-valued function.

The bounds can be expressed as inequalities such that the constraints are either equality-type or
inequality-type.

Linear Programming:
If £, F; and Gy, are linear functions, that is,

f(x)=c"x

F(x) =Ax—{a;} =0
G(x)=Bx—{b} <0

x>0

Where c is a vector, and A and B are matrices), the optimization problem can and should be solved by
linear programming as it is the most effective method for such optimizations.

Quadratic Programming:
If f is a quadratic function, while F; and Gy remain linear, that is:

f(x)=c"x +%xTQx
F(x) =Ax—{a;} =0
G(x)=Bx—{b,} <0

x>0

Where cis a vector, Q, A and B are matrices, and Q is positive definite o rnegative definite), the
optimization problem can and should be solved by quadratic programming as it is the most effective
method for such optimizations.

General multi-dimensional nonlinear constrained optimization:
e Method of Lagrange multipliers

o Method of penalty functions

e Exterior penalty

e Interior penalty




Method of Lagrange multipliers:

Construct the Lagrange function as follows:
mq msy
LA m = f@) + ) KB - a)+ ) (G~ by)
j:]_ k=1

Where 4 and p contain the A; and yy, respectively. x is known as the primal variables, while 4 and p are
the dual variables.

The Lagrange function transforms the constrained optimization problem into an unconstrained one but
increases the dimension to n + my + ms,.

Mathematically, the duality theorem stipulates the conditions on the optimal solution.
For not-too vigorous take at the theorem:

- —0.0r% =0 %% — 0ang?t —
1. Zerogradient: VL =0, or P 0, Y 0 and P 0

2. Constraints are met.

3. T(Ax—a)=0,u"(Bx—b) =0,withA>0,andpu >0



Example: minimizing the following:
fO) =0 = 1%+ (= 3)% = 1.8(x; — D(x2 — 3)
Subjecttox; =landx; —x, =0
The Lagrange is:
L(Ap) = (x — 1%+ (2, —3)% = 1.8(x; — D(xp — 3) + A(xy — 1) + px, — x1)
Applying Condition 1:
x=1x,=1,1=04,u=04
Check with Condition 2:

x; =1, true
X1 —xp =0, true

Check with Condition 3:
AT(Ax —a) =0, true
u'(Bx—b) =0, true
A=0, true
n=0, true

Steepest-descent with Newton’s method yields:

x*=[1,1044]T, f(x)=4



Method of exterior penalty functions:

Feasible region means the region, within the n —dimensional space, where all constraints are met.
Constraints define the boundaries of the feasible region.

The exterior penalty functions method is applicable when the iteration points x; are outside the feasible
region.

The method works well with both the equality-type and inequality-type of constraints.
As to what penalty functions to use, it is heuristic.
Example: Minimizing the following:

fO) = (e =D+ (= 3)? = 1.8(x; — 1(x; — 3)
Subjecttox; = 1,and x; —x, = 0.
The penalty functions may be:
Forx; —x, = 0: ®(x) = (x; — x)P
Forx; = 1:y(x) = (x; — 1)
Withp = 2,4,...and g = 2,4, ...
Then a Lagrange function is formed, say,

L(x; A,p) = fF(x) + P(x) + pug(x)

Which is optimized, treating A, u as parameters of increasing values.
Settingp=4, q =2, A=1, u= 100, x, = [0,1]7, A=0.1
Using steepest descent + Golden-section search.

*

X =
1.149322837308608
1.356474098102844

L=
3.371661647463247

f=
3.165223411499403



Now, A = 10000, ¢ = 10000

*

x* =
1.000018513959687
1.046050470120337

L=
3.862886413499447

f=
3.817983881276812

Method of interior penalty functions:
The interior penalty functions method is applicable if and only if the solutions points x; are within the
feasible region.

The method works better with inequality-type of constraints.

The penalty functions are to force the points to move away from the boundaries. They are gence known
as the barrier functions.

Again, the choices of penalty functions are heuristic.

Example: Minimizing the following:

fO) = (ep —D?+ (= 3)? = 1.8(x; — D(x; — 3)
Subject to x; — x5, = 0.
The interior penalty functions may be:

1

PO = G =
Or

®O(x) = —In(x; — x5)
Note that both functions approach +oo when x; approaches x, while meeting the constraint.
The Lagrange function is then formed,

LOGp) = f(x) + p@(x)

Which is optimized, treating i as a parameter of decreasing values.



Summary:

e The method of penalty functions does not yield exact solutions.

e Optimization performance is heavily dependent on the choices of penalty functions and penalty
parameters.

e Hessians may become ill-conditioned due to large penalty parameters.

e The method of Lagrange multipliers gives rise to exact results (or as close to exact as possible). The
dimension of the problem is increased from n ton + m; + m,.

Visual Explanation:




Part 5: Finite Difference Method

This part concerns itself with finite difference method as a numerical tool for solving differential
equations (DEs).

The Big O Notation
In mathematics, the big O notation, such as O(8™), is used to indicate the order of accuracy or order of
error. For example, if n = 2, one says that it is second order accurate.

Overview
Finite difference method comes with explicit and implicit versions, and the combinations of as well.

Explicit schemes are easy to use but the stability conditions must be adhered to. Explicit schemes are in
general less accurate than the implicit ones.

Incorporating boundary conditions may be tedious but is the key to success.

Finite Difference Method for One-Dimensional DEs
Here, dimensions refer to spatial dimension. For one-dimensional DEs, the spatial coordinator is x. The
temporal “coordinate” may come into the picture, depending on the DE.

Finite Difference for first-order derivatives
Forward difference:

_ [+ 80— f(x)

f'@) 0
Backward difference:
pr = TOTIEERD | oan

Central difference (first order):

_ f(x+Ax) — f(x — Ax)
B 2Ax

f(x) + 0(Ax?)

The central difference is one-order more accurate than the forward or backward difference.

Finite Difference (FD) for second-order derivatives
Central difference (second order):

[+ Ax) —2f(x) + f(x + Ax)
B Ax?

f"x) +0(Ax?)

That is, the error is of the order Ax?2.

The Hear Equation




ou 0%u

k== x€[0,LLt>0
5t = Koz *€0L]

Assume forward difference for the temporal domain and central difference for the spatial domain, then
the heat equation is discretized as:

u(x, t +At) —ulx,t)  ulx+Ax,t) — 2u(x, t) + u(x — Ax, t)
At - Ax?

+ 0(At, Ax?)

The spatial domain is divided into N even intervals such that x,, = nAx withn =0,1,2,...,N
The temporal domain is discretized by At such that t, = kAt, wherek =0,1,2, ..., K.

Denoting u(x,, t;) by uk, the above equation becomes, neglecting the big O,

k+1 k k k k
Uy = —Up _ Kun+1 — 2Up + Up_q

At Ax?

Solving for uk*1,

u%+1

At

=uk + KAz (uk g —2uf +uk_))
X

This is the iteration scheme to go from time step k to time step k + 1.

Stability condition of the scheme:

kAt 1
<
Ax? ~ 2



Dirichlet Boundary Conditions

u(0,t) =4, u(L,t) =B
After initial condition: u(x, 0) = f(x)
Initial condition: ud = f(x,) wheren =0,1,2, ..., N.

Boundary conditions: uf = A, uf = B forallk > 0.

The iteration steps:
Assign initial condition u9
fork=0,..,K—1

u165+1 « A
u116+1 < B

forn=1,..,N—1

At
K+l gk k ko4 .k
un™t e un K (uk g —2uf +uk_;)

end

end



Neumann Boundary Conditions

Mon=c Lwo=p
ox 7 ax
And initial condition: u(x, 0) = f(x)

. . ou
Using central difference on ™

Ju u(Ax,t) —u(Ax,t uk —uk
0 ooy LOBD —u@n D b —uby
ox 2Ax 20Ax
The mesh point x = —Ax does not exist. However, u'fl can be determined as follows

uk, = uk —2AxC
.okl ok At k k
cuftt=uf + KA—XZ(—ZuO + 2u¥ — 2AxC)
By the same token, x = L + Ax does not exist but
uf ., =uk_, +2AxD
.o k+l ok At k k

The iteration scheme remains the same as with Dirichlet boundary conditions.

Mixed boundary conditions; Robin boundary conditions

Apply the principles shown above.
Example: k = 0.835,L = 10, N = 10; At = 0.5 5,t € [0,10]

u(0,t) =100, wu(L,t) =50, andu(x,0)=0
Note these boundary conditions are maintained at all times.

This example is available from “Numerical Methods for Engineers”, Chapter 30. An excel sheet will
accompany this file. The sheet has results computed with Ax = 2, At = 0.1 for 5 time steps.

Stability condition:

kAt (0.835)(0.5)
Ax? 12

1
=04175< -
2
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Example: k = 0.835,L = 10, N = 10; At = 0.5 5,t € (0, 10]
Ju
a(o, t)=0o0r1, u(Lt)=85 andu(x,0) =50

Stability condition:

kAt (0.835)(0.5) 04175 < 1
Ax? 12 e -2

au(o y=1
Fx )=

85 T T T T T T T T T 85
80 L 1 sor =0
t=5s t=5s
t=10s 75 t=10s
75t
70
70F 1 65 -
65 4 60 -
55
60 [
50 [
55
45
50 1 L ! S 1 1 1 1 L 1 40



For assignment (wave equation):

1 T T “" / V‘\\ T
f/ \.'.
05}
/ \
\
0 1 J/ 1 N ~ S

0 0.1 0.2 03 04 0.5

~ 7 T T T
04f / \
0.2 ";‘" "'\,‘

0 " 1 \ L 1 1 _

0 0.1 0.2 03 04 05

05 T T T T
== -
X /
\\ /
-05 1 L 1 1

0 0.1 0.2 03 04 0.5



doThe Wave Equation

*u _ ,0%u
Froimk s x€[0,L],t =0
Boundary conditions: Dirichlet, Neumann, Mixed or Robin.
For example:
u(0,t) =4, u(L,t)=B8B

Initial conditions:

du
u(xl 0) = f(X), E (x; 0) = g(x)
Applying central difference spatially and temporally,

0%u 5 0%u

dt2 ~ ~ dx?
Becomes:
k+1 k k—1 k k k
up’t — 2uy +uy o Ung1 — 2Up + Up_y
=c + O(At?, Ax?
At? Ax? ( )

Neglecting big O, and solving for uk*1:

At?
k+1 — 9.k k-1, .2 k k k
Uy " =2up—u,; +c¢ A (un+1 —2uy + un_l)

Note that 2 time-steps, k and k — 1, must be determined before the above iteration scheme can be
applied.

Stability conditions:

At<1
ch_

Boundary conditions: dealt with the same way as the Heat Equation.

Initial conditions: u(x,0) = f(x) and %(x, 0) = g(x) are discretized in the temporal domain:
up = f(xn)
u(x, 0+ At) —u(x — At)
AT =9g)

The latter leads to:

uyz' = up — 2Atg(xy)



The iteration scheme:

At?
uktl = 2uk — k-1 4 (2 m(uflﬂ —2uk +uk_ )
When k = 0 becomes:
2
Un = p + Atg(en) + ¢ 5 (Unyq = 2up + up_y)
The iteration steps: (for Dirichlet boundary conditions) assign initial condition u9:
ud < A
uy < B

forn=1,..,.N—1
At?
urln < ug + Atg(x,) + c? Az (u$1+1 - 2“91 + u?l—l)

end

fork=1,..,K—1

ud < A

uy < B

forn=1,..,N—1

2
k+1 k k-1 2 At k k k
uktl < 2uk — k-1 4 ¢ A_xz(u"+1 —2uk +uk_ )

end

end
0.05 T T : .

Example / =0

c= 3 0.04 / \

L=1 0.03 /

N = 10 0.02 | yd
At = 0.025 sec ol / o
t € [0,10] P

0

u(0,t) =0, u(L,t) =0

-0.01

u(x,0) = f(x) = the blue line 002}

-0.03

t=0.125s | |
t=0.25s

au _ _ 0 (1‘1 012 0“3 0.4 O.‘5 OjS
o7 (60 = g() = ()

L J
0.9 1

An excel sheet will accompany this file. The sheet has results computed with Ax = 0.1, At = 0.025 for

10 time-steps.

Check against stability condition:

At _ 0025 _
‘ax " °To1 PS



The Poisson’s Equation

0%°u  0%u

W'l'a_yz:_F(x’y)’ XE[Opa]i ye[o’b]

If F(x,y) = 0, the Poisson’s equation becomes the Laplace’s equation. They are to describe the
diffusion (or spread) of F(x,y) (which may be, for example, a heat source, an electric charge, etc.) For
the Lapalce’s equation, one investigates the diffusion of boundary conditions.

Boundary conditions: Dirichlet, Neumann, Mixed or Robin.
Focusing on the Dirichlet boundary conditions:

u(x,0) = fi(x),  ulx,b) = f(x)

u(0,y) =g:(»),  ulay) =g.(y)
Discretizing the rectangular spatial domain so that the node points (mesh points) are:

X, = nlx, n=01,.. N
Vm = mAy, m=20,1,..,.M

Assuming central for the second derivatives, the Poisson’s equation:

0%u N 0%u _ r
ax2  dy? ()

becomes, denoting u(xy, ¥,) by Uy 1

Un+1m — 2un,m + Un—1,m + Unm+1 — 2un,m + Unm-1
Ax? Ay?

+ 0(Ax?,Ay?) = —F(x,y)

Defining B = Ax /Ay, neglecting the big O, and solving for u,, ,,.:

1
Upm = m [un+1,m + Un—1,m + Bzun,m+1 + .Bzun,m—l + szF(x' Y)]

The problem with the above approach is, Uy, 11, and u,, ;,+1 are unknown. The scheme is therefore
implicit.

There are a number of approaches.

Direct Solution
Jacobi Iteration

Successive Over Relaxion (SOR)



Direct Solution:
Put the (M — 1) * (N — 1) unknowns in a vector U;

Each equation of:

1
Upm = m [un+1,m +uUup_gm+ .Bzun,m+1 + Bzun,m—l + szF(xn; )’m)]
is a row in a matrix A and an element in vector R;
A-U = R isformed;

U is then solved.

Jacobi Iteration:

(k+1) _ (x) ) (k) k)
Unm 2(1 + 3 ) [un+1m UpZym T ﬁz Unm+1 + 'Bzun,m—l + szF(xn,ym)]

Step 1:
Boundary nodes are assigned boundary conditions;
k=0;
Interior nodes are assigned zero value, Uy, ;,(0) « 0;
Uprg — u;

Step 2:

(k+1),

Compute all interior nodes’ values by evaluating u,, ,,,"’;

+1) _

Compute A= ||u(k
Step 3:

If A < tolerance, ugy)q < uk D ke k+1, go back to Step 2.

Successive Over Relaxation (SOR):
Point SOR:
From:

(k+1) _ I

unm 2(1 +'B )[un+1,m n—-1m

+ ﬁzu(k) + ﬁzu(k) + szF(xn,ym)]

n,m+1 n,m—1

The SOR scheme is:

wdo D = (1 - wud) + W w42 ;kr)nﬂ + Bl + AxZF(xn,ym)]

2(1+BZ)[ n+im n—-1m nm-1

Where 1 < w < 2 for over relaxation, and 0 < w < 1 for under relaxation.
What is the best value to use for w? It depends.

There is also Line SOR.



Example:
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n, m=l .
=0
"4u|+7-2+ ’uZ +£8 + 'Uq. =
-4 | 0|l 0 O iy

1
L]

~4Us + Uy + U+ U, +8.9 =0
o | ol ¥-¢ | -89

-4U + Us +9.2+ U3 +8.9 =0
0 0 | 6 | —# —~/8.]

[ 7.63%1 \
8.1764
U={&mm\

8.3800 (
a.5807
[ 8.8666




Introduction

( Finite Element Method (FEM)
(for academia,
1. software developers ...)
Finite Element Analysis (FEA)
(for users)

2. Whatis FEM/FEA?
Physically (physical systems’ perspective)

The continuous physical model is divided into finite pieces (a.k.a. the elements), and the laws of
nature/physics/chemistry are applied. The results are subsequently recombined to represent the
continuum.

Mathematically,
The differential equation representing the system is converted into a variational form, which is
approximated by the combination of a finite set of trial functions (a.k.a. shape functions).

It has been proven that ,as long as the elements meet certain conditions, then as the elements get
smaller and smaller, the finite element result will converge to the “exact” solution.

4. Stepsin FEA:

Discretization (Pre-processing):

e Divide the physical domain into pieces (or elements whose attributes are appropriate for the
problem at hand)

e Constrain the mesh by appropriate boundary conditions

e Apply loads (forces, moments, temperature, pressure, ...)

Solution:
e Solve: the system of equations

Post-processing:
e Calculate: displacements, strains, stresses, and plot results



5. Attributes of an Element:
5.1) Dimensionality:

e 1D
e 2D
e 3D

5.2) Associated with certain material and certain geometric properties such as:
e Cross-sectional area (A)

e Moments of inertia (I, Iy, Iy, ])

e Thickness (t)

o  Modulus of elasticity (E)

e Poisson’s ratio (v)

5.3) A number of nodes

Each node is associated with a number of DOFs (physical unknowns) such as:
e Temperature (1 DOF)

e Displacement (1 or 2 or 3 DOFs)

e Velocity (1 or 2 or 3 DOFs)

5.4) DOFs of an element = (DOFs of a node) x (humber of nodes)

5.5) Interpolation within Element
In FEA, DOFs at the nodes are the unknowns to be solved for.

Between nodes (within element), the unknown variable is interpolated.
The interpolation function is known as the shape function.

Shape function is a key feature of FEM; its construct/form, has significant effect on the quality of the
solution.

or erample. Tr
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In general, the more nodes that are used, the higher the degree of interpolation, the more accurate the
element; but the number of DOFs of the element is increased.



Lesson #1
Not all elements are created equal;

Some elements are better than others;
e More accurate
e Less sensitive to distortion of the element’s shape

A given element does not have equal accuracy in all situations;

Consider the following diagram:

NP YNERNENERRERY

1-ms pressure pulse

| e————200 mm—————* --!zt:mm}-:_l,_
i
4 mm

v

-10 s aa e g o b g s a s o2 a1 4 0 0 a1 a0 3l eal
0 1 2 3 4 5 6 7
Time, ms
Fig. 1.5-1. Lateral midpoint displacement versus time for a beam loaded by a pressure pulse
[1.6] The matcrial is clustic-perfectly plastic. Plots were gencrated by various users and vari-
ous codes,




Formal (General) Approach

1. Available principles (methods)
a. Solid mechanics (structural mechanics)
Variational methods
Virtual work
b. Field problems (e.g. heat transfer, fluid flow, electric potential, multi-physics and so on)
Weighted residual methods
Galerkin's
collocation
least squares
subdomain weighted residual

2. Variational methods (principles)
Variational principle is a principle used to find a function which minimizes or maximizes a physical
guantity that depends upon the function to be found.

Single variable calculus:
Function is given,
1°* order derivative
2" order derivative
Variational principles:
Boundary conditions and loading are known (e.g. a circular plate, being clamped along outer
edge, and subject to a central load);
The unknown function is the deflection w (7, 8);
Physical quantity: work, energy;

3. The Principle of Minimum Potential Energy
Commonly used in solid mechanics
Applicable to linear elastic analyses only;
Been extended to many other “non-structura

|”

applications.

Statement of the principle:

Of all the geometrically possible shapes that a body can assume, the true one, corresponding ot the
satisfaction of stable equilibrium of the body, is identified by the minimum value of the total
potential energy.

2 key issues:
e total potential energy
e finding a function giving a minimum value of energy

Total potential energy:
T, =u+
u: strain energy due to deformation
Q: potential energy of external forces (including body forces, surface loads, and concentrated
forces/moment, etc.)
Q = —(work done by external forces)



Finding a function that minimizes ,, by variational calculus.

4. The Principles of Momentum Potential energy as Applied to an Elastic Body

m = [ lorEKe av
_ fV%{yJ)T {B;} dv
- | T as
—{w{p}

Where {€} and {g} are strain and stress vectors, respectively.

[E] is the elastic matrix, such that:
{0} = [E]{e}

{P}: concentrated forces/moments vector
{¢}: surface load vector
{Bf}: body force components vector

{u}: displaces at nodes where {p} is applied.
{u}: displacement evaluated on the surface of the body where {¢} is applied

{g}: displacement within the body

5. The Finite Element Form of the Principle of Minimum Potential Energy
The volume of the body is divided into NE elements, each having a volume of I/,

Similarly, S, the surface, is divided based on element formation
NE 1
=y [ SlOTENE a,
j=17 Ve

- [ 3 1

e

NE 1
=Y [ s@rwas,
j=1"%
—{w){p}
Within an element,
{u} = vy

[N]: shape function matrix



Then {€} can be written as, symbolically

[B]: strain-displacement matrix
[0]: a matrix of partial differentiation operators

Egn. (1) becomes:

NE
1
oy = ; fv ~ )T [BYT[E][B){u} av,

e

NE 1
2| Fermre)ay

N o
- [ Ferwr s,
j=1"%

—{U)"{p}

Where [U] = Y {u} (symbolically)
And [N] is [N] but evaluated over S,

]
Minimization: —2 = {0}

a(U}
Finally:
NE
(Z I [B]T[E][B]dl@)-w}
j=1""e
NE NE
Y [ (B av+ Yy [ (WL ds,
j=1 "¢ j=1 -e
In Egn. (2):

jV [BI" [E[B]dV, = [K] @

e

The element stiffness matrix

NE

> 1kl = [K]

Jj=1
The structure stiffness matrix



NE

> fv NI [By] dve +JNZEI fs [W1"lg] ds.

j=1

= {feq}

The element equivalent nodal force vector

Z?lfl[feq] = [Feq]

The structure equivalent nodal force vector

Eqgn. (2) can be further written as:

[K1{U} = {P} + {foq}



4-Noded Quadrilateral Element (Q4)

4 T@ 3

A
\I

4 nodes, 1, 2, 3,and 4
counter — clockwise
1 in the 3rd quadrant

1 — 2 defined local x
2 — 3 defines local y

2DOFs per node:
u — displacement in the x —direction
v —displacement in the y —direction

8DOFs per element:
= [k]gxs {feq}sxl

Element nodal DOFs:
{ule =l[w viuy v uz V3 Uy vy ]T

Within the element, any point (x, y) will have displacements.
u(x,y) and v(x,y)

u(x,y) and v(x, y) are related to {u}, via shape functions.

Ny (x,¥), Np(x,y), N3(x,y), Nau(x,y)
Such that,

4
u(x,y) = Z N;(x, y)u;
i=1

4
v(x,y) = z N;(x,y)v;
i=1



Putting into matrix form:

w [N, O N, 0 Ny 0 N, 0
ﬁ{v}_[o NN, O N, 0 N; 0 NJZXg{”}e

{u}

[N Shote. fachon o
Where:

1

Ny (x,y) = 1ap @00 —)
1

Ny (x,y) = 1ap@t00C -y
1

N3(x,y) = 1ap @ t00C+y)
1

Ny(x,y) = m(a —x)(b+y)

Next, [B] = [9][N]
G Skcont A-‘se\o.ce«\e(\"-“v““"‘

From theory of elasticity:

= [0][N]{u}.
'\_\(—‘

()



=~ [B] for Q4 is:

r 0
dx
(B]=| 0 91 N O N, O N3 O N, O
- ay 0 N1 0 Nz 0 N3 0 N4_ 2x8
o 0
dy 0Xly,
N, oN, 0N, 0N,
o o Y Y
ON 0N ON ON
B]=| 0 — 0o = = 0 =
dy dy dy dy
ON; 0N, 0N, 0N, OdN; ON; 0N, ON,
dy O0x dy o0x dy 0Jx dy Ox

~3x8

If constant thickness (plane stress t = const., plane strain— analyzing a thin slice of constant thickness t)

Then,

b a
[k] = j b j [B]" [E][B]dx - dy

B]: 1** order polynomials in x or in
y

- integrands are 2" order polynomials
=~ analytical (closed-form) solutions are obtainable

Plane stress:

1 v 0
_ E v 1 0 . . . .
[E] = 0 . 1 (linear, elastic, isotropic)
2
%
and: g, = —E(ax +0y)
Plane strain:
1—v v 0
[E] = E v 1—v 0
(1+v)(1-2v) 1-2v

0 0

and: g, = v(ox + gy)




Properties of Shape Functions:
1) Y;N; = 1 for any given point within the element, including the nodes and edges/surfaces where
applicable
1 atnodei
2) N; =
) N {0 at all other nodes

Put them in a more mathematical way:
1) Is known as the partitions of unity property.
2) Is known as the § —function property.

Other properties include,

Consistency: to include the complete order of monomial
(Second order: x2,y2,xy )

(Third order: x3, y3, xy?, x%y)

Linear dependence: N;'s should be linearly independent



[k]: singular, symmetric

5
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t’ o1im

™~

C AR
-

o) @
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NE

K] = Z[k] : symmetric
i=1
singular before applying B.C.’s

thickness = 5 mm
E =200 GPa
v=20.3
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(k] = 108«
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cs mme—m-- = --..-—_..—-—- -— ———-

49451 -178.57

17857 _ 49451 | |

. e e — — — —

ng. ' 1

N

Surface load on edge “4 — 3”:
— CDX — CDX
¢ = {(Dy} B { 0 }
o, =w(x+a)
w: force/length®

On the other hand, shape functions are, when evaluated at the edge where y = b,
N,=N,=0
N; = (a + x)/(2a)
N, = (a —x)/(2a)

sAfeq) = f 17 {®} t dx

[N] = [Nl N, .. N, ]
N, N, .. N,

4 2
sAfeq) = [O, 0, 0, 0, §wta2, 0, §wta2, 0]

for element 2
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