

Part I: Least Square Analysis
Case I: Curve Fitting

Case 2: 𝐴𝑚∙𝑛𝑥⃗𝑛∙1 = 𝑏⃗⃗𝑚∙1

𝑚 > 𝑛 (when the matrix has more equations than unknown, the matrix A is a tall matrix – so there is

usually no solution):

[

𝐴

] [𝑥⃗] =

[

𝑏⃗⃗

]

Then the error vector can be written as:

𝑒 = 𝑏⃗⃗ − 𝐴𝑥⃗

As it turns out, both cases have the same solution method.

1. Linear Regression
Given data pairs:

(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛), 𝑛 > 2

Find the best fit line:

𝑦 = 𝑎𝑜 + 𝑎1𝑥 + 𝑒

We try to find a way to define the ‘best fit’ - we can use the length of the error vector itself, defined as

an object function.

For each pair (𝑥𝑖, 𝑦𝑖), the error

𝑒𝑖 = 𝑦𝑖 − 𝑎𝑜 − 𝑎1𝑥𝑖, 𝑖 = 1, 2,… , 𝑛

𝑎0, 𝑎1; constants to be determined

Object function

𝑆𝑟 = 𝑒1
2 + 𝑒2

2 + 𝑒3
2 +⋯+ 𝑒𝑛

2 =∑ 𝑒𝑖
2

𝑛

𝑖=1
= ∑𝑒𝑖

2

Or

𝑆𝑟 = ∑(𝑦𝑖 − 𝑎𝑜 − 𝑎1𝑥𝑖)
2

Minimizing 𝑆𝑟

𝛿𝑆𝑟
𝛿𝑎𝑜

= 0,
𝛿𝑆𝑟
𝛿𝑎1

= 0

𝛿𝑆𝑟
𝛿𝑎𝑜

= ∑2(𝑦𝑖 − 𝑎0 − 𝑎1𝑥) ∙ (−1)

𝛿𝑆𝑟
𝛿𝑎𝑜

= (−2) ∑(𝑦𝑖 − 𝑎0 − 𝑎1𝑥)

𝛿𝑆𝑟
𝛿𝑎1

= ∑2(𝑦𝑖 − 𝑎0 − 𝑎1𝑥)(−𝑥𝑖)

𝛿𝑆𝑟
𝛿𝑎1

= (−2) ∑ (𝑦𝑖 − 𝑎0 − 𝑎1𝑥) ∙ 𝑥𝑖

Substituting into the original equation:

∑(𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖) = 0

∑𝑦𝑖 −∑𝑎0 − ∑𝑎1𝑥𝑖 = 0

And

∑(𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖)𝑥𝑖 = 0

∑𝑥𝑖𝑦𝑖 − ∑𝑎0𝑥𝑖 − ∑𝑎1𝑥𝑖
2 = 0

→ 𝑛 ∙ 𝑎0 + (∑𝑥𝑖)𝑎1 = ∑𝑦𝑖

 (∑𝑥𝑖)𝑎0 + (∑𝑥𝑖
2)𝑎1 = ∑𝑥𝑖𝑦𝑖

Thus, from Gauss-Jordan elimination:

𝑎1 =
𝑛∑𝑥𝑖𝑦𝑖 − ∑𝑥𝑖∑𝑦𝑖

𝑛∑𝑥𝑖
2 − (∑𝑥𝑖)

2

𝑎0 =
1

𝑛
[∑𝑦𝑖 − (∑𝑥𝑖)𝑎1] = 𝑦̅ − 𝑥̅ ∙ 𝑎1

Here

𝑥̅ =
∑𝑥𝑖
𝑛
 ; 𝑦̅ =

∑𝑦𝑖
𝑛

𝐴𝑥⃗ = 𝑏⃗⃗ − 𝐴𝑥⃗

𝐴 is a tall matrix (no unique solution – more unknown than equations, or no solutions at all)

Define error vector

𝑒 = 𝑏⃗⃗ − 𝐴𝑥⃗

We try to find the smallest error vector length using the error vector itself. We use the dot product, or

transpose multiplied by itself.

Minimize

𝑆𝑟 = 𝑒
𝑇𝑒

= (𝑏⃗⃗ − 𝐴𝑥⃗)
𝑇
(𝑏⃗⃗ − 𝐴𝑥⃗)

= (𝑏⃗⃗𝑇 − 𝑥⃗𝑇𝐴𝑇)(𝑏⃗⃗ − 𝐴𝑥⃗)

= 𝑥𝑇⃗⃗ ⃗⃗⃗𝐴𝑇𝐴𝑥⃗ − 𝑥𝑇𝐴𝑇𝑏 − 𝑏𝑇𝐴𝑥 + 𝑏𝑇𝑏

Two vectors 𝑥 and 𝑦 (It’s a scalar so order doesn’t matter, so the order can be switched with no issues)

𝑥𝑇𝑦 = 𝑦𝑇𝑥

𝑆𝑟 = 𝑥
𝑇𝐴𝑇𝐴 𝑥 − 2𝑥𝐴𝑏 + 𝑏𝑇𝑏

**Where 𝐴𝑇𝐴 is a symmetric matrix

Note: This is a typical quadratic equation

Sr is a function of vector x⃗⃗

𝑥⃗ = (𝑥1, 𝑥2, … , 𝑥𝑛)

Minimizing Sr

𝛿𝑆𝑟

𝛿𝑥1
= 0

𝛿𝑆𝑟

𝛿𝑥2
= 0 …

𝛿𝑆𝑟

𝛿𝑥𝑛
= 0

Or (another form):

𝛿𝑆𝑟
𝛿𝑥⃗

=

{

𝛿𝑆𝑟
𝛿𝑥1
𝛿𝑆𝑟
𝛿𝑥2…
𝛿𝑆𝑟
𝛿𝑥𝑛}

= 0

𝛿𝑆𝑟
𝛿𝑥⃗

= 2𝐴𝑇𝐴𝑥⃗ − 2𝑎𝑇𝑏

From calculus, we knowthe minimum value of this expression is when it is equal to 0.

Find 𝑥⃗ such that

𝐴𝑇𝐴𝑥⃗ = 𝐴𝑇 𝑏⃗⃗

This is how we solve a set (or system of linear equations) when there is no solution.

- We call this the least-squares method

- Essentially, we’re just multiplying each side by 𝐴𝑇

Example
Find the closest line to the points (0, 6), (1,0), (2,0)

Solution
Line

𝑦 = 𝑎0 + 𝑎1𝑡

Point (0,6): 𝑎0 + 𝑎1(0) = 6

Point (1,0): 𝑎0 + 𝑎1(1) = 0

Point (2,0): 𝑎0 + 𝑎1(2) = 0

In matrix form:

[
1 0
1 1
1 2

] {
𝑎0
𝑎1
} = {

6
0
0
}

Convert to:

𝐴𝑇𝐴𝑥⃗ = 𝐴𝑇 𝑏⃗⃗

[
1 1 1
0 1 2

] [
1 0
1 1
1 2

] {
𝑎0
𝑎1
} = [

1 1 1
0 1 2

] {
6
0
0
}

[
3 3
3 5

] {
𝑎0
𝑎1
} = {

6
0
}

{
𝑎0
𝑎1
} = [

3 3
3 5

]
−1

{
6
0
} = {

5
−3
}

The line:

𝑦 = 5 − 3𝑡

Geometric explanation

Another way of thinking about the least-squares solution:

[
1 0
1 1
1 2

] {
𝑎0
𝑎1
} = {

6
0
0
}

𝑎0 {
1
1
1
} + 𝑎1 {

0
1
2
} = {

6
0
0
}

The column vectors of 𝐴: {
1
1
1
} and {

0
1
2
} will expand a plane in 3D (3 dimensions)

𝑏 = {
6
0
0
} does not belong to the plane.

𝑏⃗⃗ = 𝑝 + 𝑒

And:

Ax⃗⃗̂ = p⃗⃗

𝑒 = 𝑏⃗⃗ − 𝑝

Is the smallest value when 𝑝 is a projection of 𝑏⃗⃗ onto the plane formed by the columns of matrix 𝐴.

Example

Fit a straight line to the 𝑥 and 𝑦

𝑥𝑖 1 2 3 4 5 6 7

𝑦𝑖 0.5 2.5 2.0 4.0 3.5 6.0 5.5

Solution

𝑦 = 𝑎0 + 𝑎1𝑥 (+ 𝑒)

Here

𝑎1 =
𝑛∑𝑥𝑖 𝑦𝑖 − (∑𝑥𝑖)(∑𝑦𝑖)

𝑛∑𝑥𝑖
2 − (∑𝑥𝑖)2

𝑎0 = 𝑦̅ − 𝑎1𝑥̅

Since

𝑛 = 7

∑𝑥𝑖 = 1 + 2 + ⋯ + 7 = 28

∑𝑦𝑖 = 0.5 + 2.5 + ⋯ + 5.5 = 24

𝑥̅ =
∑𝑥𝑖

𝑛
=

28

7
= 4

𝑦̅ =
∑𝑦𝑖

𝑛
=

24

7
= 3.428571429

∑𝑥𝑖𝑦𝑖 = 1(0.5) + 2(2.5) + ⋯ 119.5

∑𝑥𝑖
2 = 12 + 22 + ⋯ + 72 = 140

Therefore

𝑎1 =
(7)(119.5) − (28)(24)

(7)(140) − (28)2

𝑎1 = 0.8392857

𝑎0 = (3.428571429) − (0.8392857)(4)

𝑎0 = 0.07142857

∴ 𝑦 = 0.07142857 + 0.8392857𝑥

Estimate of the linear regression (error from the sampling data to the straight line):

𝑆𝑟 = ∑(𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖)2 𝑤ℎ𝑖𝑐ℎ (= ∑𝑒𝑖
2)

Under some conditions, the least squares regression will provide the best estimation of a0 and a1.

According to research found in:

Draper & Smith, 1981

Applied regression analysis

Standard error of the estimate (how spread out the data is around the best fit line):

𝑠𝑦|𝑥 = √
𝑆𝑟

𝑛 − 2

It quantifies the spread around the straight line.

For the data 𝑦𝑖, 𝑖 = 1, 2, 3, … , 𝑛, define

𝑆𝑡 = ∑(𝑦𝑖 − 𝑦̅)2

Standard deviation (the quantified spread around the mean):

𝑠𝑦 = √
𝑆𝑡

𝑛 − 1

Define the coefficient of determination:

𝑟2 =
𝑆𝑡 − 𝑆𝑟

𝑆𝑡

𝑟 is called the correlation coefficient.

What does the value of 𝑟2 represent:

∗ 1𝑠𝑡 𝑐𝑎𝑠𝑒: 𝑆𝑟 = 0, 𝑟2 = 1, all the data are on the straight line.

∗ 2𝑛𝑑 𝑐𝑎𝑠𝑒: 𝑆𝑟 = 𝑆𝑡, 𝑟2 = 0, straight line fit represents no improvement (equal or worse result)

Another way to calculate 𝑟:

𝑟 =
𝑛∑𝑥𝑖 𝑦𝑖 − (∑𝑥𝑖)(∑𝑦𝑖)

√𝑛∑𝑥𝑖
2 − (∑𝑥𝑖)2 ∙ √𝑛∑𝑦𝑖

2 − (∑𝑦𝑖)2

Example

Estimate the least-squares fit

𝑥𝑖 1 2 3 4 5 6 7

𝑦𝑖 0.5 2.5 2.0 4.0 3.5 6.0 5.5

Solution

𝑦̅ = 3.428571429

𝑆𝑡 = ∑(𝑦𝑖 − 𝑦̅)2

𝑆𝑡 = (0.5 − 3.428571429)2 + (2.5 − 3.428571429)2 + ⋯ + (5.5 − 3.428571429)2

𝑆𝑡 = 22.7143

𝑎1 = 0.8392857

𝑎0 = 0.07142857

𝑆𝑟 = ∑(𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖)2

𝑆𝑟 = (0.5 − 0.07142857 − 0.8392857(1))
2

+ ⋯ + (5.5 − 0.07142857 − 0.8392857(7))
2

𝑆𝑟 = 2.9911

𝑟2 =
𝑆𝑡 − 𝑆𝑟

𝑆𝑡
=

22.7143 − 2.9911

22.7143
= 0.868

Then around 87% of the data can represented with a straight line – there’s still some uncertainty.

Standard deviation (error from mean to data point)

𝑠𝑦 = √
𝑆𝑡

𝑛 − 1
= √

22.7143

7 − 1
 = 1.9457

Standard error (error from line of best fit to data point)

𝑠𝑦|𝑥 = √
𝑆𝑟

𝑛 − 2
= √

2.9911

7 − 1
 = 0.7735

𝑠𝑦 > 𝑠𝑦|𝑥

Thus, straight line distribution is better than the average fit – consider the following diagram:

Linearization of Non-linear Relationships
Case 1

𝑦 = 𝛼1𝑒𝛽1𝑥

ln 𝑦 = ln(𝛼1 + 𝑒𝛽1𝑥)

ln 𝑦 = ln 𝛼1 + ln 𝑒𝛽1𝑥
ln 𝑦 = ln 𝛼1 + 𝛽1𝑥

Thus,

𝑎0 = ln 𝛼1

𝑎1 = 𝛽1

Linearizing:

𝑦 = ln 𝑦

𝑥 = 𝑥

Now:

𝑦 = 𝑎0 + 𝑎1𝑥

Thus, ln 𝑦 and 𝑥 are linearly related – we can get similar relationships in other cases.

Case 2

This is a typical power function:

𝑦 = 𝛼2𝑥𝛽2

Becomes:

log 𝑦 = log 𝛼2 + 𝛽2 log 𝑥

Thus,

𝑎0 = log 𝛼2

𝑎1 = 𝛽2

Linearizing:

𝑦 = log 𝑦

𝑥 = log 𝑥

Case 3

These relationships are usually used for rates of change, in disciplines such as chemical engineering:

𝑦 = 𝛼3

𝑥

𝛽3 + 𝑥

Becomes:

1

𝑦
=

𝛽3 + 𝑥

𝛼3𝑥
=

1

𝛼3
+

𝛽3

𝛼3
∙ (

1

𝑥
)

Thus,

𝑎0 = 1/𝛼3

𝑎1 = β3/ 𝛼3

Linearizing:

𝑦 = 1/ 𝑦

𝑥 = 1/ 𝑥

Polynomial Regression
Consider the following set of data:

Where the data cannot be represented by a linear line of best fit, so a second order polynomial

(quadratic) line of best fit can be used.

The least-squares procedure to fit the data:

𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑒

Define

𝑆𝑟 = ∑𝑒𝑖
2 = ∑(𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − 𝑎2𝑥𝑖

2)
2

The stationary conditions:
𝛿𝑆𝑟

𝛿𝑎0
= ∑2(𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − 𝑎2𝑥𝑖

2) ∙ (−1) = 0

𝛿𝑆𝑟

𝛿𝑎1
= ∑2(𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − 𝑎2𝑥𝑖

2) ∙ (−𝑥𝑖) = 0

𝛿𝑆𝑟

𝛿𝑎2
= ∑2(𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − 𝑎2𝑥𝑖

2) ∙ (−𝑥𝑖
2) = 0

Consider:

∑(𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑖
2 − 𝑦𝑖) = 0

∑𝑎0 + ∑𝑎1𝑥𝑖 + ∑𝑎2𝑥𝑖
2 − ∑𝑦𝑖 = 0

(𝑛)𝑎0 + (∑𝑥𝑖)𝑎1 + (∑𝑥𝑖
2)𝑎2 = ∑𝑦𝑖 *

∑(𝑎0𝑥𝑖 + 𝑎1𝑥𝑖
2 + 𝑎2𝑥𝑖

2 − 𝑥𝑖𝑦𝑖) = 0

(∑𝑥𝑖)𝑎0 + (∑𝑥𝑖
2)𝑎1 + (∑𝑥𝑖

3)𝑎2 = ∑𝑥𝑖𝑦𝑖 **

(∑𝑥𝑖
2)𝑎0 + (∑𝑥𝑖

3)𝑎1 + (∑𝑥𝑖
4)𝑎2 = ∑𝑥𝑖

2𝑦𝑖 ***

Note: As long as at least two 𝑥𝑖 are different, you can find a unique solution – they can’t all be the same!

The standard error:

𝑠𝑦|𝑥 = √
𝑆𝑟

𝑛 − (𝑚 + 1)

Where 𝑛 is the number of data points

Where 𝑚 is the degree of the polynomial

Example

Fit a second order polynomial to the data.

Solution:

𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2

𝑛𝑎0 (∑𝑥𝑖)𝑎1 (∑𝑥𝑖
2)𝑎2 = ∑𝑦𝑖

(∑𝑥𝑖)𝑎0 (∑𝑥𝑖
2)𝑎1 (∑𝑥𝑖

3)𝑎2 = ∑𝑦𝑖𝑥𝑖

(∑𝑥𝑖
2)𝑎0 (∑𝑥𝑖

3)𝑎1 (∑𝑥𝑖
4)𝑎2 = ∑𝑦𝑖𝑥𝑖

2

𝑛 = 6

∑𝑥𝑖 = 15

∑𝑥𝑖
2 = 55

∑𝑥𝑖
3 = 225

∑𝑥𝑖
4 = 979

∑𝑦𝑖 = 152.6

∑𝑦𝑖𝑥𝑖 = 585.6

∑𝑦𝑖𝑥𝑖
2 = 2488.8

The linear equations:

{
6 15 55
15 55 225
55 225 979

} {

𝑎0
𝑎1
𝑎2
} = {

152.6
585.6
2488.8

}

Then:

𝑎0 = 2.47857

𝑎1 = 2.35929

𝑎2 = 1.86071

∴ 𝑦 = 2.47857 + 2.35929𝑥 + 1.86071𝑥2

Since

𝑦̅ =
∑𝑦𝑖
𝑛
=
152.6

6
= 25.433

𝑆𝑦 = ∑(𝑦𝑖 − 𝑦)
2 = 2513.39

𝑆𝑟 = ∑(𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − 𝑎2𝑥𝑖
2)
2
= 3.74657

Standard error:

𝑠𝑦|𝑥 = √
𝑆𝑟

𝑛 − (𝑚 + 1)
= √

3.74657

6 − (2 + 1)
= 1.12

The coefficient of determination:

𝑟2 =
𝑆𝑦 − 𝑆𝑟

𝑆𝑦

𝑟2 =
2513.39 − 3.74657

2513.39

𝑟2 = 0.99851

What do you do if you have a polynomial? It’s the same procedure:

𝑦 = 𝑎0 + 𝑎1𝑥
2 + 𝑎2𝑥

2 +⋯+ 𝑎𝑚𝑥
𝑚 + 𝑒

𝑚 + 1 unknown: 𝑎0 𝑎1…𝑎𝑚

Multiple linear regression

𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑒

Given data:

(𝑥11 𝑥21 𝑦1)
(𝑥12 𝑥22 𝑦2)
 . . .

(𝑥1𝑛 𝑥2𝑛 𝑦𝑛)

Consider:

𝑆𝑟 = ∑𝑒𝑖
2 = ∑(𝑦𝑖 − 𝑎0 − 𝑎1𝑥1𝑖 − 𝑎2𝑥2𝑖)

2

𝑆𝑟 = 𝑆𝑟(𝑎0, 𝑎1, 𝑎2)

𝛿𝑆𝑟
𝛿𝑎0

= ∑2(𝑦𝑖 − 𝑎0 − 𝑎1𝑥1𝑖 − 𝑎2𝑥2𝑖) ∙ (−1) = 0

𝛿𝑆𝑟
𝛿𝑎1

= ∑2(𝑦𝑖 − 𝑎0 − 𝑎1𝑥1𝑖 − 𝑎2𝑥2𝑖) ∙ (−𝑥1𝑖) = 0

𝛿𝑆𝑟
𝛿𝑎2

= ∑2(𝑦𝑖 − 𝑎0 − 𝑎1𝑥1𝑖 − 𝑎2𝑥2𝑖) ∙ (−𝑥2𝑖) = 0

∑𝑎0 + ∑𝑎1𝑥1𝑖 + ∑𝑎2𝑥2𝑖 = ∑𝑦𝑖

𝑛𝑎0 (∑𝑥1𝑖)𝑎1 (∑𝑥2𝑖)𝑎2 = ∑𝑦𝑖
(∑𝑥1𝑖)𝑎0 (∑𝑥1𝑖

2)𝑎1 (∑𝑥1𝑖𝑥2𝑖)𝑎2 = ∑𝑥1𝑖𝑦𝑖

(∑𝑥2𝑖)𝑎0 (∑𝑥1𝑖𝑥2𝑖)𝑎1 (∑𝑥2𝑖
2)𝑎2 = ∑𝑥2𝑖𝑦𝑖

𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑚𝑥𝑚 + 𝑒

Each data point:

𝑥1𝑖, 𝑥2𝑖…𝑥𝑚𝑖, 𝑦𝑖 (𝑖 = 1,2, … , 𝑛)

𝑆𝑟 = ∑𝑒𝑖
2 = ∑(𝑦𝑖 − 𝑎0 − 𝑎1𝑥1𝑖 −⋯− 𝑎𝑚𝑥𝑚𝑖)

2

Standard error:

𝑠𝑦|𝑥 = √
𝑆𝑟

𝑛 − (𝑚 + 1)

General linear least-squares
𝑦 = 𝑎0𝑧0 + 𝑎1𝑧1 +⋯+ 𝑎𝑚𝑧𝑚 + 𝑒

𝑧0, 𝑧1, 𝑧𝑚: the basis functions

In the multiple linear regression:

𝑧0 = 1, 𝑧1 = 𝑥1, 𝑧2 = 𝑥2, 𝑧𝑚 = 𝑥𝑚

Polynomial regression:

𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+ 𝑎𝑚𝑥

𝑚 + 𝑒

𝑧0 = 1, 𝑧1 = 𝑥, 𝑧2 = 𝑥
2, … , 𝑧𝑚 = 𝑥𝑚

For example:

𝑧0 = 1, 𝑧1 = cos𝜔𝑡 , 𝑧2 = sin𝜔𝑡

𝑦 = 𝑎0 + 𝑎1 cos𝜔𝑡 + 𝑎2 sin𝜔𝑡

Note: this is the first three terms of the Fourier expansion.

Fort the sample point

𝑧0𝑖, 𝑧1𝑖, … , 𝑧𝑚𝑖, 𝑦𝑖 (𝑖 = 1,2,… , 𝑛)

𝑒𝑖 = 𝑦𝑖 − 𝑎0𝑧0𝑖 − 𝑎1𝑧1𝑖 −⋯− 𝑎𝑚𝑧𝑚𝑖

𝑖 = 1, 2, … , 𝑛

𝑆𝑟 = ∑𝑒𝑖
2

𝛿𝑆𝑟
𝛿𝑎0

= 0,
𝛿𝑆𝑟
𝛿𝑎1

= 0, …
𝛿𝑆𝑟
𝛿𝑎𝑚

= 0

In the matrix form:

[𝑍]𝑇[𝑍]{𝐴} = [𝑍]𝑇{𝑌}

Here

{𝐴} = {

𝑎0
𝑎1
…
𝑎𝑚

} {𝑌} = {

𝑦1
𝑦2
…
𝑦𝑛

}

[𝑍] =

[

𝑧01 𝑧11 𝑧21 … 𝑧𝑚1
𝑧02 𝑧12 𝑧22 … 𝑧𝑚2
𝑧03 𝑧13 𝑧23 … 𝑧𝑚3
… … … … …
𝑧0𝑛 𝑧1𝑛 𝑧2𝑛 … 𝑧𝑚𝑛]

 Where 𝑛 > 𝑚 + 1

[𝑍] is a tall matrix

To solve the final linear equations,

𝐿𝑈 decomposition

Cholesky’s method

{𝐴} = ([𝑍]𝑇[𝑍])−1[𝑍]𝑇{𝑌}

Let

([𝑍]𝑇[𝑍])−1 =

[

𝑧11
−1 𝑧12

−1 … 𝑧1,𝑚+1
−1

𝑧12
−1 𝑧22

−1 … 𝑧2,𝑚+1
−1

… … … …
𝑧𝑚+1,1
−1 𝑧𝑚+1,2

−1 … 𝑧𝑚+1,𝑚+1
−1

]

The diagonal of the matrix:

𝑧𝑖𝑖
−1: The variance of 𝑎𝑖−1 (𝑖 = 1, 2, … ,𝑚 + 1)

The off-diagonal of the matrix (basically, not the diagonal):

𝑧𝑖𝑗
−1: The covariance of 𝑎𝑖−1 and 𝑎𝑗−1

𝑣𝑎𝑟(𝑎𝑖−1) = 𝑧𝑖𝑖
−1𝑠𝑦|𝑥

2

𝑐𝑜𝑣(𝑎𝑖−1, 𝑎𝑗−1) = 𝑧𝑖𝑗
−1𝑠𝑦|𝑥

2

𝑠𝑦|𝑥 = √
𝑆𝑟
2

𝑛 − (𝑚 + 1)

For one independent variable, the linear regression:

𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑒

The lower and upper bounds of 𝑎0:

𝐿 = 𝑎0 − 𝑡𝛼/2,𝑛−2 ∙ 𝑠(𝑎0)

𝑈 = 𝑎0 + 𝑡𝛼/2,𝑛−2 ∙ 𝑠(𝑎0)

The lower and upper bounds of 𝑎1:

𝐿 = 𝑎1 − 𝑡𝛼/2,𝑛−2 ∙ 𝑠(𝑎1)

𝑈 = 𝑎1 − 𝑡𝛼/2,𝑛−2 ∙ 𝑠(𝑎1)

𝑡𝛼/2,𝑛:
𝑡ℎ𝑒 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

𝑡𝑤𝑜 𝑠𝑖𝑑𝑒𝑑 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝑠(𝑎𝑖) = the standard error of the coefficient 𝑎𝑖

𝑠(𝑎𝑖) = √𝑣𝑎𝑟 (𝑎𝑖) (𝑖 = 0, 1)

Time, s Measured v, m/s
(a)

Model-calculated v, m/s
(b)

1 10.00 8.953

2 16.30 16.405

3 23.00 22.607

4 27.50 27.769

5 31.00 32.065

6 35.60 35.641

7 39.00 38.617

8 41.50 41.095

9 42.90 43.156

10 45.00 44.872

11 46.00 46.301

12 45.50 47.490

13 46.00 48.479

14 49.00 49.303

15 50.00 49.988

𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑒

Since

𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑒

𝑦1 = 𝑎0 + 𝑎1𝑥1 + 𝑒1

𝑦2 = 𝑎0 + 𝑎1𝑥2 + 𝑒2

 …

𝑦𝑛 = 𝑎0 + 𝑎1𝑥𝑛 + 𝑒𝑛

[

1 𝑥1
1 𝑥2
… …
1 𝑥𝑛

] {
𝑎0
𝑎1
} = {

𝑦1
𝑦2
…
𝑦𝑛

}

[𝑍] = [

1 𝑥1
1 𝑥2
… …
1 𝑥𝑛

] {𝐴} = {
𝑎0
𝑎1
} {𝑌} = {

𝑦1
𝑦2
…
𝑦𝑛

}

[𝑍]{𝐴} = {𝑌}
[𝑍]𝑇[𝑍]{𝐴} = [𝑍]𝑇{𝑌}

[
15 548.3
548.3 22191.21

] {
𝑎0
𝑎1
} = {

552.74
22421.43

}

𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑒

[𝑍]𝑇[𝑍]{𝐴} = [𝑍]𝑇{𝑦}

[
15 548.3
548.3 22191.21

] {
𝑎0
𝑎1
} = {

552.74
22421.43

}

{
𝑎0
𝑎1
} = [[

0.688414 −0.01701
−0.01701 0.000405

]] ∙ {
552.74
22421.43

}

= {
−0.85872
1.031592

}

𝑎0 = −0.85872

𝑎1 = 1.031592

Standard error of the estimation:

𝑠𝑦|𝑥 = √
𝑆𝑟

𝑛 − (𝑚 + 1)

Here

𝑆𝑟 = ∑(𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖)
2

𝑆𝑟 = 9.69104

∴ 𝑠𝑦|𝑥 = √
9.69104

15 − (1 + 1)
= 0.863403

Since

𝑧11
−1 = 0.688414

𝑧22
−1 = 0.000465

𝑠(𝑎0) = √𝑧11
−1(𝑠𝑦|𝑥)

2

𝑠(𝑎0) = √(0.688414)(0.863403)
2

𝑠(𝑎0) = 0.716372

𝑠(𝑎1) = √𝑧22
−1(𝑠𝑦|𝑥)

2

𝑠(𝑎1) = √(0.000465)(0.863403)
2

𝑠(𝑎1) = 0.018625

For a 95% confidence interval,

𝑛 = 15

𝛼 = 0.05

𝑡𝛼 2⁄ , 𝑛−2 = 𝑡0.05 2⁄ , 13 = 2.160368

NOTE: You can find this value in excel by using TINV(0.05, 13)

For 𝑎0:

The lower bound

𝐿(𝑎0) = 𝑎0 − 𝑡𝛼 2⁄ , 𝑛−2 ∙ 𝑆(𝑎0)

𝐿(𝑎0) = (−0.85872) + (2.160368) ∙ (0.716372)

𝐿(𝑎0) = −2.40634

The upper bound

𝑈(𝑎0) = 𝑎0 + 𝑡𝛼 2⁄ , 𝑛−2 ∙ 𝑆(𝑎0)

𝑈(𝑎0) = (−0.85872) + (2.160368) ∙ (0.716372)

𝑈(𝑎0) = 0.688912

∴ −2.40634 < 𝑎0 < 0.688912

For 𝑎1:

The lower bound

𝐿(𝑎1) = 𝑎1 − 𝑡𝛼 2⁄ , 𝑛−2 ∙ 𝑆(𝑎1)

𝐿(𝑎1) = (1.031592) − (2.160368) ∙ (0.018625)

𝐿(𝑎1) = 0.991355

The upper bound

𝑈(𝑎1) = 𝑎1 + 𝑡𝛼 2⁄ , 𝑛−2 ∙ 𝑆(𝑎1)

𝑈(𝑎1) = (1.031592) + (2.160368) ∙ (0.018625)

𝑈(𝑎1) = 1.071828

∴ 0.991355 < 𝑎1 < 1.071828

NOTE: Lets look at the slope – when we use our hypothesis testing, and we provide our model, we try to

test our model. Ideally the measured data fits the model exactly. So, we expect the slope of the fit line to

be close to 1, or equal to 1. By our estimation, we find that our slope is between 0.99 and 1.07.

Therefore, the test result support our hypothesis from the slope point of view because the target slope

equals 1 and by our estimation the 1 is between our interval for 𝑎1.

Non-linear regression
𝑓(𝑥) = 𝑎0(1 − 𝑒

−𝑎1𝑥)

Using Gauss-Newton method to solve the problem.

Data:

(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)

Curve to fit:

𝑦 = 𝑓(𝑥𝑖, 𝑎0, 𝑎1, … , 𝑎𝑚) + 𝑒

𝑦1 = 𝑓(𝑥1, 𝑎0, 𝑎1, … , 𝑎𝑚) + 𝑒1

𝑦2 = 𝑓(𝑥2, 𝑎0, 𝑎1, … , 𝑎𝑚) + 𝑒2

 …

𝑦𝑛 = 𝑓(𝑥𝑛, 𝑎0, 𝑎1, … , 𝑎𝑚) + 𝑒𝑛

𝑦𝑖 = 𝑓(𝑥𝑖) + 𝑒𝑖 (𝑖 = 1, 2, … , 𝑛)

Iteration:

𝑓(𝑥𝑖)𝑗+1 = 𝑓(𝑥𝑖)𝑗 +
𝛿𝑓(𝑥𝑖)𝑗

𝛿𝑎0
∆𝑎0 +

𝛿𝑓(𝑥𝑗)

𝛿𝑎1
∆𝑎1

𝑗 = 1, 2, 3, …

Note: we’re using the first few terms of the Taylor expansion to determine approximate results.

The error equation:

𝑦𝑖 − 𝑓(𝑥𝑖) = 𝑒𝑖

𝑦𝑖 − 𝑓(𝑥𝑖)𝑗 =
𝛿𝑓(𝑥𝑖)𝑗

𝛿𝑎0
∆𝑎0 +

𝛿𝑓(𝑥𝑖)𝑗

𝛿𝑎1
∆𝑎1 + 𝑒𝑖

Here 𝑚 = 1

{𝐷} = [𝑍]{∆𝐴} + {𝐸}

Here

{𝐷} =

{

𝑦𝑖 − 𝑓(𝑥1)𝑗
𝑦2 − 𝑓(𝑥2)𝑗

…
𝑦𝑛 − 𝑓(𝑥𝑛)𝑗}

{𝐸} = {

𝑒1
𝑒2
…
𝑒𝑛

}

{∆𝐴} = {
𝑎0
𝑎1
}

[𝑍] =

[

𝛿𝑓(𝑥1)𝑗

𝛿𝑎0

𝛿𝑓(𝑥1)𝑗

𝛿𝑎1
𝛿𝑓(𝑥2)𝑗

𝛿𝑎0

𝛿𝑓(𝑥2)𝑗

𝛿𝑎1… …
𝛿𝑓(𝑥𝑛)𝑗

𝛿𝑎0

𝛿𝑓(𝑥𝑛)𝑗

𝛿𝑎1]

[𝑍]𝑇[𝑍]{∆𝐴} = {𝑍]𝑇{𝐷}

{∆𝐴} = ([𝑍]𝑇[𝑍])−1[𝑍]𝑇{𝐷}

(𝑎0)𝑗+1 = (𝑎0)𝑗 + ∆𝑎0

(𝑎1)𝑗+1 = (𝑎1)𝑗 + ∆𝑎1

Find the error:

𝜖𝑘 = |
(𝑎𝑘)𝑗+1 − (𝑎𝑘)𝑗

(𝑎𝑘)𝑗+1
| ∙ 100% (𝑘 = 0, 1)

Example

Use the data to fit:

𝑦 = 𝑎0(1 − 𝑒
−𝑎1𝑥)

Using the initial guess of 𝑎0 = 1 and 𝑎1 = 1

Solution

𝑓(𝑥) = 𝑎0(1 − 𝑒
−𝑎1𝑥)

The partial derivatives are:

𝛿𝑓

𝛿𝑎0
= 1 − 𝑒−𝑎1𝑥

𝛿𝑓

𝑎1
= 𝑎0𝑥𝑒

−𝑎1𝑥

The first iteration

𝑎0 = 1

𝑎1 = 1

[𝑍] =

[

𝛿𝑓(𝑥1)

𝛿𝑎0

𝛿𝑓(𝑥1)

𝛿𝑎1
𝛿𝑓(𝑥2)

𝛿𝑎0

𝛿𝑓(𝑥2)

𝛿𝑎1… …
𝛿𝑓(𝑥5)

𝛿𝑎0

𝛿𝑓(𝑥5)

𝛿𝑎1]

= [

1 − 𝑒−𝑎1𝑥1 𝑎0𝑥1𝑒
−𝑎1𝑥1

1 − 𝑒−𝑎1𝑥2 𝑎0𝑥1𝑒
−𝑎1𝑥2

… …
1 − 𝑒−𝑎1𝑥5 𝑎0𝑥5𝑒

−𝑎1𝑥5

]

[𝑍] =

[

0.2212 0.1947
0.5276 0.3543
0.7135 0.3581
0.8262 0.3041
0.8946 0.2371]

{𝐷}0 = {

𝑦1 − 𝑓(𝑥1)
𝑦2 − 𝑓(𝑥2)

…
𝑦5 − 𝑓(𝑥5)

} = {

𝑦1 − 𝑎0(1 − 𝑒
−𝑎1𝑥1)

𝑦2 − 𝑎0(1 − 𝑒
−𝑎1𝑥2)

…
𝑦5 − 𝑎0(1 − 𝑒

−𝑎1𝑥5)

}

{𝐷}0 =

{

0.0588
0.0424
−0.0335
−0.0862
−0.1046}

[𝑍]0
𝑇[𝑍]0{∆𝐴} = [𝑍}0

𝑇[𝐷}

[
2.3193 0.9489
0.9489 0.4404

] {
∆𝑎0
∆𝑎1

} = {
−0.1533
−0.0365

}

{
∆𝑎0
∆𝑎1

} = {
−0.2714
0.5019

}

{
∆𝑎0
∆𝑎1

} = {
1
1
} + {

−0.2714
0.5019

} = {
0.7286
1.5109

}

The relative error

For 𝑎0:

|
0.7286 − 1

0.7286
| ∙ 100% = 37%

For 𝑎1:

|
1.5109 − 1

1.5019
| ∙ 100% = 33%

The second iteration:

𝑎0 = 0.7286

𝑎1 = 1.5019

[𝑍]1 = [
1 − 𝑒−𝑎1𝑥1 𝑎0𝑥1𝑒

−𝑎1𝑥1

… …
1 − 𝑒−𝑎1𝑥5 𝑎0𝑥5𝑒

−𝑎1𝑥5

]

[𝑍]1 =

[

0.3130 0.1251
0.6758 0.1771
0.8470 0.1393
0.9278 0.09204
0.9659 0.05585]

{𝐷}1 = {
𝑦1 = 𝑎0(1 − 𝑒

−𝑎1𝑥1

…
𝑦5 = 𝑎0(1 − 𝑒

−𝑎1𝑥5

} =

{

0.05194
0.07765
0.06293
0.06407
0.08630}

{∆𝐴} = {
0.06252
0.1758

}

{
𝑎0
𝑎1
} = {

0.7286
1.5019

} + {
0.06252
0.1758

} = {
0.7910
1.6777

}

The relative error

For 𝑎0:

|
0.7910 − 0.7286

0.7910
| ∙ 100% = 7.9%

For𝑎1:

|
1.6777 − 1.5019

1.6777
| ∙ 100% = 10.5%

The 3rd iteration:

{
𝑎0
𝑎1
} = {

0.7919
1.6753

}

Relative errors are 0.1% and 0.15%

The 4th iteration:

{
𝑎0
𝑎1
} = {

0.7919
1.6751

}

Thus,

∴ 𝑦 = 𝑓(𝑥) = 0.7919(1 − 𝑒−1.6751𝑥)

Total Least Squares

Definition:

Given a matrix 𝐴𝑚∙𝑛, 𝑚 > 𝑛 (tall matrix), and a vector 𝑏 ∈ 𝑅𝑚, find residuals 𝐸 ∈ 𝑅𝑚∙𝑛 and 𝑟 ∈ 𝑅𝑚 that

minimize the Frobenius norm ||𝐸 ⋮ 𝑟||
𝐹

 subject to the conditions 𝑏 + 𝑟 ∈ 𝐼𝑚(𝐴 + 𝐸)

The least-squares

𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑒

Given data set:

(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑚, 𝑦𝑚)

𝑆𝑟 = ∑ (𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖)
2

𝑖

∑ 𝑑𝑖
2

𝑖

Fit Line
Least

square

idea

Total

least

square

idea
Fit Line

Distance of a point to a line:

Equation of the line

𝑟1𝑥 + 𝑟2𝑦 − 𝑟 ∙ 𝑤⃗⃗⃗ = 0

𝑟 = (𝑟1, 𝑟2), 𝑤⃗⃗⃗ = (𝑤1, 𝑤2)

(𝑤1, 𝑤2) is a point on the line

𝑟1
2 + 𝑟2

2 = 1

||𝑟2||
2

= 1

Take 𝑧 = (𝑥, 𝑦)

Equation:

𝑟 ∙ (𝑧 − 𝑤⃗⃗⃗) = 0

𝑑 = |𝑟 ∙ (𝑧 − 𝑤⃗⃗⃗)|

Total least squares: find 𝑟 and 𝑤⃗⃗⃗ that minimizing the (error) functional

𝑆(𝑟, 𝑟) = ∑ (𝑟 ∙ (𝑧 − 𝑤⃗⃗⃗))
2

𝑖

Here

𝑧𝑖⃗⃗ ⃗ = (𝑥𝑖, 𝑦𝑖)

Define:

𝑟 = (𝑟1, 𝑟2)

𝑤⃗⃗⃗ = (𝑤1, 𝑤2)

𝑆(𝑟, 𝑤⃗⃗⃗) = ∑ (𝑟1𝑥𝑖 + 𝑟2𝑦𝑖 − 𝑟1𝑤1 − 𝑟2𝑤2)
2

𝑖

The centroid of the data set:

𝑥̅ =
∑𝑥𝑖

𝑛

𝑦̅ =
∑𝑦𝑖

𝑛

𝑆(𝑟, 𝑤⃗⃗⃗) = ∑ (𝑟1(𝑥𝑖 − 𝑥̅) + 𝑟2(𝑦𝑖 − 𝑦̅) + 𝑟1𝑥̅ + 𝑟2𝑦̅ − 𝑟1𝑤1 − 𝑟2𝑤2)
2

𝑖

= ∑ {[𝑟1(𝑥𝑖 − 𝑥̅) + 𝑟2(𝑦𝑖 − 𝑦̅)]2 + [𝑟1(𝑥̅ − 𝑤1) + 𝑟2(𝑦̅ − 𝑤2)]
2

𝑖

+ 2[𝑟1(𝑥𝑖 − 𝑥̅) + 𝑟2(𝑦𝑖 − 𝑦̅)][𝑟1(𝑥̅ − 𝑤1) + 𝑟2(𝑦̅ − 𝑤2)]}

= ∑ {[𝑟1(𝑥𝑖 − 𝑥̅) + 𝑟2(𝑦𝑖 − 𝑦̅)]2 + 𝑛[𝑟1(𝑥̅ − 𝑤1) + 𝑟2(𝑦̅ − 𝑤2)]
2 + 2[𝑟1(𝑥𝑖 − 𝑥̅) + 𝑟2(𝑦𝑖 − 𝑦̅)]

𝑖

∙ ∑[𝑟1(𝑥𝑖 − 𝑥̅) + 𝑟2(𝑦𝑖 − 𝑦̅)]

𝑖

}

Since

∑[𝑟1(𝑥𝑖 − 𝑥̅) + 𝑟2(𝑦𝑖 − 𝑦̅)]

𝑖

= ∑𝑟1(

𝑖

𝑥𝑖 − 𝑥̅) + ∑𝑟1(

𝑖

𝑦𝑖 − 𝑦̅)

= 𝑟1 ∑(

𝑖

𝑥𝑖 − 𝑥̅) + 𝑟2 ∑(

𝑖

𝑦𝑖 − 𝑦̅)

= 𝑟1(∑ 𝑥𝑖𝑖 − ∑ 𝑥̅𝑖) + 𝑟2(∑ 𝑦𝑖𝑖 − ∑ 𝑦̅𝑖)

= 𝑟1(∑ 𝑥𝑖𝑖 − 𝑛𝑥̅) + 𝑟2(∑ 𝑦𝑖𝑖 − 𝑛𝑦̅)

= 0

𝑆(𝑟, 𝑤⃗⃗⃗) = ∑[𝑟1(𝑥𝑖 − 𝑥̅) + 𝑟2(𝑦𝑖 − 𝑦̅)]2 + 𝑛[𝑟1(𝑥̅ − 𝑤1) + 𝑟2(𝑦̅ − 𝑤2)]
2

𝑖

The centroid 𝑧̅ = (𝑥̅, 𝑦̅) minimizes(𝑟1(𝑥̅ − 𝑤1) + 𝑟2(𝑦̅ − 𝑤2))
2

So,

𝑤1 = 𝑥̅, 𝑤2 = 𝑦̅

Therefore the fitting line passes though the centroid of the data.

𝑆(𝑟, 𝑤⃗⃗⃗) = ∑[𝑟1(𝑥𝑖 − 𝑥̅) + 𝑟2(𝑦𝑖 − 𝑦̅)]2

𝑖

Define

𝐵 = [

𝑥1 − 𝑥̅ 𝑦1 − 𝑦̅
𝑥2 − 𝑥̅ 𝑦2 − 𝑦̅

⋮
𝑥𝑛 − 𝑥̅ 𝑦𝑛 − 𝑦̅

]

𝑟 = {
𝑟1
𝑟2

}

𝑆(𝑟, 𝑤⃗⃗⃗) = (𝐵 𝑟)𝑇(𝐵 𝑟)

= 𝑟𝑇𝐵𝑇𝐵 𝑟

Find the vector 𝑟 = {
𝑟1
𝑟2

} with 𝑟1
2 + 𝑟2

2 = 1 minimizing

𝑆(𝑟, 𝑤⃗⃗⃗) = 𝑟𝑇𝐵𝑇𝐵 𝑟

The right singular vector of𝐵 corresponding to the smaller singular value of 𝐵, 𝜎2, is the vector 𝑟.

For matrix 𝐵𝑛 𝑥 2, the singular value decomposition is given by:

𝐵 = 𝑈𝑛 𝑥 2 ∑2 𝑥 2 𝑉2 𝑥 2
𝑇

Where

∑2 𝑥 2 = [
𝜎1 0
0 𝜎2

] where 𝜎1 ≥ 𝜎2 ≥ 0 (singular values)

The columns of 𝑈𝑛 𝑥 2 are the left singular vectors, the columns of 𝑉 are the right singular vectors.

𝐵𝑇𝐵 = (𝑈∑𝑉𝑇)𝑇(𝑈∑𝑉𝑇)

= 𝑉∑𝑇𝑈𝑇𝑈∑𝑉𝑇

= 𝑉∑𝑇∑𝑉𝑇

= 𝑉 [
𝜎1

2 0

0 𝜎2
2] 𝑉𝑇

𝐵𝑇𝐵𝑉 = 𝑉 [
𝜎1

2 0

0 𝜎2
2]

* The TLS (total least square) solution always exists and is given by the line through the centroid

orthogonal to the smaller singular vector of 𝐵.

* The solution is unique if 𝜎1 ≠ 𝜎2

Example: (1, 1), (-1, 1), (1, -1), and (-1, -1)

The least squares is the line:

𝑦 = 0

𝑆(𝑟 ⃗⃗ , 𝑤⃗⃗⃗) = 2(𝛼2 + 𝛽2)

𝑟1 = −sin 𝜃

𝑟2 = cos 𝜃

𝛼 = |𝑟̅ ∙ (𝑧̅ − 𝑤̅)|

𝛼 = |(𝑧̅ − 𝑤̅)|

𝛼 = |− sin𝜃 (1) + cos𝜃 (1)|

𝛼 = |cos 𝜃 − sin 𝜃|

𝛽 = |𝑟 ∙ 𝑧|

= | − sin 𝜃(1) + 𝑐𝑜𝑠𝜃 (−1)

= |cos 𝜃 + sin 𝜃|

𝛼2 + 𝛽2 = (cos 𝜃 − sin 𝜃)2 + (cos 𝜃 + sin𝜃)2

= 2

→ 𝑆(𝑟, 𝑤⃗⃗⃗) = 4

Example

𝑥 1 2 3 4 5 6 7

𝑦 0.5 2.5 2 4 3.5 6 3.5

Using TLS fit a line

Solution:

𝑥 =
∑𝑥𝑖

𝑛
=

1 + 2 + ⋯+ 7

7
= 4

𝑦 =
∑𝑦𝑖

𝑛
=

0.5 + 2.5 + ⋯+ 3.5

7
= 3.42857

𝐵 = [

𝑥1 − 𝑥̅ 𝑦1 − 𝑦̅
𝑥2 − 𝑥̅ 𝑦2 − 𝑦̅

⋮ ⋮
𝑥3 − 𝑥̅ 𝑦3 − 𝑦̅

] = [

1 − 4 0.5 − 3.42857
2 − 4 2.5 − 3.42857

⋮ ⋮
7 − 4 3.5 − 3.42857

]

𝐵 = = [

−3 −2.9285
−2 −0.92857
⋮ ⋮
3 2.0714286

]

7 𝑥 2

𝐵𝑇𝐵 = [
28 23.5

23.5 22.714286
]

Eigenvalues 1.70900 and 49.005286 the corresponding eigenvectors are:

{
0.666424

−0.745573
} and {

−0.745573
−0.666424

}

𝑟1 = 0.666424

𝑟2 = −0.745573

𝑤1 = 𝑥̅ = 4

𝑤2 = 𝑦̅ = 3.42857

The line

𝑟1𝑥 + 𝑟2𝑦 − 𝑟1𝑤1 − 𝑟2𝑤2 = 0

0.666424𝑥 − 0.745573𝑦 − 0.109447 = 0

Part 2: Interpolation

Given a data set:

(𝑥0, 𝑦𝑜), (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)

Fit a polynomial of degree 𝑛:

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + ⋯+ 𝑎𝑛𝑥𝑛 = 𝑦0

𝑓(𝑥0) = 𝑎0 + 𝑎1𝑥0 + 𝑎2𝑥1
2 + ⋯+ 𝑎𝑛𝑥1

𝑛 = 𝑦1

…

𝑓(𝑥𝑛) = 𝑎0 + 𝑎1𝑥𝑛 + 𝑎2𝑥𝑛
2 + ⋯+ 𝑎𝑛𝑥𝑛

𝑛 = 𝑦𝑛

[

1 𝑥0 𝑥0

2 ⋯ 𝑥0
2

1 𝑥1 𝑥1
2 ⋯ 𝑥1

2

⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑛 𝑥𝑛

2 ⋯ 𝑥𝑛
2]

{

𝑎0

𝑎1

⋮
𝑎𝑛

} = {

𝑦0

𝑦1

⋮
𝑦𝑛

}

↑ Vandermonde matrix

2.1 Newton’s divided difference interpolating polynomials

Liner interpolation:

Slope:

𝑦1 − 𝑦0

𝑥1 − 𝑥0
=

𝑦 − 𝑦0

𝑥 − 𝑥0

𝑦 = 𝑦0 +
𝑦1 − 𝑦0

𝑥1 − 𝑥0
(𝑥 − 𝑥0)

𝑓(𝑥) = 𝑓(𝑥0) +
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
(𝑥 − 𝑥0)

𝑦 = 𝑓(𝑥)

𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
: 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑓𝑖𝑛𝑖𝑡𝑒 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

Quadratic interpolation:

𝑓2(𝑥) = 𝑏0 + 𝑏1(𝑥 − 𝑥0) + 𝑏2(𝑥 − 𝑥0)(𝑥 − 𝑥1)

𝑓2(𝑥0) = 𝑏0 = 𝑓(𝑥𝑜)

𝑓2(𝑥1) = 𝑏0 + 𝑏1(𝑥1 − 𝑥0) = 𝑓(𝑥1)

𝑓2(𝑥2) = 𝑏0 + 𝑏1(𝑥2 − 𝑥0) + 𝑏2(𝑥2 − 𝑥0)(𝑥2 − 𝑥1) = 𝑓(𝑥2)

𝑏0 = 𝑓(𝑥0)

𝑏1 =
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0

𝑏2 =
1

(𝑥2 − 𝑥0)
[𝑓(𝑥2) − 𝑓(𝑥0) −

𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0

(𝑥2 − 𝑥0)]

=
1

(𝑥2 − 𝑥0)
[𝑓(𝑥2) − 𝑓(𝑥1) + 𝑓(𝑥1) − 𝑓(𝑥0) −

𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0

(𝑥2 − 𝑥0)]

=
1

(𝑥2 − 𝑥0)
[𝑓(𝑥2) − 𝑓(𝑥1) + 𝑓(𝑥1) − 𝑓(𝑥0) ∙ (1 −

𝑥2 − 𝑥0

𝑥1 − 𝑥0
)]

=
1

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)
[𝑓(𝑥2) − 𝑓(𝑥1) + 𝑓(𝑥1) − 𝑓(𝑥0) (1 −

𝑥2 − 𝑥0

𝑥1 − 𝑥0
)

=
1

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)
[𝑓(𝑥2) − 𝑓(𝑥1) + 𝑓(𝑥1) − 𝑓(𝑥0) (

𝑥1 − 𝑥2

𝑥1 − 𝑥0
)]

=
1

𝑥2 − 𝑥0
∙ (

𝑓(𝑥2) − 𝑓(𝑥1)

𝑥2 − 𝑥1
−

𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
)

=
1

𝑥2 − 𝑥0
(
𝑓(𝑥2) − 𝑓(𝑥1)

𝑥2 − 𝑥1
−

𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
)

This is the second finite divided difference

Example: Fit data points

𝑥0 = 1, 𝑓(𝑥0) = 0

𝑥1 = 4, 𝑓(𝑥1) = 1.386294

𝑥2 = 6, 𝑓(𝑥2) = 1.791759

using quadratic polynomial.

Solution: 𝑓2(𝑥) = 𝑏0 + 𝑏1(𝑥 − 𝑥0) + 𝑏2(𝑥 − 𝑥0)(𝑥 − 𝑥1)

𝑏0 = 𝑓(𝑥0) = 0

𝑏1 =
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
=

1.386294 − 0

4 − 1
= 0.4620981

𝑓(𝑥2) − 𝑓(𝑥1)

𝑥2 − 𝑥1
=

1.791759 − 1.386294

6 − 4
= 0.2027325

𝑏2 =

𝑓(𝑥2) − 𝑓(𝑥1)
𝑥2 − 𝑥1

−
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0

𝑥2 − 𝑥0

𝑏2 =
0.2027325 − 0.4620981

6 − 1

∴ 𝑓2(𝑥) = 0.4620981(𝑥 − 1) − 0.0518731(𝑥 − 1)(𝑥 − 4)

Use this polynomial to evaluate 𝑓(2):

𝑓(2) = 𝑓2(2) = 0.5658444

𝑓(𝑥) = ln 𝑥

𝑓(2) = ln 2 = 0.6931472

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 = |
0.5658444 − 0.6931472

0.6931472
| ∙ 100%

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 = 18.4 %

Using the first two data points to find 𝑓(2):

𝑓1(𝑥) = 𝑏0 + 𝑏1(𝑥 − 𝑥0) = 0.4620981(𝑥 − 1)

𝑓1(2) = 0.4620981

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 = |
0.4620581 − 0.6931472

0.6931472
| ∙ 100%

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 = 33.3%

General form of Newton’s interpolation:

𝑓𝑛(𝑥) = 𝑏0 + 𝑏1(𝑥 − 𝑥0) + 𝑏2(𝑥 − 𝑥0)(𝑥 − 𝑥1) + ⋯+ 𝑏𝑛(𝑥 − 𝑥0)(𝑥 − 𝑥1)… (𝑥 − 𝑥𝑛)

Here:

𝑏0 = 𝑓(𝑥0)

𝑏1 =
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
= 𝑓[𝑥1, 𝑥0]

𝑏2 =
𝑓[𝑥2, 𝑥1] − 𝑓[𝑥1, 𝑥2]

𝑥2 − 𝑥0
= 𝑓[𝑥2, 𝑥1, 𝑥0]

𝑏3 =
𝑓[𝑥3, 𝑥2, 𝑥1] − 𝑓[𝑥2, 𝑥1, 𝑥0]

𝑥3 − 𝑥0
= 𝑓[𝑥3, 𝑥2, 𝑥1, 𝑥0]

𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒

𝑓[𝑥𝑛, 𝑥𝑛−1, 𝑥1, 𝑥0] =
𝑓[𝑥𝑛, 𝑥𝑛−1, … , 𝑥1] − 𝑓[𝑥𝑛−1, … , 𝑥1, 𝑥0]

𝑥𝑛 − 𝑥0

 ↑ 𝑛𝑡ℎ 𝑓𝑖𝑛𝑖𝑡𝑒 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

Example: Estimate 𝑓(2) using a third-order Newton’s interpolating polynomial:

𝑥0 = 1 ; 𝑓(𝑥0) = 0

𝑥1 = 4 ; 𝑓(𝑥1) = 1.386294

𝑥2 = 6 ; 𝑓(𝑥2) = 1.791759

𝑥3 = 5 ; 𝑓(𝑥3) = 1.609438

𝑖 𝑥𝑖 𝑓(𝑥𝑖) 𝑓[𝑥𝑖, 𝑥𝑗]

=
𝑓(𝑥𝑖) − 𝑓(𝑥𝑗)

(𝑥𝑖 − 𝑥𝑗)

𝑓[𝑥𝑖, 𝑥𝑗, 𝑥𝑘]

=
𝑓[𝑥𝑖, 𝑥𝑗] − 𝑓[𝑥𝑗, 𝑥𝑘]

(𝑥𝑖 − 𝑥𝑘)

𝑓[𝑥𝑖, 𝑥𝑗, 𝑥𝑘 , 𝑥𝑙]

0 1 0

1 4 1.386 0.4620981

2 6 1.792 0.2027326 −0.05187311

3 5 1.609 0.1823266 −0.0204110 0.007865539

∴ 𝑓3(𝑥) = 0.4620981(𝑥 − 1) − 0.0518711(𝑥 − 1)(𝑥 − 4) + 0.007865539(𝑥 − 1)(𝑥 − 4)(𝑥 − 6)

𝑓3(𝑥) = 0.6287686

𝑅𝐸 = 9.3%

Errors (Newton’s interpolating polynomial)

𝑓(𝑥) = 𝑓𝑛(𝑥) + 𝑅𝑛(𝑥)

The error:

𝑅𝑛(𝑥) =
𝑓𝑛+1(𝑐)

(𝑛 + 1)!
∙ (𝑥 − 𝑥0)(𝑥 − 𝑥1)… (𝑥 − 𝑥𝑛)

Here c is the interval containing the data using the finite divided difference.

𝑅𝑛 = 𝑓[𝑥1, 𝑥𝑛, 𝑥𝑛+1 , … , 𝑥1, 𝑥0](𝑥 − 𝑥0)(𝑥 − 𝑥1)… (𝑥 − 𝑥𝑛)

 (𝑛 + 1)𝑡ℎ

If there is extra data. [𝑥𝑛+1 , 𝑓(𝑥𝑛+1)]:

Then:

𝑅𝑛 ≈ 𝑓[𝑥𝑛+1 , 𝑥𝑛, … , 𝑥0](𝑥 − 𝑥0)… (𝑥 − 𝑥𝑛)

Example: Using quadratic polynomial: 𝑓2(𝑥) = 0.4620981(𝑥 − 1) − 0.0518731(𝑥 − 1)(𝑥 − 4) using

𝑥3 = 5, 𝑓(𝑥3) = 1.609438 to estimate the error.

Solution:

𝑅2 = 𝑓[𝑥3, 𝑥2, 𝑥1, 𝑥0](𝑥3 − 𝑥0)(𝑥3 − 𝑥1)(𝑥3 − 𝑥2)

𝑅2 = 0.00786553(5 − 1)(5 − 4)(5 − 6)

Error at 𝑥 = 2:

𝑅2 = 𝑓[𝑥3. 𝑥2, 𝑥1, 𝑥0](2 − 1)(2 − 4)(2 − 6)

𝑅2 = 0.0629

What we’ve looked at so far:

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)

𝑓𝑛(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+ 𝑎𝑛𝑥

𝑛

𝑓𝑛(𝑥) = 𝑓(𝑥0) + 𝑓[𝑥1, 𝑥0](𝑥 − 𝑥0) + 𝑓[𝑥2, 𝑥1, 𝑥0](𝑥 − 𝑥0)(𝑥 − 𝑥1) + ⋯

+ 𝑓[𝑥𝑛, 𝑥𝑛−1, … , 𝑥1, 𝑥0](𝑥 − 𝑥0)(𝑥 − 𝑥1)… (𝑥 − 𝑥𝑛)

𝑓(𝑥0) = 𝑦0

𝑓[𝑥1, 𝑥0] =
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
=
𝑦1 − 𝑦0
𝑥1 − 𝑥0

𝑓[𝑥2, 𝑥1, 𝑥0] =
𝑓[𝑥2, 𝑥1] − 𝑓[𝑥1, 𝑥0]

𝑥2 − 𝑥0

Lagrange Interpolating Polynomial

Given (𝑥0, 𝑓(𝑥0)), (𝑥1, 𝑓(𝑥1)), fitting line.

𝐿0(𝑥):

𝐿0(𝑥0) = 1

𝐿0(𝑥1) = 0

𝐿0(𝑥) = 𝑏0(𝑥 − 𝑥1)

𝐿0(𝑥) = 𝑏0(𝑥0 − 𝑥1) = 1

𝑏0 =
1

𝑥0 − 𝑥1

𝐿0(𝑥) =
𝑥 − 𝑥1
𝑥0 − 𝑥1

𝑙1(𝑥):

𝑙1(𝑥0) = 0

𝑙1(𝑥1) = 1

𝐿1(𝑥) =
𝑥 − 𝑥0
𝑥1 − 𝑥0

𝑓1(𝑥) = 𝑓(𝑥0) ∙ 𝐿0(𝑥) + 𝑓(𝑥1) ∙ 𝐿1(𝑥)

Given (𝑥0, 𝑓(𝑥0)), (𝑥1, 𝑓(𝑥1)), (𝑥2, 𝑓(𝑥2)) fitting polynomial of degree 2:

𝐿0(𝑥) = {

1 ; 𝑥 = 𝑥0
0 ; 𝑥 = 𝑥1
0 ; 𝑥 = 𝑥2

𝐿1(𝑥) = {

0 ; 𝑥 = 𝑥0
1 ; 𝑥 = 𝑥1
0 ; 𝑥 = 𝑥2

𝐿2(𝑥) = {

0 ; 𝑥 = 𝑥0
0 ; 𝑥 = 𝑥1
1 ; 𝑥 = 𝑥2

𝑓2(𝑥) = 𝑓(𝑥0) ∙ 𝐿0(𝑥) + 𝑓(𝑥1) ∙ 𝐿1(𝑥) + 𝑓(𝑥2) ∙ 𝐿2(𝑥)

𝐿0(𝑥) = 𝑏0(𝑥 − 𝑥1)(𝑥 − 𝑥2)

𝐿0(𝑥) = 𝑏0(𝑥0 − 𝑥1)(𝑥0 − 𝑥2) = 1

𝑏0 =
1

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)

𝐿0(𝑥) =
(𝑥 − 𝑥1)(𝑥 − 𝑥2)

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)

𝐿1(𝑥) =
(𝑥 − 𝑥0)(𝑥 − 𝑥2)

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)

𝐿2(𝑥) =
(𝑥 − 𝑥0)(𝑥 − 𝑥1)

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)

Example

Given the following data, use the Lagrange interpolating polynomial to fit the data.

𝑥0 = 1 ; 𝑓(𝑥0) = 0
𝑥1 = 4 ; 𝑓(𝑥1) = 1.386294

𝑥2 = 6 ; 𝑓(𝑥2) = 1.791760

Solution

𝐿0(𝑥) =
(𝑥 − 4)(𝑥 − 6)

(1 − 4)(1 − 6)
= (

1

15
) (𝑥2 − 10𝑥 + 24)

𝐿1(𝑥) =
(𝑥 − 1)(𝑥 − 6)

(4 − 1)(4 − 6)
= −(

1

6
) (𝑥2 − 7𝑥 + 6)

𝐿2(𝑥) =
(𝑥 − 1)(𝑥 − 4)

(6 − 1)(6 − 4)
= (

1

10
) (𝑥2 − 5𝑥 + 4)

∴ 𝑓2(𝑥) = 𝑓(𝑥0) ∙ 𝐿0(𝑥) + 𝑓1(𝑥) ∙ 𝐿1(𝑥) + 𝑓2(𝑥) ∙ 𝐿2(𝑥)

= ⋯

= ⋯

𝐿0(𝑥) = {
1 ; 𝑥 = 𝑥0
0 ; 𝑥 = 𝑥1, … , 𝑥𝑛

𝐿1(𝑥) = {
1 ; 𝑥 = 𝑥1
0 ; 𝑜𝑡ℎ𝑒𝑟 𝑥

𝐿𝑖(𝑥) = {
1 ; 𝑥 = 𝑥𝑖
0 ; 𝑜𝑡ℎ𝑒𝑟 𝑥

(Where 𝑖 = 0, 1, …𝑛)

𝐿𝑖(𝑥) =
(𝑥 − 𝑥0)… (𝑥 − 𝑥𝑖−1)(𝑥 − 𝑥𝑖+1)… (𝑥 − 𝑥𝑛)

(𝑥𝑖 − 𝑥0)… (𝑥𝑖 − 𝑥𝑖−1)(𝑥𝑖 − 𝑥𝑖+1)… (𝑥𝑖 − 𝑥𝑛)

=∏
𝑥 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗

𝑛

𝑗=0

(Where 𝑗 = 0, 1, …𝑛 ; but 𝑗 ≠ 𝑖)

∴ 𝑓(𝑥) = 𝑓(𝑥0)𝐿0(𝑥) + 𝑓(𝑥1)𝐿1(𝑥) + ⋯𝑓(𝑥𝑛)𝐿𝑛(𝑥)

=∑𝑓(𝑥𝑖)𝐿𝑖(𝑥)

𝑛

𝑖=0

Estimate error:

𝑅𝑛 = 𝑓[𝑥1, 𝑥𝑛, 𝑥𝑛−1, … , 𝑥0]∏
(𝑥 − 𝑥𝑖)

𝑛

𝑖=0

Inverse Interpolation

𝑥 1 2 3 4 5 6 7

𝑓(𝑥) =
1

𝑥
 1 0.5 0.3333 0.25 0.2 0.16667 0.1428

Find 𝑥 such that 𝑓(𝑥) = 0.3

1. Interchange 𝑥 ↔ 𝑓(𝑥), construct the interpolation polynomial

2. Using a few point construct a polynomial then solving the equation to find 𝑥.

Using (2, 0.5), (3, 0.3333), (4, 0.25) to construct a polynomial:

𝑓2(𝑥) = 1.08333 − 0.375𝑥 + 0.041667𝑥
2

0.3 = 𝑓2(𝑥) = 1.08333 − 0.375𝑥 + 0.041667𝑥
2

→ 𝑥 = 3.295842, 5.704158

The exact value of 𝑥 is:

𝑓(𝑥) =
1

𝑥
= 0.3 → 𝑥 = 3.333

Spline Interpolation

Given a set of 𝑛 + 1 data points (𝑥𝑖, 𝑦𝑖) where no two 𝑥𝑖 are the same and 𝑎 = 𝑥0 < 𝑥1 < ⋯𝑥𝑛 = 𝑏,

the spline 𝑆(𝑥) is a piecewise function satisfying:

1. 𝑆(𝑥) ∈ 𝐶2[𝑎, 𝑏](𝑆(𝑥), 𝑆′(𝑥), 𝑆′′(𝑥) exist and continuous

2. On each interval [𝑥𝑖−1, 𝑥𝑖], 𝑆(𝑥) is a cubic polynomial 𝑖 = 1, 2, … , 𝑛

3. 𝑆(𝑥𝑖) = 𝑓(𝑥𝑖) = 𝑦𝑖, 𝑖 = 0, 1, … , 𝑛

Assume that

𝑆(𝑥) =

{

𝐶1(𝑥) ; 𝑥0 < 𝑥 < 𝑥2

⋮
𝐶2(𝑥) ; 𝑥1 < 𝑥 < 𝑥2

⋮
𝐶𝑛(𝑥) ; 𝑥𝑛+1 < 𝑥 < 𝑥𝑛

And

𝐶𝑖(𝑥) = 𝑎0𝑖 + 𝑎1𝑖𝑥 + 𝑎2𝑖𝑥
2 + 𝑎3𝑖𝑥

3

𝑖 = 1, 2, … , 𝑛

𝑎3𝑖 ≠ 0

There are a 4𝑛 unknowns

The equations:

𝐶𝑖(𝑥)|𝑥=𝑥𝑖−1 = 𝐶𝑖(𝑥𝑖−1) = 𝑓(𝑥 − 𝑖)(= 𝑦𝑖−1)

𝐶𝑖(𝑥𝑖−1) = 𝑦𝑖−1 (𝑖 = 1, 2, 3, … 𝑛 − 1)

𝐶𝑖(𝑥𝑖) = 𝑦𝑖 (𝑖 = 1, 2, 3,… 𝑛 − 1)
(𝑥𝑖) = 𝐶𝑖+1

′ (𝑥𝑖) (𝑖 = 1, 2, 3,… , 𝑛 − 1)

𝐶𝑖
′′(𝑥𝑖) = 𝐶𝑖+1

′′ (𝑥𝑖) (𝑖 = 1, 2, 3, … , 𝑛 − 1)

Total of 4𝑛 − 2 equations – boundary conditions are needed.

Case 1: The first derivatives at the endpoints are given

Consider clamped boundary conditions

𝐶1
′(𝑥0) = 𝑓0

′

 𝐶𝑛
′ (𝑥𝑛) = 𝑓𝑛′

Case 2: The second derivatives at the endpoints are given.

𝐶1
′′(𝑥0) = 𝑓0

′′

 𝐶𝑛
′′(𝑥𝑛) = 𝑓𝑛′′

Special case 𝑓0
′′ = 𝑓𝑛′′ is called natural or simple B.C.’s

Case 3: Periodic conditions

𝐶1(𝑥0) = 𝐶𝑛(𝑥𝑛)

𝐶1
′(𝑥0) = 𝐶𝑛

′ (𝑥𝑛)

𝐶1
′′(𝑥0) = 𝐶𝑛′′(𝑥𝑛)

Use the second derivatives

𝑆′′(𝑥𝑖) = 𝑀𝑖 𝑖 = 0, 1, 2, … , 𝑛

To find 𝑆(𝑥) In the interval 𝑥𝑖−1 < 𝑥 < 𝑥𝑖:

𝐶𝑖
′′(𝑥) = 𝑀𝑖−1

𝑥𝑖 − 𝑥

𝑥𝑖 − 𝑥𝑖−1
+𝑀𝑖

𝑥 − 𝑥𝑖−1
𝑥𝑖 − 𝑥𝑖−1

 𝑖 = 1, 2, … , 𝑛

Integrate the moment function twice:

𝐶𝑖
′(𝑥) = −𝑀𝑖−1

(𝑥𝑖 − 𝑥)
2

2ℎ𝑖
+𝑀𝑖

(𝑥 − 𝑥𝑖−1)
2

2ℎ𝑖
+ 𝛼

Here ℎ𝑖 = 𝑥𝑖 − 𝑥𝑖−1

𝐶𝑖(𝑥) = 𝑀𝑖−1
(𝑥𝑖 − 𝑥)

3

6ℎ𝑖
+𝑀𝑖

(𝑥 − 𝑥𝑖−1)
3

6ℎ𝑖
+ 𝛼(𝑥 − 𝑥𝑖−1) + 𝛽

At 𝑥 = 𝑥𝑖−1:

𝐶𝑖(𝑥) = 𝑦𝑖−1 = 𝑓(𝑥𝑖−1)

∴ 𝐶𝑖(𝑥𝑖−1) = 𝑀𝑖−1
(𝑥𝑖 − 𝑥𝑖−1)

3

6ℎ𝑖
+ 0 + 0 + 𝛽 = 𝑓(𝑥𝑖−1)

𝛽 = 𝑓(𝑥𝑖−1) − 𝑀𝑖−1
ℎ𝑖
2

6

At 𝑥 = 𝑥𝑖:

𝐶𝑖(𝑥) = 𝑦𝑖 = 𝑓(𝑥𝑖)

∴ 𝐶𝑖(𝑥𝑖) = 𝑀𝑖
(𝑥𝑖 − 𝑥𝑖+1)

3

6ℎ𝑖
+ 𝛼(𝑥𝑖 − 𝑥𝑖−1) + 𝛽 = 𝑓(𝑥𝑖)

𝛼 = (𝑀𝑖−1 −𝑀𝑖)
ℎ𝑖
6
+
𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)

ℎ𝑖

The cubic function:

𝐶𝑖(𝑥) = 𝑀𝑖−1

(𝑥𝑖 − 𝑥)
3

6ℎ𝑖
+𝑀𝑖

(𝑥 − 𝑥𝑖−1)
3

6ℎ𝑖
+ [(𝑀𝑖−1 −𝑀𝑖)

ℎ𝑖
6
+
𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)

ℎ𝑖
] (𝑥 − 𝑥𝑖−1) + 𝑓(𝑥𝑖−1) − 𝑀𝑖−1

ℎ𝑖
2

6

𝐶𝑖(𝑥) = 𝑀𝑖−1
(𝑥𝑖 − 𝑥)

3

6ℎ𝑖
+𝑀𝑖

(𝑥 − 𝑥𝑖−1)
3

6ℎ𝑖
+ (𝑓(𝑥𝑖−1) − 𝑀𝑖−1

ℎ𝑖
2

6
)
𝑥𝑖 − 𝑥

ℎ𝑖
 + (𝑓(𝑥𝑖) − 𝑀𝑖

ℎ𝑖
2

6
)
𝑥 − 𝑥𝑖−1
ℎ𝑖

The first derivative of 𝐶𝑖(𝑥):

𝐶𝑖
′(𝑥) = −𝑀𝑖−1

(𝑥𝑖 − 𝑥)
2

2ℎ𝑖
+ 𝑀𝑖

(𝑥 − 𝑥𝑖−1)
2

2ℎ𝑖
− (𝑓(𝑥𝑖−1) − 𝑀𝑖−1

ℎ𝑖
2

6
)
1

ℎ𝑖
+ (𝑓(𝑥𝑖) − 𝑀𝑖

ℎ𝑖
2

6
)
1

ℎ𝑖

At 𝑥 = 𝑥𝑖, we have:

𝐶𝑖
′(𝑥𝑖) = 0 +𝑀𝑖

(𝑥𝑖 − 𝑥𝑖−1)
2

2ℎ𝑖
+
𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)

ℎ𝑖
+𝑀𝑖−1

ℎ𝑖
6
−𝑀𝑖

ℎ𝑖
6

= (𝑀𝑖−1 + 2𝑀𝑖)
ℎ𝑖
6
+ 𝑓[𝑥𝑖, 𝑥𝑖−1]

For interval 𝑖 + 1, 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1 (𝑖 = 1, 2, … , 𝑛 − 1)

𝐶𝑖+1
′ (𝑥) = −𝑀𝑖

(𝑥𝑖+1 − 𝑥)
2

2ℎ𝑖+1
+ 𝑀𝑖

(𝑥 − 𝑥𝑖)
2

2ℎ𝑖+1
− (𝑓(𝑥𝑖) − 𝑀𝑖−1

ℎ𝑖+1
2

6
)

1

ℎ𝑖+1
+ (𝑓(𝑥𝑖+1) − 𝑀𝑖+1

ℎ𝑖+1
2

6
)

1

ℎ𝑖+1

At 𝑥 = 𝑥𝑖:

𝐶𝑖+1
′ (𝑥𝑖) = −𝑀𝑖

(𝑥𝑖+1 − 𝑥𝑖)
2

2ℎ𝑖+1
+ 0 +

𝑓(𝑥𝑖−1) − 𝑓(𝑥𝑖)

ℎ𝑖+1
+𝑀𝑖

ℎ𝑖+1
6

−𝑀𝑖+1
ℎ𝑖+1
6

𝐶𝑖+1
′ (𝑥𝑖) = −(2𝑀𝑖 +𝑀𝑖+1)

ℎ𝑖+1
6

+ 𝑓(𝑥𝑖+1, 𝑥𝑖)

Since 𝐶𝑖
′(𝑥𝑖) = 𝐶𝑖+1′(𝑥𝑖) (𝑖 = 1, 2, … , 𝑛 − 1)

(𝑀𝑖−1 + 2𝑀𝑖)
ℎ𝑖
6
+ 𝑓[𝑥𝑖, 𝑥𝑖−1]

= −(2𝑀𝑖 +𝑀𝑖+1)
ℎ𝑖+1
6

+ 𝑓[𝑥𝑖+1. 𝑥𝑖]

𝑀𝑖−1ℎ𝑖 + 2𝑀𝑖(ℎ𝑖 + ℎ𝑖+1) + 𝑀𝑖+1ℎ𝑖+1 = 6(𝑓[𝑥𝑖+1, 𝑥𝑖] − 𝑓[𝑥𝑖, 𝑥𝑖−1])

𝑀𝑖−1 =
ℎ𝑖

ℎ𝑖 + ℎ𝑖+1
+ 2𝑀𝑖 +𝑀𝑖+1

ℎ𝑖
ℎ𝑖 + ℎ𝑖+1

= 6
 𝑓[𝑥𝑖+1, 𝑥𝑖] − 𝑓[𝑥𝑖, 𝑥𝑖−1]

ℎ𝑖 + ℎ𝑖+1

Define:

𝛼𝑖 =
ℎ𝑖

ℎ𝑖 + ℎ𝑖+1

𝛽𝑖 =
ℎ𝑖+1

ℎ𝑖 + ℎ𝑖+1

And 𝛼𝑖 + 𝛽𝑖 = 1

Since:

ℎ𝑖 = 𝑥𝑖 − 𝑥𝑖−1

ℎ𝑖+1 = 𝑥𝑖+1 − 𝑥𝑖

ℎ𝑖 + ℎ𝑖+1 = 𝑥𝑖+1 − 𝑥𝑖−1

𝛼𝑖𝑀𝑖+1 + 2𝑀𝑖 + 𝛽𝑖𝑀𝑖+1 = 6𝑓[𝑥𝑖+1, 𝑥𝑖, 𝑥𝑖−1] = 𝛾𝑖 ; 𝑖 = 1, 2, … , 𝑛 − 1

 ↑ ↑ ↑

 The boundary conditions

Case 1: The clamped

Given 𝐶1
′(𝑥0) = 𝑓0

′ ; 𝐶𝑛
′ (𝑥𝑛) = 𝑓𝑛′

𝐶1
′(𝑥0) = −𝑀0

(𝑥1 − 𝑥0)
2

2ℎ1
+𝑀1

(𝑥0 − 𝑥𝑜)
2

2ℎ1
− (𝑓(𝑥0) − 𝑀0

ℎ1
2

6
)
1

ℎ1
+ (𝑓(𝑥1) − 𝑀1

ℎ1
2

6
)
1

ℎ1

= 𝑓0′

→ 2𝑀0 +𝑀1 = 6
𝑓[𝑥1, 𝑥0] − 𝑓0

′

ℎ1
= 𝛾0

𝐶𝑛
′ (𝑥𝑛) = −𝑀𝑛−1

(𝑥𝑛 − 𝑥𝑛)
2

2ℎ𝑛
+ 𝑀𝑛

(𝑥𝑛 − 𝑥𝑛+1)
2

2ℎ𝑛
− (𝑓(𝑥𝑛+1) − 𝑀𝑛+1

ℎ𝑛
2

6
)
1

ℎ𝑛
+ (𝑓(𝑥𝑛) − 𝑀𝑛

ℎ𝑛
2

6
)
1

ℎ𝑛

= 𝑓𝑛′

→ 𝑀𝑛−1 + 2𝑀𝑛 = 6
𝑓𝑛
′ − 𝑓[𝑥𝑛, 𝑥𝑛−1]

ℎ𝑛
= 𝛾𝑛

All the equations:

 2𝑀0 +𝑀1 = 𝛾0

𝛼1𝑀0 + 2𝑀1 + 𝛽1𝑀2 = 𝛾1

𝛼2𝑀1 + 2𝑀2 + 𝛽2𝑀3 = 𝛾2

 ⋮

𝛼𝑛−1𝑀𝑛−2 + 2𝑀𝑛−1 + 𝛽𝑛−1𝑀𝑛 = 𝛾𝑛−1

 𝑀𝑛−1 + 2𝑀𝑛 = 𝛾𝑛

For the first row 𝛽0 = 1, and for the last row 𝛼𝑛 = 1 (𝛽0 is added to make the equation look consistent)

[

2 𝛽0 0
𝛼1 2 𝛽1
 ⋱ ⋱ ⋱
 ⋱ ⋱ ⋱
 𝛼𝑛+1 2 𝛽𝑛−1
0 𝛼𝑛 2]

{

𝑀0
𝑀1
⋮

𝑀𝑛−1
𝑀𝑛 }

=

{

𝛾0
𝛾1
⋮

𝛾𝑛−1
𝛾𝑛 }

{𝛼𝑛 = 𝛽𝑛 = 1)

Case 2, the natural boundary conditions:

Given:

𝑀0 = 𝑓0
′′

𝑀𝑛 = 𝑓𝑛
′′

Let:

𝛽0 = 𝛼𝑛 = 0

𝛾0 = 2𝑀0 = 2𝑓0
′′

𝛾𝑛 = 2𝑀𝑛 = 2𝑓𝑛
′′

Error and convergence:

Assume that 𝑓(𝑥) ∈ 𝐶4[𝑎, 𝑏], 𝑆(𝑥) is the cubic spline interpolating function that satisfies clamped or

natural boundary conditions.

Let ℎ = max ℎ𝑖 (1 < 𝑖 < 𝑛)

Where ℎ𝑖 = 𝑥𝑖 − 𝑥𝑖−1

Then,

[
max

𝑥 ∈ [𝑎, 𝑏]] |𝑓(𝑥)
(𝑘)
− 𝑆(𝑥)

(𝑘)
| ≤ 𝐶𝑘 [

max
𝑥 ∈ [𝑎, 𝑏]] |𝑓(𝑥)

(𝑘)
| ∙ ℎ4−𝑘

For 𝑘 = 0, 1, 2 with:

𝐶0 =
5

384
 ; 𝐶1 =

1

24
 ; 𝐶2 =

3

8

The interpolation is much better for the function itself, and it becomes worse for the derivatives.

As with all other functions, the accuracy of a derivative function is worse than the original function itself.

Consider the coefficients as well, which get much larger as the order of the derivatives increases.

Consider 𝑘 = 0, the function converges very quickly, at ℎ4

Consider 𝑘 = 1, the derivative function converges more slowly, converging at ℎ3

Consider 𝑘 = 2, the derivative functions converges even more slowly, converging at ℎ2

Part 3: Roots of equations

Bisection method:

Open method:

Convergence speed for iterative methods

(how do we measure the convergence speed of iterative methods?)

1. Order of convergence

2. Rate of convergence

{𝑋𝑛}: 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛, … , …

|𝑥𝑛+1 − 𝐿|, |𝑥𝑛 − 𝐿|

lim
𝑛→∞

|𝑥𝑛+1 − 𝐿|

|𝑥𝑛 − 𝐿|
= 𝜇 ; 0 ≤ 𝜇 ≤ 1

1st : 0 ≤ 𝜇 ≤ 1 : the sequence {𝑥𝑛} is said to converge 𝑄 − 𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑦 to 𝐿

2nd : 𝜇 = 0 : 𝑄 − 𝑠𝑢𝑝𝑒𝑟𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝑡𝑜 𝐿

3rd : 𝜇 = 1 : 𝑄 − 𝑠𝑢𝑏𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝑡𝑜 𝐿

If the sequence converges 𝑄 − 𝑠𝑢𝑏𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝑡𝑜 𝐿, and

lim
𝑛→∞

|𝑥𝑛+2 − 𝑥𝑛+1 |

|𝑥𝑛+1 − 𝑥𝑛|
= 1

Converges logarithmically to 𝐿.

Order of convergence:

lim
𝑛→∞

|𝑥𝑛+1 − 𝐿|

|𝑥𝑛 − 𝐿|𝓆
< 𝑀

𝓆 = 1 : linear convergence

𝓆 = 2 : quadratic convergence

𝓆 = 3 : cubic convergence

…

Example

1st sequence:

(𝑥𝑛) = {1,
1

3
,
1

9
,

1

27
, … ,

1

3𝑛
, … }

𝑥𝑛 =
1

3𝑛
 ; 𝑛 = 0, 1, 2, …

𝑥𝑛 → 𝐿 = 0 ; 𝑛 → ∞

 lim
𝑛→∞

|𝑥𝑛+1 − 𝐿|

|𝑥𝑛 − 𝐿|
=

|
1

3𝑛+1 − 0|

|
1

3𝑛 − 0|
=

1

3
< 1

lim
𝑛→∞

|𝑥𝑛+1 − 𝐿|

|𝑥𝑛 − 𝐿|𝓆
=

1

3
 ; 𝑄 − 𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑦

2nd sequence:

(𝑥𝑛) = {
1

3
,
1

9
,

1

81
, … ,

1

32𝑛 , … }

𝑥𝑛 =
1

3 2
𝑛 ; 𝑥𝑛+1 = 𝑥𝑛

2

𝑥𝑛 → 𝐿 = 0 ; 𝑛 → ∞

lim
𝑛→∞

|𝑥𝑛+1 − 𝐿|

|𝑥𝑛 − 𝐿|
= lim

𝑛→∞
|

1
32𝑛+1 − 0

1
32𝑛 − 0

|

lim
𝑛→∞

1

32𝑛 = 0 ; 𝑄 − 𝑠𝑢𝑝𝑒𝑟𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑦

3rd sequence:

(𝑥𝑛) = {1,
1

2
,
1

3
,
1

4
, … ,

1

𝑛 + 1
, … }

𝑥𝑛 =
1

𝑛 + 1
 ; 𝑛 = 0, 1, 2, …

𝑥𝑛 → 𝐿 = 0 ; 𝑛 → ∞

lim
𝑛→∞

|𝑥𝑛+1 − 𝐿|

|𝑥𝑛 − 𝐿|
= lim

𝑛→∞
|

1
𝑛 + 2

1
𝑛 + 1

| = 1 ; 𝑄 − 𝑠𝑢𝑏𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑦

lim
𝑛→∞

|
𝑥𝑛+2 − 𝑥𝑛+1

𝑥𝑛+1 − 𝑥𝑛
| = lim

𝑛→∞
|

1
𝑛 + 3 −

1
𝑛 + 2

1
𝑛 + 2 −

1
𝑛 + 1

| = 1 ; 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 𝑙𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐𝑎𝑙𝑙𝑦

Functional iteration and orbit

If 𝑓: ℛ → 𝑅,

𝑓0(𝑥) == 𝑥

𝑓′(𝑥) == 𝑓(𝑥)

𝑓2(𝑥) == (𝑓°𝑓)(𝑥) = 𝑓(𝑓(𝑥))

𝑓3(𝑥) == (𝑓°𝑓2)(𝑥) = 𝑓(𝑓2(𝑥))

…

𝑓𝑛(𝑥) == (𝑓°𝑓𝑛−1)(𝑥) = 𝑓(𝑓𝑛−1(𝑥))

𝑓𝑛(𝑥) : the 𝑛 −th iteration of 𝑓(𝑥), 𝑛 ≥ 0

Example:

1st:

𝑓(𝑥) = 𝑥 + 𝑎

𝑓2(𝑥) = 𝑓(𝑓(𝑥)) = 𝑓(𝑥 + 𝑎) = (𝑥 + 𝑎) + 𝑎

= 𝑥 + 2𝑎

𝑓3(𝑥) = 𝑓(𝑓2(𝑥)) = 𝑓(𝑥 + 2𝑎) = (𝑥 + 2𝑎) + 𝑎

= 𝑥 + 3𝑎
…

= 𝑓𝑛(𝑥) = 𝑥 + 𝑛𝑎 ; 𝑛 ≥ 1

2nd:

𝑓(𝑥) =
𝑥

1 + 𝑏𝑥

𝑓2(𝑥) = 𝑓(𝑓(𝑥) = 𝑓 (
𝑥

1 + 𝑏𝑥
) =

𝑥
1 + 𝑏𝑥

1 + 𝑏
𝑥

1 + 𝑏𝑥

=
𝑥

1 + 2𝑏𝑥

𝑓𝑛(𝑥) =
𝑥

1 + 𝑛𝑏𝑥

3rd:

𝑓(𝑥) =
𝑎𝑥 + 𝑏

𝑥 + 𝑐
(𝑏 ≠ 𝑎𝑐)

𝑓2(𝑥) =
(𝑎2 + 𝑏)𝑥 + 𝑎𝑏 + 𝑏𝑐

(𝑎 + 𝑐)𝑥 + 𝑏2

Let 𝑥0𝜖 ℛ, the orbit of 𝑥0 under function 𝑓(𝑥) is defined as the sequence of points:

𝑥0, 𝑓(𝑥0), 𝑓2(𝑥0), … , 𝑓𝑛(𝑥0), …

𝑥0: seed of the orbit

Example 𝑓(𝑥) = cos 𝑥, 𝑥0 = 0.5

The orbit

cos(0.5) = 0.8775825619

cos(cos(0.5)) = 0.6390124942

cos3(0.5) = cos(0.6390 …) = 0.8206851007

⋮

cos56(0.5) = 0.7390851332

cos57(0.5) = 0.7390851332

⋮

Example 𝑓(𝑥) = 𝑥2 − 1, 𝑥0 = 0.5

𝑥0 = 0.5

𝑥1 = 𝑓(𝑥0) = −0.75

𝑥2 = 𝑓(𝑥1) = −0.4375

𝑥3 = 𝑓(𝑥2) = −0.80859375

⋮

𝑥19 = 𝑓(𝑥18) = −1

𝑥20 = 𝑓(𝑥19) = 0

𝑥21 = 𝑓(𝑥20) = −1

𝑥22 = 𝑓(𝑥21) = 0

⋮

𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒

Fixed point

𝑐 is a fixed point of function 𝑓(𝑥):

𝑓(𝑐) = 𝑐

f

Example:

1st: 𝑓(𝑥) = 𝑥3 − 0.9𝑥2 + 1.2𝑥 − 0.3

𝑥 = 1 is a fixed point

𝑓(1) = 1 − 0.9 + 1.2 − 0.3 = 1

2nd: 𝑓(𝑥) = 𝑥 + 1

no fixed point

A periodic point:

𝑓𝑛(𝑥0) = 𝑥0 for some 𝑛

Example: 𝑓(𝑥) = 𝑥2 − 4𝑥 + 5

𝑥0 = 1, 𝑓(1) = 2 not a fixed point

𝑓(2) = 1

→ 𝑓2(1) = 1, 𝑛 = 2, 𝑥0 = 1 is a fixed point of period 2.

Theorem: 𝑥0, 𝑓(𝑥0), 𝑓2(𝑥0), … , 𝑓𝑛(𝑥0), …

If lim
𝑛→∞

𝑓𝑛(𝑥0) = 𝑎

Then 𝑎 is a fixed point of 𝑓(𝑥)

𝑓(𝑎) = 𝑎

For example, 𝑓(𝑥) = cos 𝑥, 𝑥0 = 0.5

𝑓𝑛(𝑥) → 0.7390851332 = 𝑎

Therefore, from the theorem,

cos 𝑎 = 𝑎

(In other words, 𝑎 is a fixed point of cos 𝑥)

Logistic map:

𝑓(𝑥) = 𝑟𝑥(1 − 𝑥), 0 ≤ 𝑥 ≤ 1

 0 ≤ 𝑟 ≤ 4

𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛, …

𝑥𝑛+1 = 𝑟𝑥𝑛(1 − 𝑥𝑛), 𝑛 = 0, 1, 2, …

Choose seed 𝑥0 =
1

2
= 0.5

Famous literature by 𝐿𝑖 & 𝑌𝑜𝑟𝑘𝑒,

Period of implies chaos

The following presentation uses materials from Numerical analysis (9th Edn.) by Burden & Faires,

Brooks/Cole, 2011.

Use for educational purposes only.

Fixed point iteration

The idea of the fixed-point iteration method is to:

(1) Reformulate an equation to an equivalent fixed-point problem

𝑓(𝑥) = 0 ↔ 𝑥 = 𝑔(𝑥)

(2) Use iteration, with a chosen initial guess 𝑥0, to compute a sequence

𝑥𝑛+1 = 𝑔(𝑥𝑛)(= 𝑔𝑛+1(𝑥0)), 𝑛 = 0, 1, 2, …

in hope that 𝑥𝑛 → 𝛼 (the root of the non-linear equation).

There are numerous ways to introduce an equivalent fixed-point problem for a given equation. But

convergence to 𝛼 is not guaranteed, not to mention rapid convergence.

Lemma: Let 𝑔(𝑥) be a continuous function on the interval [𝑎, 𝑏], and suppose it satisfies the property

𝑎 ≤ 𝑥 ≤ 𝑏 → 𝑎 ≤ 𝑔(𝑥) ≤ 𝑏

Then the equation 𝑥 = 𝑔(𝑥) has at least on solution in the interval [𝑎, 𝑏].

Theorem: Assume 𝑔(𝑥) and 𝑔′(𝑥) exist and are continuous on the interval [𝑎, 𝑏]; and further, assume

𝑎 ≤ 𝑥 ≤ 𝑏 → 𝑎 ≤ 𝑔(𝑥) ≤ 𝑏

𝜆 = max
𝑎≤𝑥≤𝑏

|𝑔′(𝑥)| < 1

Then,

𝑪𝒐𝒏𝒄𝒍𝒖𝒔𝒊𝒐𝒏 𝟏 (existence and uniqueness) The equation 𝑥 = 𝑔(𝑥) has a unique solution 𝛼 in [𝑎, 𝑏].

𝑪𝒐𝒏𝒄𝒍𝒖𝒔𝒊𝒐𝒏 𝟐 (convergence) For any initial guess 𝑥0 in [𝑎; 𝑏], in the iteration

𝑥𝑛+1 = 𝑔(𝑥𝑛), 𝑛 = 0, 1, 2, …

Will converge to 𝛼.

𝑪𝒐𝒏𝒄𝒍𝒖𝒔𝒊𝒐𝒏 𝟑 (error bound estimate)

|𝑥𝑛 − 𝛼| ≤
𝜆𝑛

1 − 𝜆
|𝑥1 − 𝑥0|, 𝑛 > 0

𝑪𝒐𝒏𝒄𝒍𝒖𝒔𝒊𝒐𝒏 𝟒

lim
𝑛→∞

𝑥𝑛+1 − 𝛼

𝑥𝑛 − 𝛼
= 𝑔′(𝛼)

Thus, for any 𝑥𝑛 close to 𝛼, 𝑥𝑛+1 − 𝛼 ≈ 𝑔′(𝛼)(𝑥𝑛 − 𝛼)

When converging near the root 𝛼, the errors will decrease by a constant factor of 𝑔′(𝛼). If 𝑔′(𝛼) is

negative, then the errors will oscillate between positive and negative, and the iterates will be

approaching from both sides. When 𝑔′(𝛼) is positive, the iterates will approach 𝛼 from only one side.

When |𝑔′(𝛼)| > 1, the errors will increase as we approach the root rather than decrease in size.

Let’s look at two examples:

Example 1

𝑥 = sin(0.9 − 0.7𝑥) = 𝑔(𝑥) which has a root of 𝛼 = 0.514192160

𝑔(𝛼) = sin(0.9 − 0.7𝛼) = 𝛼 verified!

𝑔′(𝛼) = −0.7 cos(0.9 − 0.7𝛼) = −0.600372506

∴ 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒 (absolute value less than 1)

Example 2

𝑥 = sin(2.5 + 1.3𝑥) = 𝑔(𝑥) which has a root of 𝛼 = 0.277371219

𝑔(𝛼) = sin(2.5 + 1.3𝛼) = 𝛼 verified!

𝑔′(𝛼) = (1.3)cos(2.5 + 1.3𝛼) = −1.24899179

∴ 𝑑𝑖𝑣𝑒𝑟𝑔𝑒 (absolute value greater than 1)

But the challenge remains that the interval [𝑎, 𝑏] may not be easily identified. This leads to the localized

fixed-point theorem as follows:

Assume 𝑥 = 𝑔(𝑥) has a solution 𝛼, both 𝑔(𝑥) and 𝑔′(𝑥) are continuous for all 𝑥 In some interval about

𝛼, and |𝑔′(𝛼)| < 1. Then for any sufficiently small number 𝜖 > 0, the interval [𝑎, 𝑏] = [𝛼 − 𝜖, 𝛼 + 𝜖]

will satisfy the hypotheses of the fixed-point theorem. If we choose 𝑥0 sufficiently close to 𝛼, then the

fixed-point iteration 𝑥𝑛+1 = 𝑔(𝑥), 𝑛 = 0, 1, 2, … will converge.

Example 3

The equation 𝑓(𝑥) = 𝑥3 + 4𝑥2 − 10 = 0 has a root of 𝛼 = 1.36523001.

Choices of 𝑔(𝑥) are:

𝑔1(𝑥) = 𝑥 − 𝑥3 − 4𝑥2 + 10

𝑔2(𝑥) =
1

2
√10 − 𝑥3

𝑔3(𝑥) = 𝑥 −
𝑥3 + 4𝑥2 − 10

3𝑥2 + 8𝑥

Stopping/termination criterion is |𝑥𝑛 − 𝑥𝑛+1| < 10−6. Use the fixed-point iteration method to find 𝛼.

- We should check which one has 𝑔(𝛼) = 𝛼.

Solution

First off, 𝑔1(𝑥) will not converge. So, use 𝑔2(𝑥) and 𝑔3(𝑥) only.

𝑥0 = 1;

𝒈(𝒙) # of iterations 𝒙𝒏 |𝒙𝒏 − 𝒙𝒏−𝟏|

𝑔2(𝑥) 21 1.36523004 6.57824 ∙ 10−7
𝑔3(𝑥) 5 1.36523001 2.12699 ∙ 10−11

𝑥0 = 1.3;

𝒈(𝒙) # of iterations 𝒙𝒏 |𝒙𝒏 − 𝒙𝒏−𝟏|

𝑔2(𝑥) 19 1.36523020 5.52801 ∙ 10−7
𝑔3(𝑥) 4 1.36523001 2.70561 ∙ 10−12

It is seen that 𝑔3(𝑥) outperforms 𝑔2(𝑥).

It turns out that 𝑔3(𝑥) represents the Newton’s method or the Newton-Rhapson method, where 𝑔(𝑥) is

𝑔(𝑥) = 𝑥 −
𝑓(𝑥)

𝑓′(𝑥)

Newton’s method has a quadratic convergence rate as long as 𝑥0 is sufficiently close to 𝛼. The rate of

convergence depends on the choice of 𝑥0.

Another drawback is requiring 𝑓′(𝑥). The secant method uses finite difference to approximate the

derivative. The rate of convergence of the secant method is, 1.618, as long as the initial points are

sufficiently close to 𝛼.

The following presentation is based on https://neos‐guide.org/, and “Numerical Methods for Engineers”

(8th Edn.), Chapra and Canale, McGraw-Hill, 2021.

Use for educational purposes only.

Part 4: Optimization (I)
In mathematical terms, an optimization problem is the problem of finding the best solution from the set

of all feasible solutions.

Formulating an optimization problem

The mathematical statement is as follows:

Let 𝑓(𝒙) be a continuous real-values function, the optimization problem is stated as:

min
𝑥

𝑓(𝒙) ; 𝑓𝑜𝑟 𝒙 ∈ 𝑹𝒏

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐹𝑗(𝒙) = 𝑎𝑗 ; 𝑗 = 1, 2, … , 𝑚1

𝐺𝑘(𝒙) ≤ 𝑏𝑘 ; 𝑘 = 1, 2, … , 𝑚2

𝑎𝑛𝑑 𝑼𝑳 ≤ 𝒙 ≤ 𝑼𝑷

which involves, the objective f(𝒙), the variables 𝒙, the constraints 𝐹𝑗(𝒙) and 𝐺𝑘(𝒙) of the problem, and

the lower limit 𝑼𝑳 and upper limit 𝑼𝒑 on 𝒙.

• An objective is a quantitative measure of the performance of the system that we want to minimize

or maximize. For example, in manufacturing we may want to maximize the profits or minimize the

cost of production; in fitting experimental data to the model, we may want to minimize the sum of

squares of errors between the observed data and the predicted data.

• The variables or the unknowns are the components of the system for which we want to find values.

For the manufacturing example, the variables may be the amount of each resource consumed or the

time spent on each activity, whereas in data fitting, the variables may be the parameters of the

model.

https://neos‐guide.org/

• The constraints are the functions that describe the relationships among the variables and that

define the allowable values for the variables. For example, the manufacturing example, the amount

of a resource consumed cannot exceed the available amount. Another example us, if a variable

represents the number of people assigned to a specific task, the variable must be a positive integer.

Types of Optimization Problems

• Continuous Optimization versus Discrete Optimization

Optimization problems with discrete variables are discrete optimization problems: on the other hand,

problems with continuous variables are continuous optimization problems.

Continuous optimization problems tend to be easier to solve than discrete optimization problems.

However, recent improvements in algorithms coupled with advancements in computing technology

have dramatically increased the size and complexity of discrete optimization problems that can be

solved efficiently.

• Unconstrained Optimization versus Constrained Optimization

Unconstrained optimization is one in which there are no constraints on the variables; optimization in

which there are constraints on the variables is known as constrained optimization.

Both types arise directly from practical applications. Algorithm-wise, constrained optimization can be

reformulated to become and unconstrained one.

The constraints on the variables can be from simple bounds, to systems of equalities and inequalities

that model complex relationships of the variables.

• None, One or Many Objectives

Most optimization problems have a single objective function. However, there are cases when

optimization problems have no objective function or have multiple objective functions.

Feasibility problems are problems in which the goal is to find values for the variables that satisfy the

constraints of a system with no objective to optimize.

Multi-objective optimization problems arise in many fields, such as engineering, economics, and

logistics, when optimal decisions need to be taken I the presence of trade-offs between two or more

conflicting objectives. For example, developing a new component might involve minimizing weight while

maximizing strength.

In practice, problems with multiple objectives often are reformulated as single objective problems by

either forming a weighted combination of the different objectives or by replacing some of the objectives

by constraints.

• Deterministic Optimization versus Stochastic Optimization

Deterministic optimization is optimization under certainty. It is assumed that the data for the given

problem are known accurately.

Stochastic optimization is optimization under uncertainty.

• Local Optimization versus Global Optimization

Local optimization seeks the optimal solution over a small neighborhood where the derivative of the

objective is zero (or near zero).

Global optimization finds the smallest objective value over all feasible variables.

Note that each category of optimization problems has specifically developed algorithms so that the

optimization can be done effectively.

Also note that the above classifications are not mutually exclusive. For example, a multi-objective

optimization problem can be continuous and unconstrained.

Part 4: Optimization (II)
One-dimensional unconstrained optimization means, in mathematical terms,

min
𝑥

𝑓(𝑥) ; 𝑓𝑜𝑟 𝑥 ∈ (−∞, ∞)

Where 𝑓(𝑥) is a continuous real-valued function.

Methods include:

• Golden-section search;

• Quadratic interpolation; and

• Newton’s method.

One-dimensional unconstrained optimization is important in its own right, not to mention it is the

foundation for multi-dimensional unconstrained optimization.

Golden-section Search

The method is similar to the bisection method in Part 3. It is simple to use.

Assume that there is a minimum in the interval [𝑥𝐿 , 𝑥𝑈].

Step 1: Let ℓ0 = 𝑥𝑈 − 𝑥𝐿.

Step 2: Two intermediate points are needed.

𝑥1 = 𝑥𝐿 + 𝑑

𝑥2 = 𝑥𝑈 − 𝑑

with 𝑑 = (√5 − 1)/2 ∙ ℓ0 = 0.618 ∙ ℓ0.

Step 3a: If 𝑓(𝑥1) ≥ 𝑓(𝑥2), 𝑥𝑈 ← 𝑥1, go back to Step 1 until |𝑥2 − 𝑥1| or |𝑓(𝑥2) − 𝑓(𝑥1)| is very small;

Step 3b: If 𝑓(𝑥1) < 𝑓(𝑥2), 𝑥𝐿 ← 𝑥2, go back to Step 1 until |𝑥2 − 𝑥1| or |𝑓(𝑥2) − 𝑓(𝑥1)| is very small;

Quadratic Interpolation

Assume that there is a minimum in the interval [𝑥𝐿 , 𝑥𝑈] = [𝑥0, 𝑥2].

Step 1: One intermediate point is needed; 𝑥0 < 𝑥1 < 𝑥2.

Step 2: A parabola is fitted onto the three points. Take the derivative of the parabolics function. The

derivative is zero at 𝑥3.

𝑥3 =
1

2

𝑓0(𝑥1
2 − 𝑥2

2) + 𝑓1(𝑥2
2 − 𝑥0

2) + 𝑓2(𝑥0
2 − 𝑥1

2)

𝑓0(𝑥1 − 𝑥2) + 𝑓1(𝑥2 − 𝑥0) + 𝑓2(𝑥0 − 𝑥1)

Where 𝑓𝑖 = 𝑓(𝑥𝑖).

Step 3a: Drop 𝑥0 is 𝑓(𝑥0) ≥ 𝑓(𝑥2), 𝑥0 ← 𝑥1 or 𝑥3, 𝑥1 ← 𝑥3 or 𝑥1, go back to Step 2 until |𝑥3 − 𝑥1| or

|𝑓(𝑥3) − 𝑓(𝑥1)| is very small.

Step 3b: Drop 𝑥2 is 𝑓(𝑥0) < 𝑓(𝑥2), 𝑥2 ← 𝑥1 or 𝑥3, 𝑥1 ← 𝑥3 or 𝑥1, go back to Step 2 until |𝑥3 − 𝑥1| or

|𝑓(𝑥3) − 𝑓(𝑥1)| is very small.

Newton’s method

Assume there is a minimum in the interval [𝑥𝐿 , 𝑥𝑈], and 𝑥0 ∈ [𝑥𝐿 , 𝑥𝑈].

To seek the root of 𝑓′(𝑥) = 0, the Newton’s fixed-point iteration becomes,

𝑥𝑖+1 = 𝑥𝑖 −
𝑓′(𝑥)

𝑓′′(𝑥)

Iteration stops when |𝑥𝑖+1 − 𝑥𝑖| or |𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖)| is very small.

Example

Find the minimum of 𝑓(𝑥) =
𝑥2

10
− 2 sin𝑥 over the interval of [0, 4].

Use the “distance” based stopped criterion. For example, |𝑥3 − 𝑥1| < 10−6 for quadratic interpolation.

Solution

𝑓′(𝑥) =
𝑥

5
− 2 cos(𝑥)

𝑓′′(𝑥) =
1

5
+ 2 sin(𝑥)

Golden-section

of iterations 𝑥1
∗ or 𝑥2

∗ |𝑥2 − 𝑥1|

30 1.42755134 8.21214(10−7)
*whichever gives lower function value.

Quadratic interpolation with 𝑥1 = 1

of iterations 𝑥3 |𝑥3 − 𝑥1|

11 1.42755207 2.96747(10−7)

Newton’s method with 𝑥0 = 1

of iterations 𝑥𝑖+1 |𝑥𝑖+1 − 𝑥𝑖|

4 1.42755178 4.78198(10−10)

The question remains how to determine the interval [𝑥𝐿, 𝑥𝑈].

The following bracketing scheme may be suggested, which is part of the Davies-Swann-Campey

algorithm.

Step 1: Select an 𝑥1 that is close to the 𝑥∗being sought. Also assign a small value close to ∆.

Step 2: Let 𝑥0 = 𝑥1 − ∆ and 𝑥2 = 𝑥1 + ∆. Evaluate 𝑓0 = 𝑓(𝑥0), 𝑓1 = 𝑓(𝑥1), 𝑓2 = 𝑓(𝑥2).

There are three cases.

2a. If 𝑓0 ≥ 𝑓1 and 𝑓1 ≤ 𝑓2, then [𝑥0, 𝑥2] is the interval. Together with 𝑥1, the quadratic interpolation can

be started. For golden-section search, [𝑥0, 𝑥2] is the [𝑥𝐿 , 𝑥𝑈];

2b. If 𝑓0 > 𝑓1 and 𝑓1 > 𝑓2, the following is determined:

𝑥3 = 𝑥2 + 2∆, 𝑓3 = 𝑓(𝑥3)

𝑥4 = 𝑥3 + 4∆, 𝑓4 = 𝑓(𝑥4)

𝑥5 = 𝑥4 + 8∆, 𝑓5 = 𝑓(𝑥5)

…

Until the current 𝑓𝑖 is greater than the previous 𝑓𝑖−1. Then [𝑥0, 𝑥𝑖] is the interbal, and 𝑥𝑖−1 is 𝑥1, if

needed.

2c. If 𝑓0 < 𝑓1 and 𝑓1 < 𝑓2, 𝑥2 = 𝑥0 − ∆, 𝑓2 = 𝑓(𝑥2). The following is determined:

𝑥3 = 𝑥2 − 2∆, 𝑓3 = 𝑓(𝑥3)

𝑥4 = 𝑥3 − 4∆, 𝑓4 = 𝑓(𝑥4)

𝑥5 = 𝑥4 − 8∆, 𝑓5 = 𝑓(𝑥5)

…

Until 𝑓𝑖 is greater than 𝑓𝑖−1. Then [𝑥𝑖 , 𝑥0] is the interbal, and 𝑥𝑖−1is 𝑥1 is needed.

Example

Find the minimum of 𝑓(𝑥) =
𝑥2

10
− 2 sin𝑥 over the interval of [0, 4].

Use the “distance” based stopped criterion. For example, |𝑥3 − 𝑥1| < 10−6 for quadratic interpolation.

Golden-section

of iterations 𝑥1
∗ or 𝑥2

∗ |𝑥2 − 𝑥1|

30 1.42755134 8.21214(10−7)
* whichever gives lower function value

of iterations Interval 𝑥1
∗ or 𝑥2

∗ |𝑥2 − 𝑥1|

29 [0, 2.8] 1.42755300 9.30125(10−7)
* whichever gives lower function value

Quadratic interpolation with 𝑥1 = 1

of iterations 𝑥3 |𝑥3 − 𝑥1|

11 1.42755207 2.96747(10−7)

of iterations Interval 𝑥1 𝑥3 |𝑥3 − 𝑥1|

6 [0, 2.8] 1.2 1.42755196 2.09784(10−7)

Newton’s method with 𝑥0 = 1

of iterations 𝑥𝑖+1 |𝑥𝑖+1 − 𝑥𝑖|

4 1.42755178 4.78198(10−10)

With 𝑥0 = 1.2

of iterations 𝑥𝑖+1 |𝑥𝑖+1 − 𝑥𝑖|

4 1.42755178 7.36522(10−13)

Summary of one-dimensional optimization:

Golden-search, or quadratic interpolation, together within the David-Swann-Campey bracketing

method, are within the category of “search method” as no derivative is required.

On the other hand, the Newton’s method belongs in the category of gradient method.

They form the basis of solving multi-dimensional unconstrained optimization problems.

Part 4: Optimization (III)
Multi-dimensional unconstrained optimization means, in mathematical terms,

min
𝑥

𝑓(𝑥) ; 𝑓𝑜𝑟 𝑥 ∈ 𝑅𝑛

Where 𝑓(𝒙) is a continuous real-values function.

Some math first.

1. Local minimum and local maximum

If 𝑓(𝒙) > 𝑓(𝒙∗) for all 𝒙 near 𝒙∗, 𝒙∗ is the local minimum.

If 𝑓(𝒙) < 𝑓(𝒙∗) for all 𝒙 near 𝒙∗, 𝒙∗ is the local maximum.

2. The gradient of 𝑓(𝒙) is:

∇𝑓(𝒙) = (
𝜕𝑓

𝜕𝑥1
…

𝜕𝑓

𝜕𝑥𝑛
)
𝑇

3. Critical or stationary point:

If the gradient vector is zero at 𝒙∗, then 𝒙∗ is a critical or stationary point.

4. First derivative test:

A local minimum or maximum must be a critical point of 𝑓(𝒙).

In other words, if 𝑓(𝒙) has a local minimum or maximum at 𝒙∗, the the first order derivatives of 𝑓(𝒙)

exist at 𝒙∗, then:

𝜕𝑓(𝒙)

𝜕𝑥𝑖
|
𝒙∗

= 0 ; 𝑖 = 1, 2, 3, …

5. The Hessian (matrix) of 𝑓(𝒙) is:

𝐻 =

[

𝜕2𝑓

𝜕𝑥1
2

𝜕2𝑓

𝜕𝑥1𝜕𝑥2
⋯

𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛

𝜕2𝑓

𝜕𝑥1𝜕𝑥2

𝜕2𝑓

𝜕𝑥2
2 ⋯

𝜕2𝑓

𝜕𝑥2𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛

𝜕2𝑓

𝜕𝑥2𝜕𝑥𝑛
⋯

𝜕2𝑓

𝜕𝑥𝑛
2]

Or the Hessian is the Jacobian matrix of the gradient.

• If
𝜕2𝑓

𝛿𝑥𝑖𝜕𝑥𝑗
 is continuous, then

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
=

𝜕2𝑓

𝜕𝑥𝑗𝜕𝑥𝑖

• The Hessian determinant, |𝐻|, means the determinant of the Hessian matrix 𝐻. It is sometimes

called the discriminant of 𝐻.

6. Second derivative test

If 𝒙∗ is a critical point of 𝑓(𝒙), and all the second order partial derivatives of 𝑓(𝒙) are continuous, then:

• 𝒙∗ is a local minimum if 𝐻 (evaluated at 𝒙∗) is positive definite (that is, all eigenvalues of 𝐻 are

positive)

• 𝒙∗ is a local maximum if 𝐻 is negative definite (all eigenvalues of 𝐻 are negative)

• 𝒙∗ is a saddle point if 𝐻 has both positive and negative eigenvalues.

• However, the test is inconclusive in cases not listed above.

For two-dimensional problems:

• 𝒙∗ is a local minimum if |𝐻| > 0 and
𝜕2𝑓(𝒙)

𝜕𝑥1
2 |

𝒙∗
> 0;

• 𝒙∗ is a local maximum if |𝐻| > 0 and
𝜕2𝑓(𝒙)

𝜕𝑥1
2 |

𝒙∗
< 0;

• 𝒙∗ is a saddle point if |𝐻| < 0.

• However, it is inconclusive is |𝐻| = 0.

7. The Taylor expansion of 𝑓(𝒙), at 𝒙∗ and up to the second order, is,

𝑓(𝒙) = 𝑓(𝒙∗) + (∇𝑓)𝑇(𝒙 − 𝒙∗) + (
1

2
) (𝒙 − 𝒙∗)𝑇𝐻(𝒙 − 𝒙∗) + ⋯

Where the gradient ∇𝑓 and Hessian 𝐻 are evaluated at 𝒙∗.

Examples:

Note: in the following, 𝒙 = (𝑥, 𝑦)𝑇.

E1: Show that 𝑓(𝑥, 𝑦) = 𝑥2 − 𝑦2 has a saddle point at (0, 0)𝑇,

𝐻 = [
2 0
0 −2

] ; |𝐻| = −4

E2: Find the local optimum of:

𝑓(𝑥, 𝑦) = 𝑥2 + 2𝑦2 − 2𝑥𝑦 − 2𝑥

𝐻 = [
−2 2
2 −4

] ; |𝐻| = 4

𝜕2𝑓

𝜕𝑥2
=

𝜕2𝑓

𝜕𝑥1
2 = −2 < 0

Categories of methods include,

• Line search methods

• Trust-region methods

Trust-region methods:

• The trust region is the neighborhood near 𝒙∗

• 𝑓(𝒙) is represented by a high-dimensional parabolic “surface”

• 𝒙∗ is the 𝒙 that minimizes the high-dimensional parabolic “surface”

Line search methods:

A multi-dimensional problem is transformed into a sequence of one-dimensional problems.

• Univariate searches; and

• Steepest-descent methods

Part 4: Optimization (IV)
Line Search Methods

The key is to transform a multi-dimensional problem into a sequence of one-dimensional problems.

For one dimensional unconstrained optimization, we perform bracketing, then golden-search section or

quadratic interpolation or Newton’s method.

But all is done along one single search direction or the 𝑥 −axis.

Line search is about searching along a direction (i.e., a line) that is hopefully effective.

Univariate searches

The search directions are, 𝑥1, then 𝑥2, …, and finally 𝑥𝑛

The main steps are:

Step 1: Initial guess 𝑥0 and ∆

Step 2: Perform the following logical loop:

for 𝑘 = 1: 𝑛

1𝐷 unconstrained optimization along 𝑥𝑘

end

This step ends with an 𝒙∗

Step 3: Check if ||𝒙∗ − 𝒙𝟎|| meets the stopping criterion.

If yes, 𝒙∗ and 𝑓(𝒙∗) are the solution sought.

Otherwise, 𝒙𝟎 ← 𝒙∗, and go back to Step 2.

Graphically, consider a 2D problem:

𝑓(𝒙) = (𝑥1 − 1)2 + (𝑥2 − 3)2 − 1.8(𝑥1 − 1)(𝑥2 − 3)

Example:

𝑓(𝑥) = (𝑥1 − 1)2 + (𝑥2 − 3)2 − 1.8(𝑥1 − 1)(𝑥2 − 3)

Initial guess 𝒙𝟎 = [0.75,−1.25]𝑇 and ∆ = 0.1

Golden-section search for 1D

Along 𝑥1,

𝒙𝑳 = [−5.45,−1.25]𝑇 ,

𝒙𝑼 = [0.75,−1.25]𝑇

After 30 iterations,

𝒙∗ = [−2.825,−1.25]𝑇

𝑓(𝒙∗) = 3.4319;

Along 𝑥2,

𝒙𝑳 = [−2.825,−1.25]𝑇 ,

𝒙𝑼 = [−2.825, 0.15]𝑇

After 26 iterations,

𝒙∗ = [−2.825,−0.4425]𝑇

𝑓(𝒙∗) = 2.7798;

After 61 rounds of 𝑥1 and 𝑥2, the converged solution is:

𝒙∗ = [0.999983, 2.999982]𝑇

𝑓(𝒙∗) = 5.752007−11

Quadratic interpolation for 1D

Along 𝑥1,

𝒙𝑳 = [−5.45,−1.25]𝑇 ,

𝒙𝑼 = [0.75,−1.25]𝑇

𝒙𝟏 = [−2.25,−1.25]𝑇

After 2 iterations,

𝒙∗ = [−2.825,−1.25]𝑇

𝑓(𝒙∗) = 3.4319;

Along 𝑥2,

𝒙𝑳 = [−2.825,−1.25]𝑇 ,

𝒙𝑼 = [−2.825, 0.15]𝑇

𝒙𝟏 = [−2.825,−0.65]𝑇

After 2 iterations,

𝒙∗ = [−2.825,−0.4425]𝑇

𝑓(𝒙∗) = 2.7798;

After 67 rounds of 𝑥1 and 𝑥2, the converged solution is:

𝒙∗ = [0.999996, 2.999997]𝑇

𝑓(𝒙∗) = 2.862871−12

Newton’s method for 1D

Along 𝑥1,

𝒙𝟏 = [−2.25,−1.25]𝑇

After 2 iterations,

𝒙∗ = [−2.825,−1.25]𝑇

𝑓(𝒙∗) = 3.4319;

Along 𝑥2,

𝒙𝟏 = [−2.825,−0.65]𝑇

After 2 iterations,

𝒙∗ = [−2.825,−0.4425]𝑇

𝑓(𝒙∗) = 2.7798;

After 66 rounds of 𝑥1 and 𝑥2, the converged solution is:

𝒙∗ = [0.999996, 2.999997]𝑇

𝑓(𝒙∗) = 3.524268−12

Comparison of elapsed CPU times:

Golden-section search: 0.140625 sec.

Quadratic interpolation: 0.125000 sec.

Newton’s method: 0.109375 sec.

Other search direction? “Good” directions especially?

There are a few options here. Conjugate direction is one; The steepest-descent is another.

Steepest-descent Methods

What is the steepest direction? The concept of directional derivative is the starting point.

If ∇𝑓 is the gradient of 𝑓(𝒙) at any 𝒙, the direction is 𝒏, a unit vector (𝑓𝑜𝑟 𝑒𝑥𝑎𝑚𝑝𝑙𝑒, 𝑛 =

(
1

√2
, −

1

√2
, 0)

𝑇
), then the directional derivative along 𝒏 is,

𝐷𝑛(𝒙) = (𝛁𝑓)𝑇𝒏

Directional derivative is a scalar function.

Treating 𝒏 as the independent variables, seeking the optimum 𝐷𝑛(𝒙) will result in the steepest

direction. It has been proven that the steepest direction is the gradient itself. In other words, the

optimum of 𝐷𝑛(𝒙) is obtained when:

𝑛 = ∇𝑓

The three main steps of the steepest-descent method are,

Step 1: Initial guess 𝐱𝒐 and ∆

Step 2: evaluate ∇𝑓 at 𝑥0;

 1D unconstrained optimization along ∇𝑓;

 obtain a 𝒙∗

Step 3: check if ||𝒙∗ − 𝒙𝟎|| meets the stopping criterion

 If yes, 𝑥∗ and 𝑓(𝑥∗) are the solution sought.

 Otherwise, 𝑥0 ← 𝑥∗, and go back to Step 2.

Some programming notes:

Bracketing:

• Is done along ∇𝑓

Applying Golden-section search along ∇𝑓:

• ℓ0 means the second norm;

• The gradient should be normalized to a unit vector;

• The scalar 𝑥′𝑠 are now vectors.

Applying quadratic interpolation along ∇𝑓:

• The gradient should be normalized to a unit vector;

• For one dimensional problems,

𝑥3 =
1

2

𝑓0(𝑥1
2 − 𝑥2

2) + 𝑓1(𝑥2
2 − 𝑥0

2) + 𝑓2(𝑥0
2 − 𝑥1

2)

𝑓0(𝑥1 − 𝑥2) + 𝑓1(𝑥2 − 𝑥0) + 𝑓2(𝑥0 − 𝑥1)

 Where 𝑓𝑖 = 𝑓(𝑥𝑖)

Now, 𝑓𝑖 = 𝑓(𝒙𝒊), 𝑥𝑗
2 is replaced by the dot product of 𝐱𝐣, or (𝐱𝐣)

𝑻
𝐱𝐣 and 𝑥𝑖 − 𝑥𝑗 is replaced by the

second norm of 𝐱𝐢 − 𝐱𝐣.

• x3 is 𝑥3 times the normalized gradient

Applying Newton’s method along ∇𝑓:

• The iteration scheme for one-dimensional problems is,

𝑥𝑖+1 = 𝑥𝑖 −
𝑓′(𝑥𝑖)

𝑓′′(𝑥𝑖)

• Extending it to multi-dimension,

𝐱𝐢+𝟏 = 𝐱𝐢 − 𝐻−1∇𝑓

Where 𝐻 and ∇𝑓 are evaluated at 𝑥𝑖.

Graphically, consider a 2D problem.

𝑓(𝑥) = (𝑥1 − 1)2 + (𝑥2 − 3)2 − 1.8(𝑥1 − 1)(𝑥2 − 3)

Initial guess 𝐱𝟎 = [0.75.−1.25]𝑇 and ∆= 0.1.

Golden-section search

17 rounds of gradient computation, the converged solution is:

𝒙∗ = [0.999992, 2.999992]𝑇

𝑓(𝒙∗) = 5.752007−11

cputime = 0.046875 𝑠𝑒𝑐.

Newton’s method

1 round of gradient computation, the converged solution is:

𝒙∗ = [1, 3]𝑇

𝑓(𝒙∗) = 0

cputime = 0.031250 𝑠𝑒𝑐.

Example: the Rosenbrock function (a.k.a. the banana function) is a “standard” test problem on the

performance of any unconstrained optimization solver.

𝑓(𝒙) = ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)

2
+ (𝑥𝑖 − 1)2]

𝑚

𝑖=1

𝑚 is an integer. The dimension of the problem is 𝑚 + 1.

Set 𝑚 = 4, initial guess of 𝑥0 = [0, 0, 0, 0, 0]𝑇, and ∆= 0.1.

Golden-section search:

4214 rounds of gradient computation, cputime = 0.516525 s

𝒙∗ =

(

0.999665
0.999331
0.998657
0.997312
0.994615)

, 𝑓(𝒙∗) = 9.46628110−6

Newton’s method:

2 rounds of gradient computation, cputime = 0.3125 s

𝒙∗ =

(

1
1
1
1
1)

, 𝑓(𝒙′) = 0

Part 4: Optimization (V)
A multi-dimensional constrained optimization is one that, in mathematical terms,

min
𝒙

𝑓(𝒙) 𝑓𝑜𝑟 𝒙 ∈ 𝑹𝒏

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐹𝑗(𝒙) = 𝑎𝑗 , 𝑗 = 1, 2, … , 𝑚1

 𝐺𝑘(𝒙) ≤ 𝑏𝑘, 𝑘 = 1, 2, … , 𝑚2

 𝑎𝑛𝑑 𝑼𝑳 ≤ 𝒙 ≤ 𝑼𝑷

Where 𝑓(𝒙) is a continuous real-valued function.

The bounds can be expressed as inequalities such that the constraints are either equality-type or

inequality-type.

Linear Programming:

If 𝑓, 𝐹𝑗 and 𝐺𝑘 are linear functions, that is,

𝑓(𝒙) = 𝒄𝑇𝒙

𝑭(𝒙) = 𝑨𝒙 − {𝑎𝑗} = 𝟎

𝑮(𝒙) = 𝑩𝒙 − {𝑏𝑘} ≤ 𝟎

𝒙 ≥ 𝟎

Where c is a vector, and A and B are matrices), the optimization problem can and should be solved by

linear programming as it is the most effective method for such optimizations.

Quadratic Programming:

If 𝑓 is a quadratic function, while 𝐹𝑗 and 𝐺𝑘 remain linear, that is:

𝑓(𝒙) = 𝒄𝑇𝒙 +
1

2
𝒙𝑇𝑸𝒙

𝐹(𝒙) = 𝑨𝒙 − {𝑎𝑗} = 0

𝐺(𝒙) = 𝑩𝒙 − {𝑏𝑘} ≤ 0

𝒙 ≥ 𝟎

 Where 𝒄 is a vector, 𝑸, 𝑨 and 𝑩 are matrices, and 𝑸 is positive definite o rnegative definite), the

optimization problem can and should be solved by quadratic programming as it is the most effective

method for such optimizations.

General multi-dimensional nonlinear constrained optimization:

• Method of Lagrange multipliers

• Method of penalty functions

• Exterior penalty

• Interior penalty

Method of Lagrange multipliers:

Construct the Lagrange function as follows:

ℒ(𝒙, 𝝀, 𝝁) = 𝑓(𝒙) + ∑ 𝜆𝑗(𝐹𝑗(𝒙) − 𝑎𝑗)

𝑚1

𝑗=1

+ ∑ 𝜇𝑘(𝐺𝑘(𝒙) − 𝑏𝑘)

𝑚2

𝑘=1

Where 𝝀 and 𝝁 contain the 𝜆𝑗 and 𝜇𝑘, respectively. 𝒙 is known as the primal variables, while 𝝀 and 𝝁 are

the dual variables.

The Lagrange function transforms the constrained optimization problem into an unconstrained one but

increases the dimension to 𝑛 + 𝑚1 + 𝑚2.

Mathematically, the duality theorem stipulates the conditions on the optimal solution.

For not-too vigorous take at the theorem:

1. Zero gradient: ∇ℒ = 𝟎, or
𝜕ℒ

𝜕𝒙
= 𝟎,

𝜕ℒ

𝜕𝝀
= 𝟎 and

𝜕ℒ

𝜕𝝁
= 𝟎

2. Constraints are met.

3. 𝝀𝑇(𝑨𝒙 − 𝒂) = 0, 𝝁𝑻(𝑩𝒙 − 𝒃) = 0, with 𝝀 ≥ 𝟎, and 𝝁 ≥ 𝟎

Example: minimizing the following:

𝑓(𝑥) = (𝑥1 − 1)2 + (𝑥2 − 3)2 − 1.8(𝑥1 − 1)(𝑥2 − 3)

Subject to 𝑥1 = 1 and 𝑥1 − 𝑥2 ≥ 0

The Lagrange is:

ℒ(𝒙, 𝝀, 𝝁) = (𝑥1 − 1)2 + (𝑥2 − 3)2 − 1.8(𝑥1 − 1)(𝑥2 − 3) + 𝜆(𝑥1 − 1) + 𝜇(𝑥2 − 𝑥1)

Applying Condition 1:

𝑥1 = 1, 𝑥2 = 1, 𝜆 = 0.4, 𝜇 = 0.4

Check with Condition 2:

𝑥1 = 1, 𝑡𝑟𝑢𝑒
𝑥1 − 𝑥2 ≥ 0, 𝑡𝑟𝑢𝑒

Check with Condition 3:

𝝀𝑇(𝑨𝒙 − 𝒂) = 0, 𝑡𝑟𝑢𝑒
𝝁𝑇(𝑩𝒙 − 𝒃) = 0, 𝑡𝑟𝑢𝑒
𝝀 ≥ 𝟎, 𝑡𝑟𝑢𝑒
𝝁 ≥ 𝟎, 𝑡𝑟𝑢𝑒

Steepest-descent with Newton’s method yields:

𝒙∗ = [1, 1, 0.4, 4]𝑇 , 𝑓(𝒙∗) = 4

Method of exterior penalty functions:

Feasible region means the region, within the 𝑛 −dimensional space, where all constraints are met.
Constraints define the boundaries of the feasible region.

The exterior penalty functions method is applicable when the iteration points 𝒙𝑖 are outside the feasible
region.

The method works well with both the equality-type and inequality-type of constraints.

As to what penalty functions to use, it is heuristic.

Example: Minimizing the following:

𝑓(𝑥) = (𝑥1 − 1)2 + (𝑥2 − 3)2 − 1.8(𝑥1 − 1)(𝑥2 − 3)

Subject to 𝑥1 = 1, and 𝑥1 − 𝑥2 ≥ 0.

The penalty functions may be:

For 𝑥1 − 𝑥2 ≥ 0: Φ(𝒙) = (𝑥1 − 𝑥2)𝑝

For 𝑥1 = 1: 𝜓(𝒙) = (𝑥1 − 1)𝑞

With 𝑝 = 2, 4, … and 𝑞 = 2, 4, …

Then a Lagrange function is formed, say,

ℒ(𝒙; 𝜆, 𝜇) = 𝑓(𝒙) + 𝜆𝜓(𝒙) + 𝜇𝜙(𝒙)

Which is optimized, treating 𝜆, 𝜇 as parameters of increasing values.

Setting 𝑝 = 4, 𝑞 = 2, 𝜆 = 1, 𝜇 = 100, 𝒙𝟎 = [0, 1]𝑇 , ∆= 0.1

Using steepest descent + Golden-section search.

𝒙∗ =

1.149322837308608

1.356474098102844

𝓛∗ =

3.371661647463247

𝒇∗ =

3.165223411499403

Now, 𝜆 = 10000, 𝜇 = 10000

𝒙∗ =

1.000018513959687

1.046050470120337

𝓛∗ =

3.862886413499447

𝒇∗ =

3.817983881276812

Method of interior penalty functions:

The interior penalty functions method is applicable if and only if the solutions points 𝑥𝑖 are within the

feasible region.

The method works better with inequality-type of constraints.

The penalty functions are to force the points to move away from the boundaries. They are gence known

as the barrier functions.

Again, the choices of penalty functions are heuristic.

Example: Minimizing the following:

𝑓(𝑥) = (𝑥1 − 1)2 + (𝑥2 − 3)2 − 1.8(𝑥1 − 1)(𝑥2 − 3)

Subject to 𝑥1 − 𝑥2 ≥ 0.

The interior penalty functions may be:

Φ(𝑥) =
1

(𝑥1 − 𝑥2)2

Or

Φ(𝑥) = − ln(𝑥1 − 𝑥2)

Note that both functions approach +∞ when 𝑥1 approaches 𝑥2 while meeting the constraint.

The Lagrange function is then formed,

ℒ(𝑥; 𝜇) = 𝑓(𝑥) + 𝜇Φ(𝑥)

Which is optimized, treating 𝜇 as a parameter of decreasing values.

Summary:

• The method of penalty functions does not yield exact solutions.

• Optimization performance is heavily dependent on the choices of penalty functions and penalty

parameters.

• Hessians may become ill-conditioned due to large penalty parameters.

• The method of Lagrange multipliers gives rise to exact results (or as close to exact as possible). The

dimension of the problem is increased from 𝑛 to 𝑛 + 𝑚1 + 𝑚2.

Visual Explanation:

Part 5: Finite Difference Method
This part concerns itself with finite difference method as a numerical tool for solving differential

equations (DEs).

The Big O Notation

In mathematics, the big O notation, such as O(𝛿𝑛), is used to indicate the order of accuracy or order of

error. For example, if 𝑛 = 2, one says that it is second order accurate.

Overview

Finite difference method comes with explicit and implicit versions, and the combinations of as well.

Explicit schemes are easy to use but the stability conditions must be adhered to. Explicit schemes are in

general less accurate than the implicit ones.

Incorporating boundary conditions may be tedious but is the key to success.

Finite Difference Method for One-Dimensional DEs

Here, dimensions refer to spatial dimension. For one-dimensional DEs, the spatial coordinator is 𝑥. The

temporal “coordinate” may come into the picture, depending on the DE.

Finite Difference for first-order derivatives

Forward difference:

𝑓′(𝑥) =
𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)

∆𝑥
+ 𝑂(∆𝑥)

Backward difference:

𝑓′(𝑥) =
𝑓(𝑥) − 𝑓(𝑥 + ∆𝑥)

∆𝑥
+ 𝑂(∆𝑥)

Central difference (first order):

𝑓′(𝑥) =
𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥 − ∆𝑥)

2∆𝑥
+ 𝑂(∆𝑥2)

The central difference is one-order more accurate than the forward or backward difference.

Finite Difference (FD) for second-order derivatives

Central difference (second order):

𝑓′′(𝑥) =
𝑓(𝑥 + ∆𝑥) − 2𝑓(𝑥) + 𝑓(𝑥 + ∆𝑥)

∆𝑥2
+ 𝑂(∆𝑥2)

That is, the error is of the order ∆𝑥2.

The Hear Equation

𝜕𝑢

𝜕𝑡
= 𝜅

𝜕2𝑢

𝜕𝑥2
, 𝑥 ∈ [0, 𝐿], 𝑡 ≥ 0

Assume forward difference for the temporal domain and central difference for the spatial domain, then

the heat equation is discretized as:

𝑢(𝑥, 𝑡 + ∆𝑡) − 𝑢(𝑥, 𝑡)

∆𝑡
= 𝜅

𝑢(𝑥 + ∆𝑥, 𝑡) − 2𝑢(𝑥, 𝑡) + 𝑢(𝑥 − ∆𝑥, 𝑡)

∆𝑥2
+ 𝑂(∆𝑡, ∆𝑥2)

The spatial domain is divided into N even intervals such that 𝑥𝑛 = 𝑛∆𝑥 with 𝑛 = 0, 1, 2, … , 𝑁

The temporal domain is discretized by ∆𝑡 such that 𝑡𝑘 = 𝑘∆𝑡, where 𝑘 = 0, 1, 2, … , 𝐾.

Denoting 𝑢(𝑥𝑛, 𝑡𝑘) by 𝑢𝑛
𝑘, the above equation becomes, neglecting the big O,

𝑢𝑛
𝑘+1 − 𝑢𝑛

𝑘

∆𝑡
= 𝜅

𝑢𝑛+1
𝑘 − 2𝑢𝑛

𝑘 + 𝑢𝑛−1
𝑘

∆𝑥2

Solving for 𝑢𝑛
𝑘+1 ,

𝑢𝑛
𝑘+1 = 𝑢𝑛

𝑘 + 𝜅
∆𝑡

∆𝑥2 (𝑢𝑛+1
𝑘 − 2𝑢𝑛

𝑘 + 𝑢𝑛−1
𝑘)

This is the iteration scheme to go from time step 𝑘 to time step 𝑘 + 1.

Stability condition of the scheme:

𝜅∆𝑡

∆𝑥2
≤

1

2

Dirichlet Boundary Conditions

𝑢(0, 𝑡) = 𝐴, 𝑢(𝐿, 𝑡) = 𝐵

After initial condition: 𝑢(𝑥, 0) = 𝑓(𝑥)

Initial condition: 𝑢𝑛
0 = 𝑓(𝑥𝑛) where 𝑛 = 0, 1, 2, … , 𝑁.

Boundary conditions: 𝑢0
𝑘 = 𝐴, 𝑢𝑁

𝑘 = 𝐵 for all 𝑘 > 0.

The iteration steps:

Assign initial condition 𝑢𝑛
0

for 𝑘 = 0, … , 𝐾 − 1

𝑢0
𝑘+1 ← 𝐴

𝑢𝑁
𝑘+1 ← 𝐵

for 𝑛 = 1, … , 𝑁 − 1

 𝑢𝑛
𝑘+1 ← 𝑢𝑛

𝑘 + 𝜅
∆𝑡

∆𝑥2
 (𝑢𝑛+1

𝑘 − 2𝑢𝑛
𝑘 + 𝑢𝑛−1

𝑘)

end

end

Neumann Boundary Conditions

𝜕𝑢

𝜕𝑥
(0, 𝑡) = 𝐶,

𝜕𝑢

𝜕𝑥
(𝐿, 𝑡) = 𝐷

And initial condition: 𝑢(𝑥, 0) = 𝑓(𝑥)

Using central difference on
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑥
(0, 𝑡) =

𝑢(∆𝑥, 𝑡) − 𝑢(∆𝑥, 𝑡)

2∆𝑥
=

𝑢1
𝑘 − 𝑢−1

𝑘

2∆𝑥
= 𝐶

The mesh point 𝑥 = −∆𝑥 does not exist. However, 𝑢−1
𝑘 can be determined as follows

𝑢−1
𝑘 = 𝑢1

𝑘 − 2∆𝑥𝐶

∴ 𝑢0
𝑘+1 = 𝑢0

𝑘 + 𝜅
∆𝑡

∆𝑥2 (−2𝑢0
𝑘 + 2𝑢1

𝑘 − 2∆𝑥𝐶)

By the same token, 𝑥 = 𝐿 + ∆𝑥 does not exist but

𝑢𝑁+1
𝑘 = 𝑢𝑁−1

𝑘 + 2∆𝑥𝐷

∴ 𝑢𝑁
𝑘+1 = 𝑢𝑁

𝑘 + 𝜅
∆𝑡

∆𝑥2 (2𝑢𝑁−1
𝑘 − 2𝑢𝑁

𝑘 + 2∆𝑥𝐷)

The iteration scheme remains the same as with Dirichlet boundary conditions.

Mixed boundary conditions; Robin boundary conditions

Apply the principles shown above.

Example: 𝜅 = 0.835, 𝐿 = 10, 𝑁 = 10; ∆𝑡 = 0.5 𝑠, 𝑡 ∈ [0, 10]

𝑢(0, 𝑡) = 100, 𝑢(𝐿, 𝑡) = 50, 𝑎𝑛𝑑 𝑢(𝑥, 0) = 0

Note these boundary conditions are maintained at all times.

This example is available from “Numerical Methods for Engineers”, Chapter 30. An excel sheet will

accompany this file. The sheet has results computed with ∆𝑥 = 2, ∆𝑡 = 0.1 for 5 time steps.

Stability condition:

𝜅∆𝑡

∆𝑥2
=

(0.835)(0.5)

12
= 0.4175 ≤

1

2

Example: 𝜅 = 0.835, 𝐿 = 10, 𝑁 = 10; ∆𝑡 = 0.5 𝑠, 𝑡 ∈ (0, 10]

𝜕𝑢

𝜕𝑥
(0, 𝑡) = 0 𝑜𝑟 1, 𝑢(𝐿, 𝑡) = 85, 𝑎𝑛𝑑 𝑢(𝑥, 0) = 50

Stability condition:

𝜅∆𝑡

∆𝑥2
=

(0.835)(0.5)

12
= 0.4175 ≤

1

2

For assignment (wave equation):

doThe Wave Equation

𝜕2𝑢

𝜕𝑡2
= 𝑐2

𝜕2𝑢

𝑑𝑥2
, 𝑥 ∈ [0, 𝐿], 𝑡 ≥ 0

Boundary conditions: Dirichlet, Neumann, Mixed or Robin.

For example:

𝑢(0, 𝑡) = 𝐴, 𝑢(𝐿, 𝑡) = 𝐵

Initial conditions:

𝑢(𝑥, 0) = 𝑓(𝑥),
𝜕𝑢

𝑑𝑡
(𝑥, 0) = 𝑔(𝑥)

Applying central difference spatially and temporally,

𝜕2𝑢

𝑑𝑡2
= 𝑐2

𝜕2𝑢

𝑑𝑥2

Becomes:

𝑢𝑛
𝑘+1 − 2𝑢𝑛

𝑘 + 𝑢𝑛
𝑘−1

∆𝑡2
= 𝑐2

𝑢𝑛+1
𝑘 − 2𝑢𝑛

𝑘 + 𝑢𝑛−1
𝑘

∆𝑥2
+ 𝑂(∆𝑡2, ∆𝑥2)

Neglecting big O, and solving for 𝑢𝑛
𝑘+1:

𝑢𝑛
𝑘+1 = 2𝑢𝑛

𝑘 − 𝑢𝑛
𝑘−1 + 𝑐2

∆𝑡2

∆𝑥2
 (𝑢𝑛+1

𝑘 − 2𝑢𝑛
𝑘 + 𝑢𝑛−1

𝑘)

Note that 2 time-steps, 𝑘 and 𝑘 − 1, must be determined before the above iteration scheme can be

applied.

Stability conditions:

𝑐
∆𝑡

∆𝑥
≤ 1

Boundary conditions: dealt with the same way as the Heat Equation.

Initial conditions: 𝑢(𝑥, 0) = 𝑓(𝑥) and
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝑔(𝑥) are discretized in the temporal domain:

𝑢𝑛
0 = 𝑓(𝑥𝑛)

𝑢(𝑥, 0 + ∆𝑡) − 𝑢(𝑥 − ∆𝑡)

2∆𝑡
= 𝑔(𝑥)

The latter leads to:

𝑢𝑛
−1 = 𝑢𝑛

1 − 2∆𝑡𝑔(𝑥𝑛)

The iteration scheme:

𝑢𝑛
𝑘+1 = 2𝑢𝑛

𝑘 − 𝑢𝑛
𝑘−1 + 𝑐2

∆𝑡2

∆𝑥2
(𝑢𝑛+1

𝑘 − 2𝑢𝑛
𝑘 + 𝑢𝑛−1

𝑘)

When 𝑘 = 0 becomes:

𝑢𝑛
1 = 𝑢𝑛

0 + ∆𝑡𝑔(𝑥𝑛) + 𝑐
2
∆𝑡2

2∆𝑥2
(𝑢𝑛+1

0 − 2𝑢𝑛
0 + 𝑢𝑛−1

0)

The iteration steps: (for Dirichlet boundary conditions) assign initial condition 𝑢𝑛
0:

𝑢0
1 ← 𝐴

𝑢𝑁
1 ← 𝐵

for 𝑛 = 1,… ,𝑁 − 1

 𝑢𝑛
1 ← 𝑢𝑛

0 + ∆𝑡𝑔(𝑥𝑛) + 𝑐
2 ∆𝑡

2

∆𝑥2
(𝑢𝑛+1

0 − 2𝑢𝑛
0 + 𝑢𝑛−1

0)

end

for 𝑘 = 1,… , 𝐾 − 1
𝑢0
1 ← 𝐴
𝑢𝑁
1 ← 𝐵

 for 𝑛 = 1,… ,𝑁 − 1

 𝑢𝑛
𝑘+1 ← 2𝑢𝑛

𝑘 − 𝑢𝑛
𝑘−1 + 𝑐2

∆𝑡2

∆𝑥2
(𝑢𝑛+1

𝑘 − 2𝑢𝑛
𝑘 + 𝑢𝑛−1

𝑘)

end
end

Example

𝑐 = 3

𝐿 = 1

𝑁 = 10

∆𝑡 = 0.025 𝑠𝑒𝑐

𝑡 ∈ [0 ,10]

𝑢(0, 𝑡) = 0, 𝑢(𝐿, 𝑡) = 0

𝑢(𝑥, 0) = 𝑓(𝑥) = 𝑡ℎ𝑒 𝑏𝑙𝑢𝑒 𝑙𝑖𝑛𝑒

𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝑔(𝑥) = 𝑓(𝑥)

An excel sheet will accompany this file. The sheet has results computed with ∆𝑥 = 0.1, ∆𝑡 = 0.025 for

10 time-steps.

Check against stability condition:

𝑐
∆𝑡

∆𝑥
= 3

0.025

0.1
= 0.75 ≤ 1

The Poisson’s Equation

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
= −𝐹(𝑥, 𝑦), 𝑥 ∈ [0, 𝑎], 𝑦 ∈ [0, 𝑏]

If 𝐹(𝑥, 𝑦) = 0, the Poisson’s equation becomes the Laplace’s equation. They are to describe the

diffusion (or spread) of 𝐹(𝑥, 𝑦) (which may be, for example, a heat source, an electric charge, etc.) For

the Lapalce’s equation, one investigates the diffusion of boundary conditions.

Boundary conditions: Dirichlet, Neumann, Mixed or Robin.

Focusing on the Dirichlet boundary conditions:

𝑢(𝑥, 0) = 𝑓1(𝑥), 𝑢(𝑥, 𝑏) = 𝑓2(𝑥)

𝑢(0, 𝑦) = 𝑔1(𝑦), 𝑢(𝑎, 𝑦) = 𝑔2(𝑦)

Discretizing the rectangular spatial domain so that the node points (mesh points) are:

𝑥𝑛 = 𝑛∆𝑥, 𝑛 = 0, 1, … ,𝑁

𝑦𝑚 = 𝑚∆𝑦, 𝑚 = 0, 1,… ,𝑀

Assuming central for the second derivatives, the Poisson’s equation:

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
= −𝐹(𝑥, 𝑦)

becomes, denoting 𝑢(𝑥𝑛, 𝑦𝑚) by 𝑢𝑛,𝑚

𝑢𝑛+1,𝑚 − 2𝑢𝑛,𝑚 + 𝑢𝑛−1,𝑚
∆𝑥2

+
𝑢𝑛,𝑚+1 − 2𝑢𝑛,𝑚 + 𝑢𝑛,𝑚−1

∆𝑦2
+ 𝑂(∆𝑥2, ∆𝑦2) = −𝐹(𝑥, 𝑦)

Defining 𝛽 = ∆𝑥/∆𝑦, neglecting the big O, and solving for 𝑢𝑛,𝑚:

𝑢𝑛,𝑚 =
1

2(1 + 𝛽2)
[𝑢𝑛+1,𝑚 + 𝑢𝑛−1,𝑚 + 𝛽

2𝑢𝑛,𝑚+1 + 𝛽
2𝑢𝑛,𝑚−1 + ∆𝑥

2𝐹(𝑥, 𝑦)]

The problem with the above approach is, 𝑢𝑛+1,𝑚 𝑎𝑛𝑑 𝑢𝑛,𝑚+1 are unknown. The scheme is therefore

implicit.

There are a number of approaches.

• Direct Solution

• Jacobi Iteration

• Successive Over Relaxion (SOR)

• …

Direct Solution:

Put the (𝑀 − 1) ∗ (𝑁 − 1) unknowns in a vector U;

Each equation of:

𝑢𝑛,𝑚 =
1

2(1 + 𝛽2)
[𝑢𝑛+1,𝑚 + 𝑢𝑛−1,𝑚 + 𝛽

2𝑢𝑛,𝑚+1 + 𝛽
2𝑢𝑛,𝑚−1 + ∆𝑥

2𝐹(𝑥𝑛, 𝑦𝑚)]

is a row in a matrix 𝑨 and an element in vector 𝑹;

𝑨 ∙ 𝑼 = 𝑹 is formed;

𝑼 is then solved.

Jacobi Iteration:

𝑢𝑛,𝑚
(𝑘+1)

=
1

2(1 + 𝛽2)
[𝑢𝑛+1,𝑚
(𝑘)

+ 𝑢𝑛−1,𝑚
(𝑘)

+ 𝛽2𝑢𝑛,𝑚+1
(𝑘)

+ 𝛽2𝑢𝑛,𝑚−1
(𝑘)

+ ∆𝑥2𝐹(𝑥𝑛, 𝑦𝑚)]

Step 1:

Boundary nodes are assigned boundary conditions;

𝑘 = 0;

Interior nodes are assigned zero value, 𝑢𝑛,𝑚(0) ← 0;

𝒖𝑜𝑙𝑑 ← 𝒖(0);

Step 2:

Compute all interior nodes’ values by evaluating 𝑢𝑛,𝑚
(𝑘+1)

;

Compute ∆= ||𝒖(𝑘+1) − 𝒖𝑜𝑙𝑑||;

Step 3:

If ∆ ≤ tolerance, 𝐮old ← 𝐮(𝑘+1), 𝑘 ← 𝑘 + 1, go back to Step 2.

Successive Over Relaxation (SOR):

Point SOR:

From:

𝑢𝑛,𝑚
(𝑘+1)

=
1

2(1 + 𝛽2)
[𝑢𝑛+1,𝑚
(𝑘)

+ 𝑢𝑛−1,𝑚
(𝑘) + 𝛽2𝑢𝑛,𝑚+1

(𝑘)
+ 𝛽2𝑢𝑛,𝑚−1

(𝑘)
+ ∆𝑥2𝐹(𝑥𝑛, 𝑦𝑚)]

The SOR scheme is:

𝑢𝑛,𝑚
(𝑘+1)

= (1 − 𝑤)𝑢𝑛,𝑚
(𝑘)

+
𝑤

2(1 + 𝛽2)
[𝑢𝑛+1,𝑚
(𝑘)

+ 𝑢𝑛−1,𝑚
(𝑘)

+ 𝛽2𝑢𝑛,𝑚+1
(𝑘)

+ 𝛽2𝑢𝑛,𝑚−1
(𝑘)

+ ∆𝑥2𝐹(𝑥𝑛, 𝑦𝑚)]

Where 1 < 𝑤 < 2 for over relaxation, and 0 < 𝑤 < 1 for under relaxation.

What is the best value to use for 𝑤? It depends.

There is also Line SOR.

Example:

Introduction

1.

{

Finite Element Method (FEM)
(𝑓𝑜𝑟 𝑎𝑐𝑎𝑑𝑒𝑚𝑖𝑎,

 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟𝑠…)

Finite Element Analysis (FEA)

(𝑓𝑜𝑟 𝑢𝑠𝑒𝑟𝑠)

2. What is FEM/FEA?

Physically (physical systems’ perspective)

The continuous physical model is divided into finite pieces (a.k.a. the elements), and the laws of

nature/physics/chemistry are applied. The results are subsequently recombined to represent the

continuum.

Mathematically,

The differential equation representing the system is converted into a variational form, which is

approximated by the combination of a finite set of trial functions (a.k.a. shape functions).

It has been proven that ,as long as the elements meet certain conditions, then as the elements get

smaller and smaller, the finite element result will converge to the “exact” solution.

4. Steps in FEA:

Discretization (Pre-processing):

• Divide the physical domain into pieces (or elements whose attributes are appropriate for the

problem at hand)

• Constrain the mesh by appropriate boundary conditions

• Apply loads (forces, moments, temperature, pressure, …)

Solution:

• Solve: the system of equations

𝑒. 𝑔. [𝐾]{𝑈} = {𝐹}

 {𝑈} = [𝐾]−1{𝐹}

Post-processing:

• Calculate: displacements, strains, stresses, and plot results

5. Attributes of an Element:

5.1) Dimensionality:

• 1D

• 2D

• 3D

5.2) Associated with certain material and certain geometric properties such as:

• Cross-sectional area (A)

• Moments of inertia (𝐼𝑥, 𝐼𝑦 , 𝐼𝑥𝑦, 𝐽)

• Thickness (𝑡)

• Modulus of elasticity (𝐸)

• Poisson’s ratio (𝜈)

5.3) A number of nodes

Each node is associated with a number of DOFs (physical unknowns) such as:

• Temperature (1 DOF)

• Displacement (1 or 2 or 3 DOFs)

• Velocity (1 or 2 or 3 DOFs)

• …

5.4) DOFs of an element = (DOFs of a node) x (number of nodes)

5.5) Interpolation within Element

In FEA, DOFs at the nodes are the unknowns to be solved for.

Between nodes (within element), the unknown variable is interpolated.

The interpolation function is known as the shape function.

Shape function is a key feature of FEM; its construct/form, has significant effect on the quality of the

solution.

In general, the more nodes that are used, the higher the degree of interpolation, the more accurate the

element; but the number of DOFs of the element is increased.

Lesson #1

Not all elements are created equal;

Some elements are better than others;

• More accurate

• Less sensitive to distortion of the element’s shape

A given element does not have equal accuracy in all situations;

Consider the following diagram:

Formal (General) Approach

1. Available principles (methods)

a. Solid mechanics (structural mechanics)

Variational methods

Virtual work

b. Field problems (e.g. heat transfer, fluid flow, electric potential, multi-physics and so on)

Weighted residual methods

{

Galerkin′s
collocation
least squares
subdomain weighted residual
 …

2. Variational methods (principles)

Variational principle is a principle used to find a function which minimizes or maximizes a physical

quantity that depends upon the function to be found.

Single variable calculus:

 Function is given,

1st order derivative

2nd order derivative

Variational principles:

Boundary conditions and loading are known (e.g. a circular plate, being clamped along outer

edge, and subject to a central load);

 The unknown function is the deflection 𝓌(𝑟, 𝜃);

 Physical quantity: work, energy;

3. The Principle of Minimum Potential Energy

Commonly used in solid mechanics

Applicable to linear elastic analyses only;

Been extended to many other “non-structural” applications.

Statement of the principle:

Of all the geometrically possible shapes that a body can assume, the true one, corresponding ot the

satisfaction of stable equilibrium of the body, is identified by the minimum value of the total

potential energy.

2 key issues:

• total potential energy

• finding a function giving a minimum value of energy

 Total potential energy:

𝜋𝑝 = 𝑢 + Ω

 𝑢: strain energy due to deformation

Ω: potential energy of external forces (including body forces, surface loads, and concentrated

forces/moment, etc.)

Ω = −(work done by external forces)

Finding a function that minimizes 𝜋𝑝 by variational calculus.

4. The Principles of Momentum Potential energy as Applied to an Elastic Body

𝜋𝑝 = ∫
1

2
{𝜖)𝑇[𝐸]{𝜖} 𝑑𝑉

𝑉

−∫
1

2
{𝑢⏟)

𝑇
{𝐵𝑓} 𝑑𝑉

𝑉

−∫
1

2
{𝑢̅)𝑇{𝜙} 𝑑𝑆

𝑆

−{𝑢)𝑇{𝑝}

Where {𝜖} and {𝜎} are strain and stress vectors, respectively.

[𝐸] is the elastic matrix, such that:

{𝜎} = [𝐸]{𝜖}

{𝑃}: concentrated forces/moments vector

{𝜙}: surface load vector

{𝐵𝑓}: body force components vector

{𝑢}: displaces at nodes where {𝑝} is applied.

{𝑢̅}: displacement evaluated on the surface of the body where {𝜙} is applied

{𝑢⏟}: displacement within the body

5. The Finite Element Form of the Principle of Minimum Potential Energy

The volume of the body is divided into NE elements, each having a volume of 𝑉𝑒

Similarly, 𝑆, the surface, is divided based on element formation

∴ 𝜋𝑝 =∑∫
1

2
{𝜖)𝑇[𝐸]{𝜖} 𝑑𝑉𝑒

𝑉𝑒

𝑁𝐸

𝑗=1

−∑∫
1

2
{𝑢⏟)

𝑇
{𝐵𝑓} 𝑑𝑉𝑒

𝑉𝑒

𝑁𝐸

𝑗=1

−∑∫
1

2
{𝑢̅)𝑇{𝜙} 𝑑𝑆𝑒

𝑆𝑒

𝑁𝐸

𝑗=1

−{𝑢)𝑇{𝑝}

Within an element,

{𝑢⏟} = [𝑁]{𝑢}

[𝑁]: shape function matrix

Then {𝜖} can be written as, symbolically

{𝜖} = [𝜕] {𝑢⏟}

 = [𝜕][𝑁]{𝑢}

 = [𝐵]{𝑢}

[𝐵]: strain-displacement matrix

[𝜕]: a matrix of partial differentiation operators

Eqn. (1) becomes:

∴ 𝜋𝑝 =∑∫
1

2
{𝑢}𝑇[𝐵]𝑇[𝐸][𝐵]{𝑢} 𝑑𝑉𝑒

𝑉𝑒

𝑁𝐸

𝑗=1

−∑∫
1

2
{𝑢)𝑇[𝑁]𝑇{𝐵𝑓} 𝑑𝑉𝑒

𝑉𝑒

𝑁𝐸

𝑗=1

−∑∫
1

2
{𝑢)𝑇[𝑁̅]𝑇{𝜙} 𝑑𝑆𝑒

𝑆𝑒

𝑁𝐸

𝑗=1

−{𝑈)𝑇{𝑝}

Where [𝑈] = ∑{𝑢} (symbolically)

And [𝑁̅] is [𝑁] but evaluated over 𝑆𝑒

Minimization:
𝜕𝜋𝑝

𝜕{𝑈}
= {0}

Finally:

(∑∫ [𝐵]𝑇[𝐸][𝐵]𝑑𝑉𝑒

𝑉𝑒

𝑁𝐸

𝑗=1

) ∙ {𝑈}

= {𝑃} +∑∫ [𝑁]𝑇[𝐵𝑓] 𝑑𝑉𝑒

𝑉𝑒

𝑁𝐸

𝑗=1

+∑∫ [𝑁̅]𝑇[𝜙] 𝑑𝑆𝑒

𝑆𝑒

𝑁𝐸

𝑗=1

In Eqn. (2):

∫ [𝐵]𝑇[𝐸][𝐵]𝑑𝑉𝑒

𝑉𝑒

= [𝑘]

The element stiffness matrix

∑[𝑘]

𝑁𝐸

𝑗=1

= [𝐾]

The structure stiffness matrix

∑∫ [𝑁]𝑇[𝐵𝑓] 𝑑𝑉𝑒

𝑉𝑒

𝑁𝐸

𝑗=1

+∑∫ [𝑁̅]𝑇[𝜙] 𝑑𝑆𝑒

𝑆𝑒

𝑁𝐸

𝑗=1

= {𝑓𝑒𝑞}

The element equivalent nodal force vector

∑ [𝑓𝑒𝑞]
𝑁𝐸
𝑗=1 = [𝐹𝑒𝑞]

The structure equivalent nodal force vector

Eqn. (2) can be further written as:

[𝐾]{𝑈} = {𝑃} + {𝑓𝑒𝑞}

4-Noded Quadrilateral Element (Q4)

4 nodes, 1, 2, 3, and 4

 {

counter − clockwise
1 in the 3rd quadrant
1 − 2 defined local x
2 − 3 defines local y

2DOFs per node:

𝑢 − displacement in the 𝑥 −direction

𝑣 −displacement in the 𝑦 −direction

8DOFs per element:

∴ [𝑘]8x8 {𝑓𝑒𝑞}8x1

Element nodal DOFs:

{𝑢}𝑒 = [𝑢1 𝑣1 𝑢2 𝑣2 𝑢3 𝑣3 𝑢4 𝑣4]
𝑇

Within the element, any point (𝑥, 𝑦) will have displacements.

𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦)

𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) are related to {𝑢}𝑒 via shape functions.

𝑁1(𝑥, 𝑦), 𝑁2(𝑥, 𝑦), 𝑁3(𝑥, 𝑦), 𝑁4(𝑥, 𝑦)

Such that,

𝑢(𝑥, 𝑦) =∑𝑁𝑖(𝑥, 𝑦)𝑢𝑖

4

𝑖=1

𝑣(𝑥, 𝑦) =∑𝑁𝑖(𝑥, 𝑦)𝑣𝑖

4

𝑖=1

Putting into matrix form:

{
𝑢
𝑣
} = [

𝑁1 0 𝑁2 0 𝑁3 0 𝑁4 0
0 𝑁1 0 𝑁2 0 𝑁3 0 𝑁4

]
2x8

{𝑢}𝑒

Where:

𝑁1(𝑥, 𝑦) =
1

4𝑎𝑏
(𝑎 − 𝑥)(𝑏 − 𝑦)

𝑁2(𝑥, 𝑦) =
1

4𝑎𝑏
(𝑎 + 𝑥)(𝑏 − 𝑦)

𝑁3(𝑥, 𝑦) =
1

4𝑎𝑏
(𝑎 + 𝑥)(𝑏 + 𝑦)

𝑁4(𝑥, 𝑦) =
1

4𝑎𝑏
(𝑎 − 𝑥)(𝑏 + 𝑦)

Next, [𝐵] = [𝜕][𝑁]

From theory of elasticity:

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
 ; 𝜀𝑦 =

𝜕𝑣

𝜕𝑦

𝛾𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥

∴ {𝜀} = {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

} =

{

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥}

=

[

𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑦
𝜕

𝜕𝑦

𝜕

𝜕𝑋]

{
𝑢
𝑣
}

= [𝜕][𝑁]{𝑢}𝑒

∴ [𝐵] for 𝑄4 is:

[𝐵] =

[

𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑦
𝜕

𝜕𝑦

𝜕

𝜕𝑋]

3x2

∙ [
𝑁1 0 𝑁2 0 𝑁3 0 𝑁4 0
0 𝑁1 0 𝑁2 0 𝑁3 0 𝑁4

]
2x8

[𝐵] =

[

𝜕𝑁1
𝜕𝑥

0
𝜕𝑁2
𝜕𝑥

0
𝜕𝑁3
𝜕𝑥

0
𝜕𝑁4
𝜕𝑥

0

0
𝜕𝑁1
𝜕𝑦

0
𝜕𝑁2
𝜕𝑦

0
𝜕𝑁3
𝜕𝑦

0
𝜕𝑁4
𝜕𝑦

𝜕𝑁1
𝜕𝑦

𝜕𝑁1
𝜕𝑥

𝜕𝑁2
𝜕𝑦

𝜕𝑁2
𝜕𝑥

𝜕𝑁3
𝜕𝑦

𝜕𝑁3
𝜕𝑥

𝜕𝑁4
𝜕𝑦

𝜕𝑁4
𝜕𝑥]

3x8

[𝑘] = ∫ [𝐵]𝑇[𝐸][𝐵]𝑑𝑉𝑒

𝑉𝑒

If constant thickness (plane stress 𝑡 = const., plane strain− analyzing a thin slice of constant thickness 𝑡)

Then,

[𝑘] = ∫ ∫ [𝐵]𝑇[𝐸][𝐵]𝑑𝑥 ∙ 𝑑𝑦
𝑎

−𝑎

𝑏

−𝑏

[𝐵]: 1st order polynomials in 𝑥 or in 𝑦

∴ integrands are 2nd order polynomials

∴ analytical (closed-form) solutions are obtainable

Plane stress:

[𝐸] =
𝐸

1−𝜈2
[

1 𝜈 0
𝜈 1 0

0 0
1−𝜈

2

] (linear, elastic, isotropic)

and: 𝜀𝓏 = −
𝜈

𝐸
(𝜎𝑥 + 𝜎𝑦)

Plane strain:

[𝐸] =
𝐸

(1+𝜈)(1−2𝜈)
[

1 − 𝜈 𝜈 0
𝜈 1 − 𝜈 0

0 0
1−2𝜈

2

]

and: 𝜎𝑧 = 𝜈(𝜎𝑥 + 𝜎𝑦)

Properties of Shape Functions:

1) ∑ 𝑁𝑖𝑖 = 1 for any given point within the element, including the nodes and edges/surfaces where

applicable

2) 𝑁𝑖 = {
1 at node i
0 at all other nodes

Put them in a more mathematical way:

1) Is known as the partitions of unity property.

2) Is known as the 𝛿 −function property.

Other properties include,

Consistency: to include the complete order of monomial

(Second order: 𝑥2, 𝑦2, 𝑥𝑦)

(Third order: 𝑥3, 𝑦3, 𝑥𝑦2, 𝑥2𝑦)

Linear dependence: 𝑁𝑖′𝑠 should be linearly independent

[𝑘]: singular, symmetric

[𝐾] = ∑[𝑘]

𝑁𝐸

𝑖=1

: symmetric

singular before applying B.C.’s

thickness = 5 𝑚𝑚

𝐸 = 200 𝐺𝑃𝑎

𝜈 = 0.3

Surface load on edge “4 − 3”:

Φ = {
Φx

Φy
} = {

Φx

0
}

Φ𝑥 = 𝓌(𝑥 + 𝑎)

𝓌: 𝑓𝑜𝑟𝑐𝑒/𝑙𝑒𝑛𝑔𝑡ℎ3

On the other hand, shape functions are, when evaluated at the edge where 𝑦 = 𝑏,

𝑁̅1 = 𝑁̅2 = 0

𝑁̅3 = (𝑎 + 𝑥)/(2𝑎)

𝑁̅4 = (𝑎 − 𝑥)/(2𝑎)

∴ {𝑓𝑒𝑞} = ∫ [𝑁̅]𝑇
𝑎

−𝑎

{Φ} 𝑡 𝑑𝑥

[𝑁̅] = [
𝑁̅1 𝑁̅2 … 𝑁̅4

 𝑁̅1 𝑁2
̅̅̅̅ … 𝑁̅4

]
2x8

∴ {𝑓𝑒𝑞} = [0, 0, 0, 0,
4

3
𝓌𝑡𝑎2, 0,

2

3
𝓌𝑡𝑎2, 0]

𝑇

for element 2

 →

Results:

Stresses at Node 3 & 4 (in 𝑀𝑃𝑎):

