
Example 7-1 

Loading and design details are given. We are asked to, (1) determine 𝑛 using DE-Goodman, DE-Gerber, 

DE-ASME, and DE-Soderberg; and (2) check against yielding failure by evaluating 𝑛𝑦  

Example 7-2 

Countershaft AB carries two spur gears at G and J; is supported by two bearings at A and B. Its layout is 

shown in Figure 7-10. Gear loads are 

𝑊23
𝑟 = 197 𝑙𝑏 

𝑊23
𝑡 = 540 𝑙𝑏 

𝑊54
𝑟 = 885 𝑙𝑏 

𝑊54
𝑡 = 2431 𝑙𝑏 

 

We are to select appropriate materials and/or diameters at various cross sections, based on fatigue with 

infinite life. Design factor is 1.5. 

The text starts with cross-section 𝐼 where there are torque and bending moment, and a shoulder for 

stress concentration. Generous shoulder fillet (r/d = 0.1) is assumed DE-Goodman is used to determine 

diameters. 

Example  

A critical cross-section of a shat is subject to a combined bending moment of 63-lb-in and a torque of 74 

lb-in. The cross-section is the seat of a rolling-element bearing, and sharp shoulder fillet is expected. 

Shaft material is SAE 1040 CD. Estimate the shaft’s diameter at the cross-section for infinite life with 

𝑛? = 1.5. Base calculations on ASME-Elliptic criterion. Operating conditions are typical. 

 



Solution 

(1) First iteration 

𝑀𝑎 = 63 𝑙𝑏 − 𝑖𝑛 

𝑇𝑚 = 74 𝑙𝑏 − 𝑖𝑛 

𝑆𝑢𝑡 = 85 𝑘𝑠𝑖 

𝑆𝑦 = 71 𝑘𝑠𝑖 

𝑆𝑒
′ = 42.5 𝑘𝑠𝑖 

𝑘𝑎 = 2.7(85)−0.265 = 0.832 
𝑘𝑏 = 0.9 

𝑘𝑐 = 1 

𝑘𝑑 = 1 

𝑘𝑒 = 0.897 

𝑆𝑒 = 28.55 𝑘𝑠𝑖 

𝑘𝑡 = 2.7 

𝑘𝑡𝑠 = 2.2 

Set 𝑞 = 𝑞𝑠ℎ𝑒𝑎𝑟 = 1, so that 𝐾𝑓 = 𝐾𝑡 = 2.7 and 𝐾𝑓𝑠 = 𝐾𝑡𝑠 = 2.2, and  

𝐴 = 2𝐾𝑓𝑀𝑎 = 340.2 𝑙𝑏 − 𝑖𝑛 

𝐵 = √3𝐾𝑓𝑠𝑇𝑚 = 282.0 𝑙𝑏 − 𝑖𝑛 

𝑑 = √
16𝑛

𝜋
√(

𝐴

𝑆𝑒
)

2

+ (
𝐵

𝑆𝑦
)

23

= 0.458" 

Round off 𝑑 = 12 𝑚𝑚 = 0.472" 

(2) Second iteration 

𝑀𝑎 = 63 𝑙𝑏 − 𝑖𝑛 

𝑇𝑚 = 74 𝑙𝑏 − 𝑖𝑛 

𝑆𝑢𝑡 = 85 𝑘𝑠𝑖 

𝑆𝑦 = 71 𝑘𝑠𝑖 

𝑆𝑒
′ = 42.5 𝑘𝑠𝑖 

𝑘𝑎 = 2.7(85)−0.265 = 0.832 

𝑘𝑏 = 0.879(0.472)−0.107 = 0.953 

𝑘𝑐 = 1 

𝑘𝑑 = 1 

𝑘𝑒 = 0.897 

𝑆𝑒 = 30.23 𝑘𝑠𝑖 

𝑟

𝑑
= 0.02, then 𝑟 = 0.009” , and 𝑞 = 0.57, 𝑞𝑠ℎ𝑒𝑎𝑟 = 0.6, so that 𝐾𝑓 = 1.91 and𝐾𝑓𝑠 = 1.66 

Finally, 

𝐴 = 2𝐾𝑓𝑀𝑎 = 240.7 𝑙𝑏 − 𝑖𝑛 

𝐵 = √3𝐾𝑓𝑠𝑇𝑚 = 212.8 𝑙𝑏 − 𝑖𝑛 



𝑛 = (
𝜋𝑑3

16
)(

1

√(
𝐴
𝑆𝑒

)
2

+ (
𝐵
𝑆𝑦

)
2

= 2.4 

𝜎𝑚𝑎𝑥
′ =

16

𝜋𝑑3
√𝐴2 + 𝐵2 = 15.56 𝑘𝑠𝑖 

𝑛𝑦 =
𝑆𝑦

𝜎𝑚𝑎𝑥
′ = 4.6 

Therefore, 𝑑 = 12 𝑚𝑚 or 0.472" is sufficient, giving a factor of safety against fatigue at 2.4 and a factor 

of safety against yielding at 4.6. 

(7-5) Deflection Consideration 

Why deflection considerations? 

• Shaft deflects transversely like a beam. 

• Shaft also has torsional deflection like a torsion bar. 

• Excessive deflections affect the proper functioning of gears and bearings, for example. Permissible 

slopes and transverse deflections are listed in Table 7-2. 

• To minimize deflections, keep shaft short, and avoid cantilever or overhang. 

How to Determine Beam Deflection 

• Analytically 

Closed-form solutions (4-4) 

Superposition (4-5) 

Singularity Functions (4-6) 

Strain Energy (4-7) 

Castigliano’s 2nd Theorem (4-8) 

Statically indeterminate beams (4-10) 

….. 

and so on. 

Limitations: effective when EI=const. (but a stepped shaft does not have constant I) 

 

• Numerical integration 

Simplified geometry; for example, small shoulders (diameter-wise and length-wise), fillets, keyways, 

notches, etc., can be omitted. 

May be tedious. 

 

 

 

 

 

 

 

 

 

 



Example 

A stepped shaft is shown below, which is supported by ball bearings at A and F. Determine its maximum 

(in magnitude) lateral deflection, and the slopes at A and F. Use 𝐸 = 30 𝑀𝑝𝑠𝑖. 

 

 
 

1) Plot bending moment 𝑀(𝑥) 

 

2) Plot 𝑀/𝑑4   

∴
𝑀

𝐸𝐼
=

(
64
𝜋𝐸

) 𝑀

𝑑4
= 𝑘𝑀/𝑑4 

 

3) Integrate  
𝑀

𝑑4
=> "𝑠𝑙𝑜𝑝𝑒" 

 

4) Integrate "𝑠𝑙𝑜𝑝𝑒" 
𝑀

𝑑4
=> "𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛" 

 

5) Baseline 

 

6) Deflection 

 

7) Slope 

 



 
 

 
 

 



 
 

 

 
 

To obtain deflection curve of step (6), at any cross-section, subtract value obtained in step (4) from 

baseline value. 

For example, at B, step (4) has 5107.0;  

baseline value is 26,123; 

∴ 21,106 = 26,123 − 5107.0 will be used in step (6) 



 

𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑚 =
117,552 

36"
 (

𝑙𝑏

𝑖𝑛
) = 3265.3 𝑙𝑏/𝑖𝑛2  

 

7) Subtract the slope of the baseline from value obtained in step (3) 

 
 

 

 

117,552 lb/in 



𝑘 =
64

𝜋𝐸
= 0.6791 ∗ 10−6 (

𝑖𝑛2

𝑙𝑏
) 

∴ 𝛿𝑚𝑎𝑥 = (26,113
𝑙𝑏

𝑖𝑛
) (0.679 ∗ 10−6

𝑖𝑛2

𝑙𝑏
) 

= 0.0177 𝑖𝑛 ↓ 

𝜃𝐴 = (3265.3
𝑙𝑏

𝑖𝑛2
) (0.679 ∗ 10−6

𝑖𝑛2

𝑙𝑏
) 

= 0.00222 𝑟𝑎𝑑 ↓ 𝑇𝑂𝐷𝑂 𝑐𝑢𝑟𝑣𝑒 

𝜃𝐹 = 0.00181 𝑟𝑎𝑑 ↑ 𝑇𝑂𝐷𝑂 𝑐𝑢𝑟𝑣𝑒 

 

Comments regarding the numerical integration method: 

Applicable to simple supports as outlined; 

Fixed supports? 

More divisions for better accuracy; 

Vertical plane, horizontal plane, and vector sum. 

 

An exact numerical method for determining the bending deflection and slope of stepped shafts, C.R. 

Mischke, in Advanced in reliability and stress analysis, ASME winter annual meeting, December 1978 

 

Mechanical Design of Machine Elements and Machines, J.A. Collins, John Wiley & Sons, 2003 (Sec. 8.5) 

 

Example (7-3) 

By the end of Example 7-2, diameters 𝐷1 through 𝐷7 were determined. The layout is shown below 

(Figure 7-10). Here we are to evaluate the slopes and deflections at key locations. 

 

The text uses “Beam 2D Stress Analysis” (a software with FEA-core) for the evaluation. 

 

The results are verified by the above numerical integration method implemented with MATLAB. 

 

 



Diameter 𝐷1 = 𝐷7 𝐷2 = 𝐷6 𝐷3 = 𝐷5 𝐷4 

Example 7-2 1.0 1.4 1.625 2.0 

 

Point of Interest Example 7-3 Numerical Integration 

Slope, left bearing (A) 0.000501 rad 0.000507 rad 

Slope, right bearing (B) 0.001095 rad 0.001090 rad 

Slope , left gear (G) 0.000414 rad 0.000416 rad 

Slope, right gear (J) 0.000426 rad 0.000423 rad 

Deflection, left gear (G) 0.0009155 in 0.0009201 in 

Deflection, right gear (J) 0.0017567 in 0.0017691 in 

 

How to Determine Torsional (Angular) Deflection 

• Important for shafts carrying components that are required to function in sync with each other; for 

example, cam shafts; 

• For a stepped shaft with individual cylinder length 𝑙𝑖, torque 𝑇𝑖  and material 𝐺𝑖 the angular 

deflection is, 

 
7-6 Critical Speeds for Shafts 

It is about applying knowledge of vibrations and deflections of shafts in the design of shafts. 

 

 

 



 

 
 

 

The organization of this section: 

(Eq. 7-22): Exact solution of critical speed for a simply supported shaft with uniform cross section and 

material 

 
(eq. 7-23): Rayleigh’s method to estimate critical speed. 

 
(Eq. 7-24): Through (Eq. 7-32) Derivation of Dunkerley’s method to estimate critical speed. 

(see pp. 376-377) 



Example (7-5) 

Notes: (a) Rayleigh’s and Dunkerley’s methods only give rise to estimates; (b) They yield the upper and 

lower bound solutions, respectively. That is, 𝜔1(𝐷𝑢𝑛𝑘𝑒𝑟𝑙𝑒𝑦) < 𝜔1 < 𝜔1(𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ); (c) The methods and 

their derivations fall under vibrations/dynamics of continuum by energy method. 

 

Critical Speeds 

• Critical speeds refer to speeds at which the shaft becomes unstable, such that deflections (due to 

bending or torsion) increase without bound. 

• A critical speed corresponds to the fundamental natural frequency of the shaft in a particular 

vibration mode. 

• Three shaft vibration modes are to be concerned: lateral, vibration, shaft whirling and torsional 

vibration. 

• Critical speeds for lateral vibration and shaft whirling are identical. 

• Numerically speaking, two critical speeds can be determined, one for lateral vibration or shaft 

whirling, and another for torsional vibration. 

• Focus will be the critical speed for lateral vibration or shaft whirling. Regarding critical speed for 

torsional vibration, one can reference “rotor dynamics” and the transfer matrix method. 

• If the critical speed is 𝜔1, it is required that the operating speed 𝜔 be: 

 

If the shaft is rigid (shafts in heavy machinery): 
𝜔

𝜔1
≥ 3 

 

If the shaft is flexible (shafts that are long with small-diameters): 
𝜔

𝜔1
≤ 1/3 

 

The text recommends:  
𝜔

𝜔1
≤ 1/2 

 

Exact solution, (Eq. 7-22) 

 
Simply supported, uniform cross-section and material. 

 
 

 



Rayleigh’s Method for Critical Speed, (Eq. 7-23) 

Shaft is considered massless and flexible; Components such as gears, pulleys, flywheels, and so on, are 

treated as lumped masses; The weight of the shaft, if significant, will be lumped as a mass or masses. 

 

 

 
Textbook equation should be updated to include the following absolute symbols: 

𝜔1 = √𝑔
∑ 𝑤𝑖|𝑦𝑖|

∑ 𝑤𝑖𝑦𝑖
2  

Where: 

𝑤𝑖 = weight of mass 𝑖 

𝑤𝑖  should be treated as a force with a magnitude equation the weight of mass 𝑖; 

 

Forces 𝑤𝑖  (𝑖 = 1, … ) should be applied in such a way that the deflection curve resembles the 

fundamental mode shape of lateral vibration. 

 

𝑦𝑖 = lateral deflection at location 𝑖 (where 𝑤𝑖  is applied) and caused by all forces. 

 

Dunkerley’s Method for Critical Speed, (Eq. 7-32) 

The model for Dunkerley’s method is the same as that for Rayleigh’s. 

 

and 𝜔𝑖𝑖 = √
𝑔

|𝑦𝑖𝑖|
 

Where 𝑦𝑖𝑖 is the lateral deflection at location 𝑖 and caused by 𝑤𝑖  only. 𝜔𝑖𝑖  represents the critical speed 

with only 𝑤𝑖  on the shaft. 

 



Deflections 𝒚𝒊 𝒚𝒊𝒋  and 𝜹𝒊𝒋 

𝑦𝑖𝑗 is the deflection at location 𝑖 and due to a load applied at location 𝑗. When the load at location 𝑗 is a 

unit load, then 𝑦𝑖𝑗 is denoted by 𝛿𝑖𝑗. 𝛿𝑖𝑗 is also known as the influence coefficient. 

𝑦𝑖 is the deflection at location 𝑖 and caused by all applied loads. Therefore, 

𝑦𝑖 = ∑ 𝑦𝑖𝑗

𝑗

 

unit load, then Type equation here.unit load, then 𝑦𝑖𝑗 is denoted at 𝛿𝑖𝑗. 𝛿𝑖𝑗Problem Solving 

Closed-form solutions (Sec. 4-4 and Table A-9). 

Superposition (Section 4-5); 

Indexes 𝑖 and 𝑗each runs 1 through the number of masses/forces; 

𝑦𝑖𝑗 are signed numbers; 

Example: 

Evaluate the range of the shaft’s critical speed corresponding to its lateral vibration, in terms of 𝐸𝐼 

where 𝐸𝐼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

 

𝑖 = 1,2 

𝑗 = 1,2 

 

 

 

 


