Lecture (Mar. 5%, 2019)
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From Castegliano’s Theorem:
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The deflection is always in the direction of the force.

If an applied force does not exist at the pint where the deflection is to be determined, then a fictitious
force Q must be applied. After the strain energy equation has been differentiated with respect to Q, the
force Qis set equal to zero. The resulting expression is the displacement at the point of application of Q
and Is in the same direction as Q was assumed to be acting.

The following provided strain energy expressions for various types of loading:

Tension and Compression:
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Example:

Determine the end deflection of a uniformly loaded cantilever beam.
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Assume a fictitious force Q acting as shown at the point where the deflection is required.
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Alternative solution:

Recall that if y is the beam deflection function and q is the load per unit length, then:
y=f(x)
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Beam Deflection by Superposition

The results of many simple load cases and boundary conditions have been solved and tabulated. A
limited number of these cases is presented in Table A-9. The effect of a combined loading on a structure
can be obtained by adding the effects of each individual loading algebraically.
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Lecture (Mar. 7t", 2019)

Castigliano’s Theorem may also be employed to calculate the angle of twist in members subject to

torsion.
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Where:

T = shear stress, psi

y =shear strain, in/in

A = cross-sectional area, in?

T =torque, in — lb

] =polar moment of inertia, in*

(for circular shaft) = [, r*dA
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If the torque is uniform along the length of the shaft:

0 = total angle of twist
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The rotation of a section of a beam at a particular section is found to be:
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Where C is the couple at the section of interest.

Case of pure bending where M = C throughout the length of the beam:
6 =ML/EI

Where E and [ are assumed to be constant

Example: Determine the rotation 6 of the free end of a tube in the plane of a torque T,; see Fig. Both
portions of the tube lie in the same plane. Neglect the effect of deflection of the radius of the quarter
load.
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Length L, of pipe is subjected to torque T,
Length L, of pipe is subjected to bending moment T, (about y — axis)
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Failure Preventions = Static Loading

Stress Concentration: Stress concentration is a localized effect that may be caused by a surface scratch,
variation in material properties, localized high pressure points, or abrupt changes of section.

The stress at a point in a member influenced by one or more of these causes is, in general, grater than
the nominal stress determined by elementary strength of materials.

The definition of geometric or theoretical stress concentration factor for normal stress (k;) and shear
stress (k¢s) is given by:
Omax = KtOnom 5 Tmax = KtsTnom

Table A.15 provides charts for the theoretical stress concentration factors for several load conditions
and geometry.

Material Static Load Cyclic Load
Brittle Serious Very Serious
Ductile Not Serious Serious

Failure Theories: The generally accepted failure theories for ductile materials (yield criteria) are:
- Maximum Shear Stress theory (MSS)

- Distortion Energy theory (DE)

- Ductile Coulomb-Mohr theory (DCM)

And for brittle materials (fracture criteria) are:
- Maximum normal stress theory (MNS)

- Brittle Coulomb-Mohr Theory (BCM)

- Modified Mohr Theory (MM)



Maximum Shear-Stress Theory (For Ductile Materials)

This theory assumes that failure occurs for a combined stress condition when the maximum shear stress
equals the value of a critical shear stress produced in an element subjected to simple tension, which is:
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For 3D stressed, the maximum shear stress is given by one of the following, whichever is largest:
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For 2D stresses, a3 = 0, then:

If o, and g, are of opposite sign:
0-1 - 0-2 = iSyp
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If o, and g, are of the same sign:
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Distortion-Energy Theorem (For Ductile Materials)

This theory assumes that yielding will occur when the strain energy of distortion per unit volume equals
the strain energy of distortion per unit volume for a specimen in uniaxial tension or compression
strained to the yield stress. This energy is found to be for the body under 3D stress.
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