
Lecture (Mar. 5th, 2019)  

 

𝐷𝑢 = (
1

2
) (𝜎𝑥  𝑑𝑦 𝑑𝑥)(𝜀𝑥  𝑑𝑥) 

𝐷𝑢 = (
1

2
) (𝜎𝑥𝜀𝑥)(𝑑𝑥 𝑑𝑦 𝑑𝑧) 

The strain energy per unit volume is: 

𝑑𝑢 = (
1

2
)𝜎𝑥𝜀𝑥(𝑑𝑥 𝑑𝑦 𝑑𝑧)/(𝑑𝑥 𝑑𝑦 𝑑𝑧) 

𝑑𝑢 = (
1

2
)𝜎𝑥𝜀𝑥 =

𝜎𝑥
2

2𝐸
     ;      𝑁𝑜𝑡𝑒 𝑡ℎ𝑎𝑡 𝜀𝑥 =

𝜎𝑥
𝐸

 

And: 

𝑈 = ∫ 𝑑𝑢
𝑣

    =      (
1

2
)∫ ∫

𝜎𝑥
2

𝐸𝐴𝐿

 𝑑𝐴 𝑑𝑥 

  =      (
1

2
)∫ ∫ (

1

𝐸
) (
𝑀𝑦

𝐼
)
2

𝐴𝐿

 𝑑𝐴 𝑑𝑥 

𝑈 = (
1

2
)∫

1

𝐸𝐿

𝑀2

𝐼2
𝑑𝑥∫ 𝑦2 𝑑𝐴

𝐴

= (
1

2
)∫

𝑀2

𝐸𝐼

𝐿

0

𝑑𝑥 

 

 



From Castegliano’s Theorem: 

𝛿 =
𝜕𝑢

𝜕𝑃
 

𝛿 =
𝜕𝑢

𝜕𝑃
= (

1

2
)∫

𝜕

𝜕𝑃
(
𝑀2

𝐸𝐼
)𝑑𝑥

𝐿

 

= ∫ 𝑀
𝜕𝑀/𝜕𝑃

𝐸𝐼
𝑑𝑥

𝐿

 

𝛿 = ∫
(−𝑃𝑥)(−𝑥)

𝐸𝐼
𝑑𝑥 =

𝑃𝐿3

3𝐸𝐼

𝐿

0

 

The deflection is always in the direction of the force. 

If an applied force does not exist at the pint where the deflection is to be determined, then a fictitious 

force Q must be applied. After the strain energy equation has been differentiated with respect to Q, the 

force Q is set equal to zero. The resulting expression is the displacement at the point of application of Q 

and Is in the same direction as Q was assumed to be acting. 

The following provided strain energy expressions for various types of loading: 

Tension and Compression: 

𝑈 =
𝐹2𝐿

2𝐴𝐸
 

Torsion: 

𝑈 =
𝑇2𝐿

2𝐴𝐺
 

Direct Shear: 

𝑈 =
𝐹2𝐿

2𝐴𝐺
 

Bending: 

𝑈 = ∫
𝑀2

2𝐸𝐼
𝑑𝑥 

Example: 

Determine the end deflection of a uniformly loaded cantilever beam. 

 



Assume a fictitious force Q acting as shown at the point where the deflection is required. 

 

𝑀 = −𝑄𝑥 −
𝑤𝑥2

2
 

𝜕𝑀

𝜕𝑄
= −𝑥 

 

𝛿 =
𝜕𝑢

𝜕𝑄
= ∫ 𝑀

𝐿

0

(−𝑃𝑥)(−𝑥)

𝐸𝐼
𝑑𝑥 =

𝑤𝐿4

8𝐸𝐼
 

Alternative solution: 

Recall that if 𝑦 is the beam deflection function and 𝑞 is the load per unit length, then: 

𝑦 = 𝑓(𝑥) 

𝜃 =
𝑑𝑦

𝑑𝑥
= 𝑠𝑙𝑜𝑝𝑒 

𝑀 =
𝑑2𝑦

𝑑𝑥2
𝐸𝐼 

𝑉 =
𝑑3𝑦

𝑑𝑥3
 𝐸𝐼 

𝑞 =
𝑑4𝑦

𝑑𝑥4
 𝐸𝐼 



 

𝑀 =
𝐸𝐼 𝑑2𝑦

𝑑𝑥2
= −𝑃(𝐿 − 𝑥) 

𝑑2𝑦

𝑑𝑥2
= −

1

𝐸𝐼
[𝑃(𝐿 − 𝑥)] 

𝑑𝑦

𝑑𝑥
= −

𝑃

𝐸𝐼
∫(𝐿 − 𝑥) 𝑑𝑥 = −

𝑃

𝐸𝐼
(𝐿𝑥 −

𝑥2

2
+ 𝐶1) 

𝑦 = −
𝑃

𝐸𝐼
∫(𝐿𝑥 −

𝑥2

2
+ 𝐶1)𝑑𝑥 

𝑦 = −
𝑃

𝐸𝐼
(
𝐿𝑥2

2
−
𝑥3

6
+ 𝐶1𝑥 + 𝐶2) 

𝐵𝐶:     𝑎𝑡 𝑥 = 0;      𝑦′ = 0 ∴ 𝐶1 = 0  

                                  𝑦 = 0 ∴ 𝐶2 = 0 

And: 

𝑦 = −
𝑃

𝐸𝐼
(
𝐿𝑥2

2
−
𝑥3

6
) 

At 𝑥 = 𝐿; 

𝑦 = 𝛿 = −
𝑃

𝐸𝐼
(
𝐿3

2
−
𝐿3

6
) = −

𝑃𝐿3

3𝐸𝐼
=
𝑃𝐿3

3𝐸𝐼
↓ 

Deflection by use of singularity functions: 

 



𝐹𝑜𝑟 0 ≤ 𝑥 ≤ 𝐿     ;     
𝐸𝐼 𝑑4𝑦

𝑑𝑥4
= 𝑞 = −𝑃 < 𝑥 − 𝐿 >−1 

𝑉 = −𝑃 < 𝑥 − 𝐿 >0 + 𝐶1 

𝑀 = −𝑃 < 𝑥 − 𝐿 >1 + 𝐶1𝑥 + 𝐶2 

𝐸𝐼 𝜃 = −
𝑃

2
< 𝑥 − 𝐿 >2 +

𝐶1
2
𝑥2 + 𝐶2𝑥 + 𝐶3 

𝐸𝐼 𝑦 = −
𝑃

6
< 𝑥 − 𝐿 >3+

𝐶1
6
𝑥3 +

𝐶2
2
𝑥2 + 𝐶3𝑥 + 𝐶4 

𝐵𝐶: 𝐴𝑡 𝑥 = 0; 𝐸𝐼 𝜃 = 𝐸𝐼 𝑦 = 0 ∴ 𝐶3 = 𝐶4 = 0 

𝐴𝑡 𝑥 = 0; 𝑉 = 𝑅1   ∴ 𝐶1 = 𝑅1 

𝑎𝑡 𝑥 = 𝐿; 𝑀 = 0   ∴ 𝐶2 = −𝑅1𝐿   

∴ 𝐸𝐼 𝑦 = −
𝑃

6
< 𝑥 − 𝐿 >3 + 

Beam Deflection by Superposition 

The results of many simple load cases and boundary conditions have been solved and tabulated. A 

limited number of these cases is presented in Table A-9. The effect of a combined loading on a structure 

can be obtained by adding the effects of each individual loading algebraically. 

 

𝑀 = −𝑃𝑅𝑠𝑖𝑛𝜃 

𝜕𝑀

𝜕𝑃
= −𝑅𝑠𝑖𝑛𝜃 

𝛿 =
𝜕𝑢

𝜕𝑃
= ∫

𝑀 (
𝜕𝑀
𝜕𝑃
)

𝐸𝐼
𝑅𝑑𝜃

𝜋
2

0

 

= ∫
(−𝑃𝑅𝑠𝑖𝑛𝜃)(−𝑅𝑠𝑖𝑛𝜃)

𝐸𝐼
𝑅𝑑𝜃

𝜋
2

0

 

=
𝑃𝑅3

𝐸𝐼
∫ sin2 𝜃 𝑑𝜃

𝜋
2

0

=
𝜋𝑃𝑅3

4𝐸𝐼
 



sin2 𝜃 = (
1

2
) (1 − cos 2𝜃)  

∫sin2 𝜃  𝑑𝜃 = (
1

2
)∫(1 − 𝑐𝑜𝑠2𝜃)𝑑𝜃 = (

1

2
)𝜃 − (

1

4
) 𝑠𝑖𝑛2𝜃 + 𝐶 

 

𝑀 = 𝑄𝑅𝑠𝑖𝑛𝜃    𝑓𝑜𝑟  0 ≤ 𝜃 ≤ 𝜋/2 

𝑀 = 𝑄𝑅𝑠𝑖𝑛𝜃 + 𝑃𝑅𝑠𝑖𝑛 (𝜃 −
𝜋

2
)   

𝜋

2
≤ 𝜃 ≤ 𝜋 

      = 𝑄𝑅𝑠𝑖𝑛𝜃 − 𝑃𝑅𝑐𝑜𝑠𝜃 

𝜕𝑀

𝜕𝑄
= 𝑅𝑠𝑖𝑛𝜃    𝑓𝑜𝑟 0 ≤ 𝜃 ≤ 𝜋 

𝛿𝑞 =
𝜕𝑢

𝜕𝑄
= ∫

(𝑄𝑅𝑠𝑖𝑛𝜃)(𝑅𝑠𝑖𝑛𝜃)

𝐸𝐼
𝑅 𝑑𝜃

𝜋
2

0

+∫
𝜋(𝑄𝑅𝑠𝑖𝑛𝜃 − 𝑃𝑅𝑐𝑜𝑠𝜃)(𝑅𝑠𝑖𝑛𝜃)

𝐸𝐼

𝜋

𝜋/2

𝑅 𝑑𝜃 

= −
𝑃𝑅3

𝐸𝐼
∫ 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑑𝜃
𝜋

𝜋
2

= −
𝑃𝑅3 sin2 𝜃

2𝐸𝐼
|𝜋
2

𝜋 

𝛿𝑞 =
𝑃𝑅3

2𝐸𝐼
 

  



Lecture (Mar. 7th, 2019)  

Castigliano’s Theorem may also be employed to calculate the angle of twist in members subject to 

torsion. 

 

 

𝑑𝑈𝑠ℎ𝑒𝑎𝑟 = (
1

2
) 𝜏𝑥𝑦  𝑑𝑥 𝑑𝑧 ∙ 𝛾𝑥𝑦  𝑑𝑦 = (

1

2
) 𝜏𝑥𝑦  𝑑𝑣 𝛾𝑎𝑣𝑔 

But 𝛾𝑎𝑣𝑔 = 𝜏/𝐺  

∴ 𝑑𝑢 =
𝜏2

2𝑔
 𝑑𝑣 

And: 

𝑈 = ∫ ∫
𝜏2

2𝐺
 𝑑𝑥 𝑑𝐴

𝐴𝐿

 

But: 

𝜏 =
𝑇𝑟

𝐽
 

∴ 𝑈 = ∫ ∫
𝑇2𝜏2

2𝐺𝐽2
 𝑑𝑥 𝑑𝐴

𝐴𝐿

 

𝑈 = ∫
𝑇2

2𝐺𝐽2
 𝑑𝑥

𝐿

= ∫ 𝑟2 𝑑𝐴
𝐴

= ∫
𝑇2

2𝐽𝐺
 𝑑𝑥

𝐿

0

 



Where: 

𝜏 = shear stress, 𝑝𝑠𝑖 

𝛾 =shear strain, 𝑖𝑛/𝑖𝑛 

𝐴 = cross-sectional area, 𝑖𝑛2  

𝑇 = torque, 𝑖𝑛 − 𝑙𝑏 

𝐽 =polar moment of inertia, 𝑖𝑛4 

 (𝑓𝑜𝑟 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑠ℎ𝑎𝑓𝑡)  =  ∫ 𝑟2 𝑑𝐴
𝐴

 

𝜃 =
𝜕𝑈

𝜕𝑇
= ∫

2𝑇

2𝐽𝐺
 𝑑𝑥

𝐿

0

= ∫
𝑇 𝑑𝑥

𝐽𝐺
 

𝐿

0

 

If the torque is uniform along the length of the shaft: 

𝜃 =
𝑇𝐿

𝐽𝐺
= 𝑡𝑜𝑡𝑎𝑙 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑡𝑤𝑖𝑠𝑡 

The rotation of a section of a beam at a particular section is found to be: 

𝜃 =
𝜕𝑈

𝜕𝐶
= ∫

𝑀(𝜕𝑀/𝜕𝐶)

𝐸𝐼
 𝑑𝑥

𝐿

0

     (𝐶 = 𝑐𝑜𝑢𝑝𝑙𝑒) 

Where 𝐶 is the couple at the section of interest. 

Case of pure bending where 𝑀 = 𝐶 throughout the length of the beam: 

𝜃 = 𝑀𝐿/𝐸𝐼 

Where 𝐸 and 𝐼 are assumed to be constant 

Example: Determine the rotation 𝜃 of the free end of a tube in the plane of a torque 𝑇𝑜; see Fig. Both 

portions of the tube lie in the same plane. Neglect the effect of deflection of the radius of the quarter 

load. 

 



Length 𝐿1 of pipe is subjected to torque 𝑇𝑜 

Length 𝐿2 of pipe is subjected to bending moment 𝑇𝑜 (about 𝑦 − 𝑎𝑥𝑖𝑠) 

∴ 𝑈1 = ∫
𝑇2

2𝐽𝐺
 𝑑𝑦

𝐿1

0

     ;      𝑈2 = ∫
𝑀2

2𝐸𝐼
 𝑑𝑥

𝐿2

0

 

Where: 

𝑀 = 𝑇 = 𝑇𝑜 

𝑈 = 𝑈1 + 𝑈2 = ∫
𝑇𝑜
2

2𝐽𝐺
 𝑑𝑦

𝐿1

0

+∫
𝑇𝑜
2

2𝐸𝐼
 𝑑𝑥

𝐿2

0

 

And: 

𝜃 =
𝜕𝑈

𝜕𝑇𝑜
= ∫

𝑇𝑜
𝐽𝐺
 𝑑𝑦

𝐿1

0

+∫
𝑇𝑜
𝐸𝐼
 𝑑𝑥

𝐿2

0

=
𝑇𝑜𝐿1
𝐽𝐺

+
𝑇𝑜𝐿2
𝐸𝐼

 

Failure Preventions = Static Loading 

Stress Concentration: Stress concentration is a localized effect that may be caused by a surface scratch, 

variation in material properties, localized high pressure points, or abrupt changes of section. 

The stress at a point in a member influenced by one or more of these causes is, in general, grater than 

the nominal stress determined by elementary strength of materials. 

The definition of geometric or theoretical stress concentration factor for normal stress (𝑘𝑡) and shear 

stress (𝑘𝑡𝑠) is given by: 

𝜎𝑚𝑎𝑥 = 𝑘𝑡𝜎𝑛𝑜𝑚      ;      𝜏𝑚𝑎𝑥 = 𝑘𝑡𝑠𝜏𝑛𝑜𝑚  

Table A.15 provides charts for the theoretical stress concentration factors for several load conditions 

and geometry. 

Material Static Load Cyclic Load 

Brittle Serious Very Serious 

Ductile Not Serious Serious 

   

Failure Theories: The generally accepted failure theories for ductile materials (yield criteria) are: 

- Maximum Shear Stress theory (MSS) 

- Distortion Energy theory (DE) 

- Ductile Coulomb-Mohr theory (DCM) 

And for brittle materials (fracture criteria) are: 

- Maximum normal stress theory (MNS) 

- Brittle Coulomb-Mohr Theory (BCM) 

- Modified Mohr Theory (MM) 

 

 



Maximum Shear-Stress Theory (For Ductile Materials) 

This theory assumes that failure occurs for a combined stress condition when the maximum shear stress 

equals the value of a critical shear stress produced in an element subjected to simple tension, which is: 

(𝑆𝑠)𝑦𝑝 =
𝑆𝑦𝑝

2
 

For 3𝐷 stressed, the maximum shear stress is given by one of the following, whichever is largest: 

(𝜎1 − 𝜎2)

2
    ;      

(𝜎2 − 𝜎3)

2
    ;      

(𝜎3 − 𝜎1)

2
 

Or: 

𝑆𝑦𝑝

2
=

{
 
 

 
 
(𝜎1 − 𝜎2)

2
(𝜎2 − 𝜎3)

2
(𝜎3 − 𝜎1)

2

     𝑜𝑟 𝑆𝑦𝑝 = {

𝜎1 − 𝜎2
𝜎2 − 𝜎3
𝜎3 − 𝜎1

 

For 2𝐷 stresses, 𝜎3 = 0, then: 

If 𝜎1 and 𝜎2 are of opposite sign: 

𝜎1 − 𝜎2 = ±𝑆𝑦𝑝  

[or 𝑛𝑑 = 𝑆𝑦𝑝/(𝜎1 − 𝜎2)] 

If 𝜎1 and 𝜎2 are of the same sign:  

𝜎1 = ±𝑆𝑦𝑝 if |𝜎1| > |𝜎2| 

[or 𝑛𝑑 = 𝑆𝑦𝑝/𝜎1] 

𝜎2 = ±𝑆𝑦𝑝 if |𝜎2| > |𝜎1| 

[or 𝑛𝑑 = 𝑆𝑦𝑝/𝜎2] 

Distortion-Energy Theorem (For Ductile Materials) 

This theory assumes that yielding will occur when the strain energy of distortion per unit volume equals 

the strain energy of distortion per unit volume for a specimen in uniaxial tension or compression 

strained to the yield stress. This energy is found to be for the body under 3𝐷 stress. 

𝑈𝑠 =
(1 + 𝑣)

6𝐸
[(𝜎1 − 𝜎2)

2 + (𝜎2 − 𝜎3)
2 + (𝜎3 − 𝜎1)

2] 

For the specimen,  

𝑈𝑠 =
(1 + 𝑣)

6𝐸
(2𝑆𝑦𝑝

2 ) 

∴ (𝜎1 − 𝜎2)
2 + (𝜎2 − 𝜎3)

2 + (𝜎3 − 𝜎1)
2 = 2𝑆𝑦𝑝

2  


