
Lecture (Feb. 12th, 2019) 

𝜋𝑑𝑖𝑡𝜎2 =
𝜋𝑑𝑖

2𝑝𝑖

4
 

Where: 

𝜎1 = circumferential (hoop) stress, tangential stress 

𝜎2 = longitudinal stress 

𝑑𝑖 = internal diameter 

𝑡 = wall thickness 

𝑝 = internal pressure 

Thick-walled Cylinders with Internal and External Pressures 

 

𝜎𝑟 =
𝑝𝑖𝑟𝑖

2 − 𝑝𝑜𝑟𝑜
2

𝑟𝑜
2 − 𝑟𝑖

2 −
(𝑝𝑖 − 𝑝𝑜)𝑟𝑜

2𝑟𝑖
2

𝑟2(𝑟𝑜
2 − 𝑟𝑖

2)
  

𝜎𝑡 =
𝑝𝑖𝑟𝑖

2 − 𝑝𝑜𝑟𝑜
2

𝑟𝑜
2 − 𝑟𝑖

2 +
(𝑝𝑖 − 𝑝𝑜)𝑟𝑜

2𝑟𝑖
2

𝑟2(𝑟𝑜
2 − 𝑟𝑖

2)
  

Thick Walled Cylinders with Internal Pressure only 

Tangential Stress: 

𝜎𝑡 =
𝑝𝑖𝑟𝑖

2

𝑟𝑜
2 − 𝑟𝑖

2 (1 +
𝑟𝑜

2

𝑟2
) 

Radial Stress: 

𝜎𝑟 =
𝑝𝑖𝑟𝑖

2

𝑟𝑜
2 − 𝑟𝑖

2 (1 −
𝑟𝑜

2

𝑟2
) 

Axial Stress: 

𝜎𝑡 =
𝑝𝑖𝑟𝑖

2

𝑟𝑜
2 − 𝑟𝑖

2 



𝜎𝑡,𝑚𝑎𝑥 =
𝑝𝑖(𝑟𝑜

2 − 𝑟𝑖
2)

𝑟𝑜
2 − 𝑟𝑖

2      (𝐴𝑡 𝑟 = 𝑟𝑖) 

𝜎𝑟,𝑚𝑎𝑥 = −𝑝𝑖      (𝐴𝑡 𝑟 = 𝑟𝑖) 

23.2 Metal Fits 

- Basic size is the exact theoretical size. Limiting variations begin from the basic dimension. 

- The nominal size of a part is the designation used for the purpose of general identification. 

- Limits are the stated maximum and minimum permissible dimensions. 

- Tolerance is the total permissible variation in size. (- The difference between the two limits) 

Example: A 1.500 ± 0.010 𝑖𝑛 shaft is a shaft that has a basic size of 1 − 1 2⁄  𝑖𝑛, (in this case the basic 

size is also the nominal size), in diameter and a tolerance of 0.020 𝑖𝑛. 

 

- Unilateral tolerance is when one of the limits is the basic size 

Example: 1.500−0.010
+0.000 

Unilateral tolerances are usually used in specifying fits for interchangeable parts. 

 

- Bilateral tolerance is when variation is permitted in both directions from the basic size.  

Example: 1.500 ± 0.010 

- Natural tolerance is equal to plus and minus three standard deviations from the mean. For 

normal distributions, 99.73% of production is within natural tolerance limits.  

- Clearance is used when the internal member of two mating parts is smaller than the external 

member. 

a – diametral clearance is the measured difference in the two diameters. 

b – radial clearance is the difference in the two radii. 

- Interference is when the internal member is larger than the external member. 

23.3 Force Fits and Shrink Fit 

In a force-fit assembly, the pressure between the parts depends on the amount of interference. 

If the radial interference is 𝛿, the contact pressure at the interference radius 𝑅 is: 

𝑝 =
𝛿

𝑅 [
1

𝐸𝑜
(

𝑟𝑜
2 + 𝑅2

𝑟𝑜
2 − 𝑅2 + 𝑣𝑜) +

1
𝐸𝑖

(
𝑅2 + 𝑟𝑖

2

𝑅2 − 𝑟𝑖
2 − 𝑣𝑖)]

 

If the members are of the same material, then: 

𝑝 =
𝐸𝛿

2𝑅3
[
(𝑟𝑜

2 − 𝑅2)(𝑅2 − 𝑟𝑖
2)

𝑟𝑜
2 − 𝑟𝑖

2 ] 



If the mating parts are of the same material and 𝑟𝑖 = 0 (hub and solid shaft): 

𝑝 =
𝐸𝛿

2𝑅
[1 −

𝑅2

𝑟𝑜
2 ] 

The maximum tangential and radial stresses at the inside surface of the external member are: 

(𝜎𝑡)𝑚𝑎𝑥 = 𝑝
𝑟𝑜

2 + 𝑅2

𝑟𝑜
2 − 𝑅2

=

𝑝 (1 +
𝑅2

𝑟𝑜
2 )

(1 −
𝑅2

𝑟𝑜
2 )

     ;      (𝜎𝑝)
𝑚𝑎𝑥

= −𝑝 

Substituting for 𝑝: 

(𝜎𝑡)𝑚𝑎𝑥 =
𝐸𝛿

2𝑅
[1 +

𝑅2

𝑟𝑜
2 ] 

(𝜎𝑟)𝑚𝑎𝑥 =
−𝐸𝛿

2𝑅
[1 −

𝑅2

𝑟𝑜
2 ] 

The maximum shearing stress is: 

𝜏𝑚𝑎𝑥 = √(
𝜎𝑡 − 𝜎𝑟

2
)

2

=
𝐸𝛿

2𝑅
 

For brittle material, the maximum normal stress should not exceed the ultimate tensile strength of the 

material. 

𝑆𝑢𝑙𝑡

𝑛𝑑
=

𝐸𝛿

2𝑅
(1 +

𝑅2

𝑟𝑜
2 ) 

For ductile material, based on the maximum shear theory. 

𝑆𝑦𝑝

𝑛𝑑
=

𝐸𝛿

𝑅
 

Where  

𝑛𝑑 = design factor 

𝑆𝑢𝑙𝑡 = ultimate tensile strength, 𝑝𝑠𝑖 

𝑆𝑦𝑝 =yield strength, 𝑝𝑠𝑖 

(𝜎𝑟)𝑚𝑎𝑥 = −
𝐸𝛿

2𝑅
(1 −

𝑅2

𝑟𝑜
2 ) 

The maximum shearing stress is: 

𝜏𝑚𝑎𝑥 = √(
𝜎𝑡 − 𝜎𝑟

2
)

2

=
𝐸𝛿

2𝑅
 



For brittle material, the maximum normal stress should not exceed the ultimate tensile strength of the 

material. 

𝑆𝑢𝑙𝑡

𝑛𝑑
=

𝐸𝛿
 

23-4 Force Fits – Steel Shaft & Cast-iron Hub 

𝑝 =

𝐸𝑐𝛿 [1 − (
𝑑𝑖

2

𝑑𝑜
2)]

𝑑𝑖 [1.53 + 0.47 (
𝑑𝑖

2

𝑑𝑜
2)]

 

Where, 𝐸𝑐 = modulus of elasticity of cast iron. And: 

𝑆𝑢𝑙𝑡

𝑓𝑠
=

𝐸𝑐𝛿 [1 − (
𝑑𝑖

2

𝑑𝑜
2)]

𝑑𝑖 [1.53 + 0.47 (
𝑑𝑖

2

𝑑𝑜
2)]

 

23-5 Holding ability of Force and Shrink Fits 

𝑇 =
𝑓𝑝𝜋𝑑𝑖

2𝐿

2
 

Where: 

𝑇 = Transmitted torque, 𝑙𝑏 − 𝑖𝑛 

𝑝 = contact pressure, 𝑝𝑠𝑖 

𝑑𝑖 = Diameter, 𝑖𝑛 

𝐿 = length of hub, 𝑖𝑛 

𝑓 = coefficient of friction (usually from 0.1 to 0.05) 

𝛿 = diametral interference, 𝑖𝑛 

-Thermal-stresses and strains 

When the temperature of an unrestrained body is uniformly increased, the body expands, and the 

normal strain is: 

𝜀𝑥 = 𝜀𝑦 = 𝜀𝑧 = 𝛼(∆𝑇) 

Where: 

𝛼 = coefficient of thermal expansion (Table 3.3) 

∆𝑇 = temperature change in degrees 

If a straight bar is restrained at the ends, the compressive stress is: 

𝜎 = 𝜀𝐸 = 𝛼(∆𝑇)𝐸 

If a uniform plate is restrained at the edges 

𝜎 =
𝛼(∆𝑇)𝐸

1 − 𝑣
 



Although referred to as thermal stresses, the above are not thermal stresses, but arise from the edge 

restrains. A thermal stress is one which arises because of the existence of a temperature gradient in a 

body. 

23-6 Assembly of Shrink Fits 

- The minimum change in temperature for assembly is: 

∆𝑇 =
𝛿

𝛼𝑑𝑖
 

Where: 

𝛿 = diametral interference, 𝑖𝑛 

𝛼 = coefficient of expansion, 𝑖𝑛 𝑝𝑒𝑟 𝑖𝑛 𝑝𝑒𝑟 °𝐹 

∆𝑇 = exchange in temperature, °𝐹 

- The force required to press the parts together is: 

𝐹 = 2𝜋𝑟𝑖𝐿𝑝𝑓 

𝜋𝑑𝑖𝐿𝑝𝑓 

  



Lecture (Feb. 14th, 2019) 

Curved Beams in Bending 

The neutral axis and the centroidal axis of a curbed beam do not coincide, and the stress distribution is 

not linear. 

The location of the neutral axis with respect to the center of curvature is given by: 

𝑟𝑛 =
𝐴

∫
𝑑𝐴
𝑟

 

For rectangular section: 

𝑅𝑐 = 𝑟𝑖 +
ℎ

2
 

And: 

𝑟𝑛 =
𝐴

∫
𝑑𝐴
𝑟

=
𝑏ℎ

∫
𝑏
𝑟 

𝑟𝑜

𝑟𝑖
𝑑𝑟

=
ℎ

ln (
𝑟𝑜

𝑟𝑖
)

 

 

For solid round section: 

𝑅𝑐 = 𝑟𝑖 +
𝑑

2
 

And: 

𝑟𝑛 =
𝑑2

4 (2𝑅𝑐 − √4𝑅𝑐
2 − 𝑑2)

 

The stress distribution is given by: 

𝜎 =
𝑀𝑦

𝐴𝑒(𝑟𝑛 − 𝑦)
 

(Where 𝑒 is the distance between the neutral axis and the centroidal axis.) 

 

 



At the inner fiber: 

𝜎𝑖 =
𝑀𝑐𝑖

𝐴𝑒𝑟𝑖
 

At the outer fiber: 

𝜎𝑜 =
𝑀𝑐𝑜

𝐴𝑒𝑟𝑜
 

(For other cross-section shapes refer to Table 3.4) 

 

 



 

Hertz Contact Stresses 

When two solid spheres are passed together with a force 𝐹, the radius of the circular contact area is: 

𝑎 = √
3𝐹

8

[(1 − 𝑣1
2)/𝐸] + [(1 − 𝑣2

2)/𝐸2]

(1/𝑑1) + (1/𝑑2)

3

 

Where: 

𝑎 = radius of the circular area of contact 

𝑑1 = diameter of sphere 1 

𝑑2 = diameter of sphere 2 

𝐸1 = modulus of elasticity of sphere 1 

𝐸2 = modulus of elasticity of sphere 2 

𝑣1 = Poisson’s radio of sphere 1 

𝑣2 = Poisson’s ratio of sphere 2 

𝐹 = applied force 

The maximum pressure at the centre of the contact area is: 

𝑝𝑚𝑎𝑥 =
3𝐹

2𝜋𝑎2
 

The above equations are also valid for the case of a sphere and a plane surface on a sphere and an 

internal spherical surface. For a plane surface use 𝑑 = ∞, and for internal surfaces the diameter is 

expressed as a negative quantity. 

Plane: 𝑑 = ∞ 

Internal Spherical Surface: 𝑑 < 0 



The maximum stress occur on the 𝑧 − 𝑎𝑥𝑖𝑠 which is the axis of application of external force: (These are 

principal stresses) 

 

 

In using the above equations, the value of Poisson’s ratio used must be that of the sphere under 

consideration. 

Also: 

𝜏𝑥𝑧 = 𝜏𝑦𝑧 =
𝜎𝑥 − 𝜎𝑧

2
=

𝜎𝑦 − 𝜎𝑧

2
= 𝜏𝑚𝑎𝑥  

Since: 

𝜎𝑥 = 𝜎𝑦 = 𝜏𝑥𝑦 = 0 

In the case of two contacting cylinders of length 𝑙 and diameter, 𝑑1 and 𝑑2, the area of contact is a 

rectangle of width 2𝑏 where: 

 

And the maximum pressure is: 

 

The above equations are also applicable for a cylinder and a plane surface as well as for a cylinder and 

an internal cylindrical surface where: 

For a plane surface: 𝑑 = ∞ 

For cylindrical surface: 𝑑 < 0 

The stress state on the 𝑧 − 𝑎𝑥𝑖𝑠 given by the following: 



 

Note that: 

For 0 ≤ 𝑧 ≤ 0.436𝑏: 𝜎1 = 𝜎𝑥      ;      𝜏𝑚𝑎𝑥 = (𝜎1 − 𝜎3)/2 

And: 

For 𝑧 ≥ 0.436𝑏: 𝜎1 = 𝜎𝑦      ;      𝜏𝑚𝑎𝑥 = (𝜎1 − 𝜎3)/2 

Also note that 𝜏𝑥𝑦  here is not the largest of the three shears for all values of 𝑧/𝑏, but is max for 

𝑧/𝑏 = 0.786 and is the larger at this point. 

6.2 - Determination of Principal Stresses 

Whatever the aspect of the stress at a joint may be, it can always be expressed in terms of normal 

stresses and shear stresses. 

 



Where: 

𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧     ;     are normal stresses 

𝜏𝑦𝑥 = 𝜏𝑥𝑦 

𝜏𝑦𝑧 = 𝜏𝑧𝑦  

𝜏𝑧𝑥 = 𝜏𝑥𝑧     ;     are shear stresses 

Two-dimensional Stress 

Consider a section of this element: 

 

∑ 𝐹𝑛 = 0 

𝜎𝑛 𝑑𝐴 − 𝜎𝑥  𝑐𝑜𝑠𝜃 𝑑𝐴 − 𝜎𝑦  𝑠𝑖𝑛𝜃 𝑑𝐴 𝑠𝑖𝑛𝜃 + 𝜏𝑥𝑦  𝑐𝑜𝑠𝜃 𝑑𝐴 𝑠𝑖𝑛𝜃 + 𝜏𝑥𝑦  𝑠𝑖𝑛𝜃 𝑑𝐴 𝑐𝑜𝑠𝜃 = 0 

𝜎𝑛 = 𝜎𝑥 cos2 𝜃 + 𝜎𝑦 sin2 𝜃 − 2𝜏𝑥𝑦𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 

𝜎𝑛 = 𝜎𝑥 cos2 𝜃 + 𝜎𝑦 sin2 𝜃 − 𝜏𝑥𝑦2𝑠𝑖𝑛𝜃 

{2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 = 𝑠𝑖𝑛2𝜃} 

𝑅𝑒𝑝𝑙𝑎𝑐𝑖𝑛𝑔 cos2 𝜃 = (
1

2
) (1 + 𝑐𝑜𝑠2𝜃) 

∑ 𝐹𝑡 = 0 leads to 

𝜏𝑛𝑡 = (𝜎𝑥 − 𝜎𝑦)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 + 𝜏𝑥𝑦(cos2 𝜃 + sin2 𝜃) 

𝜏𝑛𝑡 =
𝜎𝑥 − 𝜎𝑦

2
𝑠𝑖𝑛2𝜃 + 𝜏𝑥𝑦𝑐𝑜𝑠2𝜃 

The direction of the principal stresses (maximum and minimum values) is found by differentiating 

𝜎𝑛with respect to 𝜃, setting the values to zero and solving for 𝜃. The result is: 

𝑡𝑎𝑛2𝜃1,2 = −
𝜏𝑥𝑦

(𝜎𝑥 − 𝜎𝑦)/2
 



Substituting in the expression of 𝜎𝑛 to find: 

𝜎1,2 =
𝜎𝑥 − 𝜎𝑦

2
±  √(

𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2  

𝜏1,2 = 0 

6.3 - Mohr’s Circle 

The above results can be represented graphically by a diagram known as “Mohr’s Circle” as shown: 

 

 

 

 

 

 

 

 


