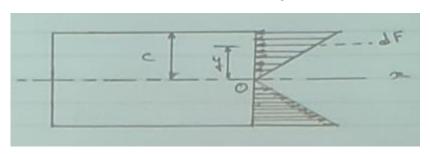
Lecture (Feb. 5th, 2019)

Midterm - ATAC-1003, 1:00pm on Saturday Will cover material from Weeks 1-4 only

Normal Stress in Bending

It can be shown that the neutral axis and centroidal axis in straight beams are the same.



Moment of dF about O is:

$$dM = dF y$$

And:

$$M = \int_{-\infty}^{A} y \, \sigma \, dA$$

But:

$$\frac{\sigma}{y} = \frac{\sigma_c}{c}$$
 ; $\sigma = \frac{\sigma_c}{c}$

And:

$$M = \int_{-\infty}^{A} y^2 \frac{\sigma_c}{c} dA$$
$$= \frac{\sigma_c}{c} \int_{-\infty}^{A} y^2 dA$$
$$= \frac{\sigma}{y} \int_{-\infty}^{A} y^2 dA$$

But:

$$\int_{}^{A} y^2 \cdot dA = I$$

And:

$$M = \frac{\sigma}{y} \cdot I$$

And:

$$\sigma = \frac{My}{I}$$

 $\sigma =$ Stress at distance y from the neutral axis

I = Moment of inertia of the cross-section about the neutral axis

M =Applied bending moment

$$\sigma_{t,max} = \frac{Mc_t}{I}$$
 ; $\sigma_{c,max} = \frac{Mc_c}{I}$

For symmetric beam sections:

$$c_t = c_c = c$$
 $|\sigma_t| = |\sigma_c| = \frac{Mc}{I}$

Shear Stress Due to Bending

In addition to normal stresses induced by bending of a beam, transverse shearing stresses are induced between he elements or fibers, provided the bending moment varies along the length of the beam. According to the strength-of-materials methods.

$$\tau = \frac{V}{Ib} \int_{z}^{c} y \, dA = \frac{VQ}{Ib}$$

 $\tau = Shear Stress$

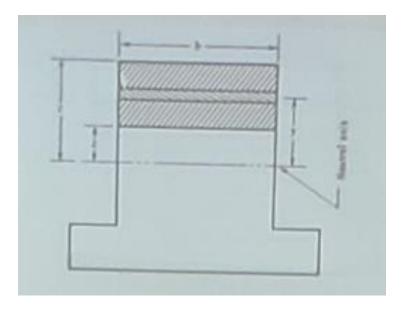
I = Moment of inertia of the cross-section

b =beam width at the section

 $Q = \int_{z}^{c} y \, dA =$ moment of area of the element about the neutral axis

V = shearing force at the section

z =location where shear stress is of interest



For rectangular cross-section:

$$\tau_{max} = \frac{3V}{A}$$

For solid circular cross section:

$$\tau_{max} = \frac{4V}{3A}$$

For thin-walled circular tube:

$$\tau_{max} = \frac{2V}{A}$$

A = cross sectional area

Two-Plane Bending

When bending occurs in both xy and xz planes of cross sections with one or two planes of symmetry, the bending stresses are given by:

$$\sigma_{x} = \frac{M_{z} y}{I_{z}} + \frac{M_{y} z}{I_{y}}$$

The maximum bending stress for a solid circular section in this case is:

$$\sigma_{max} = \frac{M c}{I} = \frac{\left(M_y^2 + M_z^2\right)^{\frac{1}{2}} \left(\frac{d}{2}\right)}{\pi \frac{d^4}{64}}$$

$$\sigma_{max} = \frac{32}{\pi d^3} \left(M_y^2 + M_z^2 \right)^{\frac{1}{2}}$$

Torsion of Circular Shafts

Torsional moments induce shear stresses on cross-sections normal to the axis of bars and shaft.

For circular shafts:

$$\tau = \frac{T \, r}{J}$$

 $\tau =$ Induced shear stress

r = distance from the center of the shaft to the point of stress

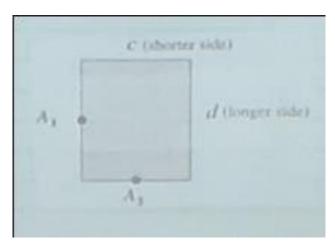
J = polar moment of inertia

For a solid circular shaft:

$$\tau_{max} = \frac{T d}{2 J} = \frac{T d}{2 \pi \frac{d^4}{32}} = \frac{16 T}{\pi d^3}$$

Torsion of Rectangular Bars

The general equations for stress and deformation in rectangular bars may be written in the following form.



For point A_1 :

$$\tau = \frac{T}{\alpha_1 \ b \ c^2}$$

For point A_2 :

$$\tau = \frac{T}{\alpha_2 \ b \ c^2}$$

For angular deformation (radians per inch of length):

$$\theta_1 = \frac{T}{\beta \ G \ b \ c^3}$$

T = Torque

b = d = breadth of section (width)

t = c =thickness of section

 $\alpha_i = \text{coefficient from the table below}$

 $\beta =$ coefficient from the table below

G = shear modulus

The maximum shear stress on the cross-section occurs at the center A_1 of the long side and is found by using α_1

TABLE 3-3 CONSTANT FOR TORSION OF RECTANGULAR BARS

b/c	1.00	1.20	1.50	1.75	2.00	2.50	3.00	4.00	5.00	6.00	8.00	10.00	00
α,	0.208	0.219	0.231	0.239	0.246	0.258	0.267	0.282	0.291	0.299	0.307	0.312	0.333
α_2	0.208										0.414		***
β	0.1406											0.312	0.333

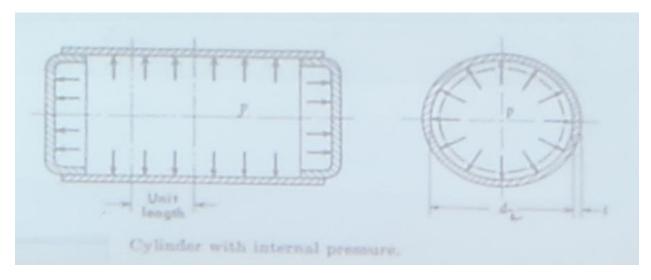
The following approximate formula for the maximum torsional stress in a rectangular section was given by Timoshenko and McCullough

$$\tau_{max} = \frac{T}{b \ t^2} \left(3 + 1.8 \frac{t}{b} \right)$$

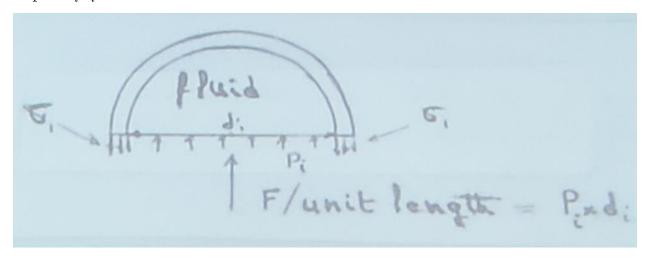
Pressure Cylinder

Thin walled cylinders $d/t \gg 10$:

Neglecting the effects of curvature of the cylinder wall, and assuming tensile stresses are uniformly distributed over the section of the wall.



$$2 \sigma_1 t = P_i d_i$$



The average tangential stress is:

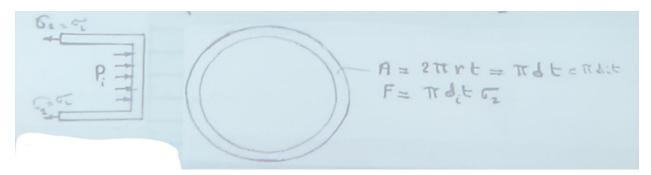
$$\sigma_1 = \sigma_t = \frac{P_i d_i}{2t}$$

 $\sigma_1 = \sigma_t = {\sf tangential} \ {\sf stress} \ {\sf or} \ {\sf hoop} \ {\sf stress}$

And an approximation to the maximum tangential stress is:

$$\sigma_{t,max} = \frac{P_i(d_i + t)}{2t}$$

The longitudinal tensile stress or σ_z is:



$$F = p_i A \quad ; \quad A = \frac{\pi d_i^2}{4}$$

$$F = p_i \frac{\pi d_i^2}{4}$$

$$\therefore \pi d_i t \sigma_2 = \frac{\pi d_i^2 p_i}{4}$$

$$\sigma_2 = \sigma_L = \frac{p_i d_i}{4 t}$$

 $\sigma_1=$ circumferential, or hoop, or tangential stress

 $\sigma_2 = \text{longitudinal stress}$

 $d_i = \text{internal diameter}$

t = wall thickness

p = internal pressure