
Lecture (Jan. 29th, 2019) 

Minimization by Method of Lagrange Multipliers 

Given a function 

𝑈(𝑥1, 𝑥2, … , 𝑥𝑛) 

We wish to find its minimum value & co-ordinates of 𝑥1 , 𝑥2 − − − etc. at this minimum. Let the function 

be subject to the constraints  

𝜑1(𝑥1, 𝑥2 − − −  𝑥𝑛) = 0 

𝜑2(𝑥1, 𝑥2 − − − 𝑥𝑛) = 0 

Procedure: 

(1) Form a new function 

𝑈(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑈(𝑥1, 𝑥2, … , 𝑥𝑛) + λ1𝜑1(𝑥1, 𝑥2, … , 𝑥𝑛) + λ2𝜑2(𝑥1 , 𝑥2, − − − 𝑥𝑛) …  𝑒𝑡𝑐. 

Let there be 𝑁 variable & 𝑀 constraints. We now treat the λ’s as variables and write the (𝑚 + 𝑛) 

equations. 

𝜕𝑈∗

𝜕𝑥1
= 0 

𝜕𝑈∗

𝜕𝑥2
= 0 

𝑒𝑡𝑐. 

𝜕𝑈∗

𝜕λ1
= 0 

Final step: solve the set of algebraic equations (2) for the variables 𝑥1, 𝑥2, − − −𝑥𝑛 . The function 

𝑈(𝑥1 , 𝑥2) will be minimum at this point. 

NOTE: The method of Lagrange Multipliers is generally good for handling problems where constraints on 

the variables exist. 

Assignment #2: 3.4, 3.5, 3.6, 3.9, 3.10, 3.14 

Midterm is February 12th, unless we can find a room, and then it will be on the Saturday. 

Load and Stress Analysis 

Beams 

1. Loads Distributed Along a Line 

Let’s assume that the function 𝑤 describing a particular distributed load is known. The graph of 𝑤 is 

called the loading curve. The force acting on an element 𝑑𝑥 of the line is 𝑤𝑑𝑥.  

 



 

The total force 𝐹 is: 

 

 

 

The moment about the origin due to the force exerted on the element 𝑑𝑥 is 𝑥𝑤𝑑𝑥, so the total moment 

about the origin due to the distributed load is: 

𝑀 = ∫ 𝑥𝑤 𝑑𝑥
 

𝐿

 

Or: 

𝑀 = 𝑥̅𝐹 = ∫ 𝑥𝑤 𝑑𝑥
 

𝐿

 

Where 𝐹 is the equivalent load if placed at the position: 

𝑥̅ =
∫ 𝑥𝑤 𝑑𝑥

 

𝐿

∫ 𝑤 𝑑𝑥
 

𝐿

 

Example: The beam is subjected to a triangular distributed load whose value at 𝐵 is 100 𝑁/𝑚. 

Determine the reactions at 𝐴 and 𝐵. 

 

First method:  

𝑤 =
100

12
𝑥      (𝑁/𝑚) 

The total load is:  

𝐹 =  ∫ 𝑤 𝑑𝑥
 

𝐿

= ∫ (
100

12
) 𝑥 𝑑𝑥 = 600 𝑁

12

0

 

𝐹 =  ∫ 𝑤 𝑑𝑥
 

𝐿

 

𝑤 



The clockwise moment about 𝐴 due to the load is: 

𝑀𝐴 = ∫ 𝑥𝑤 𝑑𝑥 = ∫ (
100

12
) 𝑥2 𝑑𝑥

12 

0

 

𝐿

= 4800 𝑁 ∙ 𝑚 

From the equilibrium equations: 

 

∑ 𝐹𝑥 = 𝐴𝑥 = 0     ;      ∑ 𝐹𝑦 = 𝐴𝑦 + 𝐵𝑦 − 600 = 0 

− ∑ 𝑀𝐴 = 12𝐵𝑦 − 4800 = 0 

∴ 𝐴𝑥 = 0     ;      𝐴𝑦 = 200 𝑁     ;      𝐵𝑦 = 400 𝑁 

Second Method 

 

 

𝐹 = (
1

2
) ∙ (12 𝑚) ∙ (100

𝑁

𝑚
) = 600 𝑁 

𝑥̅ = (
2

3
) ∙ (12 𝑚) = 8 𝑚 

∑ 𝐹𝑥 = 𝐴𝑥 = 0     ;      ∑ 𝐹𝑦 = 𝐴𝑦 + 𝐵𝑦 − 600 = 0 

− ∑ 𝑀𝐴 = 12𝐵 − 8 ∙ 600 = 0 

∴ 𝐴𝑥 = 0     ;      𝐴𝑦 = 200 𝑁     ;      𝐵𝑦 = 400 𝑁 

 

 



2. Internal Forces and Moments in Beams 

Determining the internal forces and moment at a particular cross section of a bream typically involves 

three steps: 

1. Determine the external forces and moments – Draw free-body diagram of the beam and 

determine the reactions at tits supports. If the beam is a member of a structure, you must first 

analyze the structure. 

2. Draw the free-body diagram of part of the beam – cut the beam at the point at which you want 

to determine the internal forces and moment and draw the free-body diagram of one of the 

resulting parts. You can choose the part with the simplest free-body diagram, if your cut divides 

a distributed load, don’t represent the distributed load by an equivalent force until after you 

have obtained your free-body diagram. 

3. Apply the equilibrium equations – use the equilibrium equations to determine the axial force 𝑃, 

the shear force 𝑉, and the bending moment 𝑀. 

Example: Determine the internal forces and moment at 𝐶. 

 

∑ 𝐹𝑥 = 𝐴𝑥 = 0     ;      ∑ 𝑀𝐴 = 𝐿𝐵𝑦 − 𝐹 (
3

4
𝐿) = 0     ;     𝐵𝑦 = (

3

4
) 𝐹 

∑ 𝐹𝑦 = (
3

4
) 𝐹 + 𝐴𝑦 − 𝐹 = 0     ;      𝐴𝑦 = (

1

4
) 𝐹 

 



 

∑ 𝐹𝑥 = 𝐴𝑥 = 0     ;      ∑ 𝐹𝑦 = (
1

4
) 𝐹 − 𝑉𝑐 = 0     ;      𝑉𝑐 = (

1

4
) 𝐹 

∑ 𝑀𝐶 = 𝑀𝑐 − (
1

4
) (

𝐹

4
) = 0     ;      𝑀𝑐 = (

1

16
) 𝐹𝐿  

𝑃𝑐 = 0     ;      𝑉𝑐 = (
1

4
) 𝐹     ;      𝑀𝑐 = (

1

16
) 𝐹𝐿 

 

Example: Determine the internal forces and moment at (a) and 𝐵 and (b) at 𝐶 

 

∑ 𝐹𝑥 = 𝐴𝑥 = 0     ;      ∑ 𝐹𝑦 = 𝐴𝑦 + 𝐷𝑦 − 180 = 0  

∑ 𝑀𝐴 = 12𝐷𝑦 − 4(180) = 0 

𝐴𝑥 = 0     ;      𝐴𝑦 = 120 𝑁     ;      𝐷𝑦 = 60 𝑁 



 

∑ 𝐹𝑥 = 𝑃𝐵 = 0     ;      ∑ 𝐹𝑦 = 120 − 45 − 𝑉𝐵 = 0      

∑ 𝑀𝐵 = 𝑀𝐵 + (1)(45) − (3)(120) = 0 

𝑃𝐵 = 0     ;     𝑉𝐵 = 75 𝑁     ;      𝑀𝐵 = 315 𝑁 ∙ 𝑚 

 

∑ 𝐹𝑥 = −𝑃𝐶 = 0 

∑ 𝐹𝑦 = 𝑉𝑐 + 60 = 0 

∑ 𝑀𝐶 = −𝑀𝐶 + (3)(60) = 0 

Solving we obtain: 

𝑃𝐶 = 0     ;      𝑉𝐶 = −60     ;      𝑀𝐶 = 180 𝑁 ∙ 𝑚 



Lecture (Jan. 31st, 2019) 

3. Shear Force and Bending Moment Diagrams 

The shear force and bending moment diagrams are simply the graphs of 𝑉 and 𝑀 respectively, as 

functions of 𝑥. They show the changes in the shear force and bending moment that occur along the 

beam’s length as well as their maximum and minimum values. 

 

 

 

 



3. Relations between Distributed Load, Shear Force, and Bending Moment 

𝑑𝑣

𝑑𝑥
= −𝑤 

𝑑𝑀

𝑑𝑥
= 𝑣 

If we define 𝑞(𝑥) as the load intensity with units of force per unit length and is positive in the positive 

𝑦 −direction. Then, 

𝑞 = −𝑤 =
𝑑𝑣

𝑑𝑥
=

𝑑2𝑀

𝑑𝑥2
 

And: 

𝑉 = ∫ 𝑑𝑉
𝑉𝐵

𝑉𝐴

= 𝑉𝐵 − 𝑉𝐴 = ∫ 𝑞 𝑑𝑥
𝑥𝐵

𝑥𝐴

 

And: 

𝑀 = ∫ 𝑑𝑀
𝑀𝐵

𝑀𝐴

= 𝑀𝐵 − 𝑀𝐴 = ∫ 𝑉 𝑑𝑥
𝑥𝐵

𝑥𝐴

 

Singularity Functions 

Singularity functions are shown in Table 3.1 constitute an easy means of integrating across 

discontinuities. Consequently, they are used to write general expressions for shear force and bending 

moment in beams in the presence of concentrated forces and moments.  

Example – Derive expressions for the loading, shear force, and bending moment of the beams as shown. 

 

Solution  

𝑞 =  𝑅1 < 𝑥 >−1− 𝐹1 < 𝑥 − 𝑎1 >−1− 𝐹2 < 𝑥 − 𝑎2 >−1+ 𝑅2 < 𝑥 − 𝐿 >−1 

Have: 

∫ 𝑑𝑉
𝑉𝐵

𝑉𝐴

= ∫ 𝑞 𝑑𝑥
𝑥𝐵

𝑥𝐴

= 𝑉𝐵 − 𝑉𝑎  

 



And:  

𝑉 = 0 𝑎𝑡 𝑥 = −∞ 

∴ 𝑉 = ∫ 𝑞 𝑑𝑥
𝑥

−∞

=  𝑅1 < 𝑥 >0− 𝐹1 < 𝑥 − 𝑎1 >0− 𝐹2 < 𝑥 − 𝑎2 >0+ 𝑅2 < 𝑥 − 𝐿 >0 

Also have: 

𝑉 = 0 𝑎𝑡 𝑥 > 𝐿 

∴ 𝑅1 − 𝐹1 − 𝐹2 + 𝑅2 = 0 −  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1) 

The bending moment: 

∫ 𝑑𝑀
𝑀𝐵

𝑀𝐴

= ∫ 𝑉 𝑑𝑥
𝑥𝐵

𝑥𝐴

= 𝑀𝐵 − 𝑀𝐴 

∴ 𝑀 = ∫ 𝑉 𝑑𝑥
𝑥

−∞

= 𝑅1 < 𝑥 >1− 𝐹1 < 𝑥 − 𝑎1 >1− 𝐹2 < 𝑥 − 𝑎2 >1+ 𝑅2 < 𝑥 − 𝐿 >1 

And: 

𝑅1𝐿 − 𝐹1(𝐿 − 𝑎1) − 𝐹2(𝐿 − 𝑎2) = 0 − 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2) 

(1) 𝑎𝑛𝑑 (2) 𝑎𝑟𝑒 𝑠𝑜𝑙𝑣𝑒𝑑 𝑓𝑜𝑟 𝑅1 𝑎𝑛𝑑 𝑅2 

 

Example – The figure shows the loading diagram for a beam cantilevered at 0 and having a uniform load 

𝑤 acting on the position 𝑎 ≤ 𝑥 ≤ 𝐿. Derive the shear force and moment sections. 𝑀1 and 𝑅1 are the 

support reactions.  

 

 



Solution – The loading function is: 

𝑞 = −𝑀1 < 𝑥 >−2+ 𝑅1 < 𝑥 >−1− 𝑤 < 𝑥 − 𝑎 >0 

First integration to obtain 𝑉: 

𝑉 = ∫ 𝑞 𝑑𝑥
𝑥

−∞

= −𝑀, 𝑥 >−1+ 𝑅1 < 𝑥 >0−
𝑤

2
< 𝑥 − 𝑎 >1 

Second Integration: 

𝑀 = ∫ 𝑉 𝑑𝑥
𝑥

−∞

= −𝑀1 < 𝑥 >0+ 𝑅1 < 𝑥 >−1−
𝑤

2
< 𝑥 − 𝑎 >2 

For 𝑥 slightly larger than 𝐿: 

𝑉 = 𝑀 = 0 

∴ 𝑉𝑥 > 𝐿 = −𝑀1(0) + 𝑅1 − 𝑤(𝐿 − 𝑎) = 0  −   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1) 

And: 

𝑀𝑥 > 𝐿 = −𝑀1 + 𝑅1𝐿 −
𝑤

2
(𝐿 − 𝑎)2 = 0 −   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2) 

 

- Pure Tension or Compression 

𝜎 =
𝐹

𝐴
 

 

 

- Pure Shear Stress 

𝜏 =
𝐹

𝐴
 



 

Elastic Strain 

- Strain 

𝜀 =
𝛿

𝐿
 

From Hooke’s Law: 

𝜎 = 𝐸𝜀 

𝜏 = 𝐺𝛾 

Where: 

𝐸 − 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 

𝜀 − 𝑠𝑡𝑟𝑎𝑖𝑛 

𝐺 − 𝑠ℎ𝑒𝑎𝑟 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 

𝛾 − 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑎𝑖𝑛 

And: 

∴  
𝐹

𝐴
= 𝐸

𝛿

𝐿
 

And: 

𝛿 =
𝐹𝐿

𝐴𝐸
 

- Poisson’s Ratio 𝜇 or 𝑣 

𝜇 = −
𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛

𝑎𝑥𝑖𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛
 

 

The three elastic constants are related by: 

𝐸 = 2𝐺(1 + 𝜇) 

Stress-Strain Relations 

- Uniaxial Stress 

𝜀1 =
𝜎1

𝐸
     ;     𝜀2 = −𝜇 ∙ 𝜀1     ;      𝜀3 = −𝜇 ∙ 𝜀1 



- Biaxial Stress 

𝜀1 =
𝜎1

𝐸
− 𝜇

𝜎2

𝐸
 

𝜀2 =
𝜎2

𝐸
− 𝜇

𝜎1

𝐸
 

𝜀3 =
−𝜇𝜎1

𝐸
−

𝜇𝜎2

𝐸
 

Solving for 𝜎1 and 𝜎2: 

𝜎1 = 

 

𝜎2 = 

 

- Triaxial Stress 

𝜀1 =
𝜎1

𝐸
− 𝜇

𝜎2

𝐸
− 𝜇

𝜎3

𝐸
 

𝜀2 =
𝜎2

𝐸
− 𝜇

𝜎1

𝐸
− 𝜇

𝜎3

𝐸
 

𝜀3 =
𝜎3

𝐸
− 𝜇

𝜎1

𝐸
− 𝜇

𝜎2

𝐸
 

Or: 

𝜎1 =
𝐸𝑒1(1 − 𝜇) + 𝜇𝐸(𝜀2 + 𝜀3)

1 − 𝜇 − 2𝜇2
 

𝜎2 =
𝐸𝑒2(1 − 𝜇) + 𝜇𝐸(𝜀1 + 𝜀3)

1 − 𝜇 − 2𝜇2
 

𝜎3 =
𝐸𝑒3(1 − 𝜇) + 𝜇𝐸(𝜀1 + 𝜀2)

1 − 𝜇 − 2𝜇2
 


