
Lecture (Jan. 22nd, 2019) 

Figure 9-1 

The instantaneous probability of failure 𝜌, often called hazard rate, varies with time as indicated. This 

tends to greatly complicate the computation. Fortunately, with little error, for the mid-life period 

between the rapid burn-in and burn-out intervals, 𝜌 is assumed time invariant (𝜌̅) as shown in the figure  

For this region, the law of reliability simplifies to: 

𝑅 = 𝑒−𝜌̅ ∫ 𝑑𝑡
𝑡

0 = 𝑒−𝜌̅∙𝑡  

The hazard rate is the number of failures occurring per hour for each survived unit. Therefore, its 

reciprocal 𝜎 is the number of survival hours to the next failure or the meantime to failure. 

𝜎 =
1

𝜌̅
 

and:  𝑅 = 𝑒−
𝑡

𝜎 

Reliability of Complex Systems 

Systems are made of many components, all interrelated and most of them contributing to the 

unreliability of the system as a unit. The joint reliability is predicted from individual component 

probabilities as follows: 

Series Systems 

Systems consisting of several components so connected and independent that if one part fails the entire 

system fails, are series systems. 

In a series system the reliability is the product of the reliabilities of each component.  

∴ 𝑅𝑠 = 𝑅1 ∙ 𝑅2 ∙ 𝑅3 … 𝑅𝑛 = ∏ 𝑅𝑖

𝑛

1

 

= 𝑒−(𝜌̅1+ 𝜌̅2+ 𝜌̅3+⋯+ 𝜌̅𝑛)𝑡 = 𝑒− ∑ 𝜌̅𝑛
1 𝑖𝑡  

The unreliability or probability of failure of such a system is: 

𝑄𝑠 = 1 − 𝑒− ∑ 𝜌̅𝑛
1 𝑖𝑡  

Parallel Redundant Systems 

When very high system reliabilities are required, duplicate components and even entire duplicate 

circuits become desirable, so that if the first fails, the second will carry on. 

 𝑅 = 𝑒1
−𝜌1̅̅̅̅ 𝑡

  

Begin 𝑅 = 𝑒2
−𝜌2̅̅̅̅ 𝑡

 End 

 𝑅 = 𝑒3
−𝜌3̅̅̅̅ 𝑡

  

 



This parallel reliability is referred to as parallel redundancy, because all units operate simultaneously. 

The probability that one of the two parallel components will survive is the sum of the probabilities of the 

three outcomes; neither of components A and B fails, A fails but not B, and B fails but not A. 

∴ 𝑅𝑝 = 𝑒1
−𝜌1̅̅̅̅ 𝑡

+ 𝑒2
−𝜌2̅̅̅̅ 𝑡

− 𝑒1
−(𝜌1̅̅̅̅ +𝜌2̅̅̅̅ )𝑡

= 𝑅1 + 𝑅2 − 𝑅1𝑅2 

The probability of failure is 𝑄𝑝: 

𝑄𝑝 = (1 − 𝑒1
−𝜌1̅̅̅̅ 𝑡

)(1 − 𝑒2
−𝜌2̅̅̅̅ 𝑡

) 

The probability of survival for 𝑛 components is simpler to compute via unreliability: 

𝑄𝑝 = 𝑄𝑝1 ∙ 𝑄𝑝1 ∙ … ∙ 𝑄𝑝𝑛 = ∏ 𝑄𝑖

𝑛

𝑖=1

 

and:  𝑅𝑝 = 1 − 𝑄𝑝 

Stand-by Systems 

When it is impractical to operate a system with parallel branches, and yet some assurance of continued 

operation is necessary, stand-by units become advisable. Such a system may be regarded as a simple 

system with multiple lives. 

 Stand-by Unit  

Begin  Primary Unit End 

 

This obeys a principle known as 𝑃𝑜𝑖𝑠𝑠𝑜𝑛′𝑠 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 which yields: 

𝑒−𝜌̅𝑡 [1 + 𝜌̅𝑡 +
(𝜌̅𝑡)2

2!
+ ⋯ +

(𝜌̅𝑡)𝑛

𝑛!
] = 1 

If one stand-by unit is present, the system reliability would be: 

𝑅𝐵 = 𝑒−𝜌̅𝑡(1 + 𝜌̅𝑡) 

And with two stand-by units: 

𝑅𝐵 = 𝑒−𝜌̅𝑡 (1 + 𝜌̅𝑡 +
(𝜌̅𝑡)2

2!
) 

And for 𝑛 stand-by units: 

𝑅𝐵 = 𝑒−𝜌̅𝑡 [1 + 𝜌̅𝑡 +
(𝜌̅𝑡)2

2!
+ ⋯ +

(𝜌̅𝑡)𝑛

𝑛!
] 

 

 



Example: A series-parallel system is made of components as depicted in the figure. The probabilities for 

each component, all for the same period of time, is as indicated in the box. Compute the reliability of 

the system.  

Begin 0.96 0.98 0.92 0.95 End 

 0.96 0.98 0.92 0.95  

Solution: 

The reliability of each series branch (since they are the same) is: 

𝑅𝑠 = 𝑅1 ∙ 𝑅2 ∙ 𝑅3 ∙ 𝑅4 

𝑅𝑠 = (0.96)(0.98)(0.92)(0.95) = 0.85 

The reliability of the two parallel branches, and therefore for the system, is 

𝑅𝑝 = 2𝑅𝑠 − 𝑅1𝑅2 = (2)(0.82) − (0.82)(0.82) 

𝑅𝑝 = 0.97 

Example: Calculate the reliability of a system with two stand-by units if each has a mean life to failure of 

100 ℎ𝑟, for a period of 10 ℎ𝑟. Compute this with the reliability for the system after one stand-by unit is 

removed; after both stand-by units are removed. 

Solution: We have: 

𝜌̅ =
1

𝑚
=

1

100
= 0.01 = ℎ𝑎𝑧𝑎𝑟𝑑 𝑟𝑎𝑡𝑒 

i) System reliability with two stand-by units: 

𝑅𝐵 = 𝑒−𝜌̅𝑡 (1 + 𝜌̅𝑡 +
(𝜌̅𝑡)2

2!
) 

𝑅𝐵 = 𝑒−(0.01)(10) [1 + (0.01)(10) +
((0.01)(10))

2

2!
] = 0.9998453 

ii) System reliability with one stand-by unit: 

𝑅𝐵 = 𝑒−(0.01)(10)[1 + (0.01)(10)] = 0.9953211 

iii) System reliability with no stand-by: 

𝑅𝐵 = 𝑒−(0.01)(10) = 0.9048374 

Relating Design Factor to Reliability 

Stress and strength are statistical in nature. In the probability density functions for stress 𝜎 and strength 

𝑆 shown in the figure below, the mean values of stress and strength are 𝜎̅ = 𝜇𝜎  and 𝑆̅ = 𝜇𝑠 respectively. 

∴ 𝑇ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑠𝑖𝑔𝑛𝑓𝑎𝑐𝑡𝑜𝑟 𝑛̅𝑑: 

𝑛̅𝑑 =
𝜇𝑠

𝜇𝜎
 

 



The margin of safety 𝑚 at any value of 𝜎 and 𝑠 is: 

𝑚 = 𝑆 − 𝜎 

The average margin of safety 𝑚̅ is: 

𝑚̅ = 𝜇𝑠 − 𝜇𝜎 

 

 

  



Lecture (Jan. 24th, 2019) 

For the overlap in Fig. (a) 𝜎 > 𝑆 and the margin of safety is negative. The reliability that a part will 

perform without failure, 𝑅, is the area of the margin of safety distribution (Fig. (b)) for 𝑚 > 0. 

Reliability is then the probability that 𝑚 > 0. 

𝑅 = 𝑝 (𝑆 > 𝜎) = 𝑝 ({𝑆 − 𝜎} > 0) = 𝑝 (𝑚 > 0) 

Noting that for normal distributions: 

  𝜇𝑚 = 𝜇𝑠 − 𝜇𝜎  

And: 

𝜎̂𝑚 = (𝜎̂𝑠
2 + 𝜎̂𝜎

2)
1
2 

We write: 

𝑍𝑚 =
(𝑚 − 𝜇𝑚)

𝜎̂𝑚
 

To find the probability that 𝑚 > 0 we substitute 𝑚 = 0 in 𝑍𝑚. 

𝑍𝑚 =
(0 − 𝜇𝑚)

𝜎̂𝑚
=

−𝜇𝑚

𝜎̂𝑚
= −

(𝜇𝑠 − 𝜇𝜎)

(𝜎̂𝑠
2 + 𝜎̂𝜎

2)
1
2

 

Dividing all terms by 𝜇𝜎: 

𝑍𝑚 = −
(

𝜇𝑠
𝜇𝜎

− 1)

(
𝜎̂𝑠

2

𝜇𝜎
+

𝜎̂𝜎
2

𝜇𝜎
)

1
2

= −
𝑛̅𝑑 − 1

(
𝜎̂𝑠

2

𝜇𝜎

𝜇𝑠

𝜇2
+

𝜎̂𝜎
2

𝜇𝜎
)

1
2

= −
𝑛̅𝑑 − 1

(𝑛̅𝑑
2 𝜎̂𝑠

2

𝜇𝑠
2 +

𝜎̂𝜎
2

𝜇𝜎
)

1
2

 

Introducing the terms 𝐶𝑠 = 𝜎𝑠/𝜇𝑠 and 𝐶𝜎 =  𝜎𝜎/𝜇𝜎 

𝑍𝑚 =  −
𝑛̅𝑑 − 1

(𝑛̅𝑑
2 𝐶𝑠

2 + 𝐶𝜎
2)

1
2

 

Solving for 𝑛𝑑 : 

𝑛𝑑 =
1 + [1 − (1 − 𝑍2𝐶𝑠

2)(1 − 𝑍2𝐶𝜎
2)]

1
2

1 − 𝑍2𝐶𝑠
2      𝑤ℎ𝑒𝑟𝑒 𝑅 > 0.5 

𝑛𝑑 =
1 − [1 − (1 − 𝑍2𝐶𝑠

2)(1 − 𝑍2𝐶𝜎
2)]

1
2

1 − 𝑍2𝐶𝑠
2      𝑤ℎ𝑒𝑟𝑒 𝑅 ≤ 0.5 

Where 𝑍 refers to 𝑍𝑚. 

 

 



Important note: Comparing Fig(b) to Tab. A-10 

𝑅 = 1 − 𝛷(𝑧)    𝑧 ≤ 0 

𝑅 = 𝛷(𝑧)            𝑧 > 0 

Optimizing by Differentiation 

When all functional constrains can be involved in a single criterion function, the parameters are readily 

optimized. The derivative of the criterion function with respect to each parameter is set to zero. 

The 𝑛 equations are then solved simultaneously for the optimum parametric values. Of course, these 

must be established consistent with any regional limitations that may apply. 

If the criterion is expressible in terms of a single significant parameter, the mathematical problem 

reduces to finding where the stope is zero.  

Example: A rectangular tank with its base twice as long as wide is to have a volume of 12 𝑓𝑡2. 

Determine the most economical dimensions, if the bottom sheet material costs 20¢/𝑓𝑡2 and the sides 

10¢/𝑓𝑡2. 

Solution: Cost of bottom = 𝑎 × 2𝑎 × 2𝑎 = 40𝑎2¢ 

And the four sides cost = 2 × 𝑎 × 𝑏 × 10 + 2 × 2𝑎𝑏 × 10 = 60𝑎𝑏¢ 

The total cost = 𝐶 = 40𝑎2 + 60𝑎𝑏 

𝑉 = 2𝑎 × 𝑎 × 𝑏 = 12     or     𝑏 = 6/𝑎2 

𝑐 = 40𝑎2 +
360

𝑎
 

𝑑𝑐

𝑑𝑎
= 80𝑎 −

360

𝑎2
= 0 

From which 𝑎 = 1.65′ and 𝑏 = 2.2′ 

And the most economical tank is: 

1.65 𝑓𝑡 × 3.30 𝑓𝑡 × 2.20 𝑓𝑡 

The cost is: 

𝐶 = 40𝑎2 +
360

𝑎
= 40(1.65)2 +

360

1.65
 

𝐶 ≅ 3.27 

Optimization by Dual Variables 

This method consists of the replacement of the generalized function by a dual problem that results in 

the simultaneous solutions of a system of linear equation. If the number of unknowns exceeds the 

number of equations that can be written, the method will not yield a solution. The dual problem derives 

from a particular treatment of arithmetic and geometric mean expressions.  



If 𝑎1 + 𝑎2 + 𝑎3 + ⋯ + 𝑎𝑛 = 1, the expression concerned with the weighted arithmetic mean is: 

𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 

And that for the weighted geometric mean is: 

(𝑥1
𝑎1)(𝑥2

𝑎2)(𝑥3
𝑎3) … (𝑥𝑛

𝑎𝑛) 

The inequality (the arithmetic average is greater than the geometric) becomes an equality only if all of 

the x-terms are, in addition to the above, equal. The inequality is best written in the following form. If 

𝑎𝑖𝑥𝑖 = 𝑢𝑖, then 

𝑢1 + 𝑢2 + ⋯ + 𝑢𝑛 ≥ (
𝑢1

𝑎1
)

𝑎1

(
𝑢2

𝑎2
)

𝑎2

… (
𝑢𝑛

𝑎𝑛
)

𝑎𝑛

  

 

Example: Four hundred (400) 𝑦𝑑3 of sand must be ferried across a river. The sand is to be shipped 

across in open containers of length 𝐿, width 𝑊, and height ℎ. The bottom and sides of the container 

cost $10/𝑦𝑑2 and the ends $20/𝑦𝑑2. Each round trip on the ferry costs 10¢. The containers are 

assumed to have no salvage value after the transfer. Minimize the transfer cost. 

Solution: The total transportation cost is: 

𝐶 = ($10)(𝑏𝑜𝑡𝑡𝑜𝑚) 

+($10)(𝑠𝑖𝑑𝑒)(2 𝑠𝑖𝑑𝑒𝑠) 

+($20)(𝑒𝑛𝑑)(𝑡𝑤𝑜 𝑒𝑛𝑑𝑠) 

+(𝑡𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑎𝑛𝑑/𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟)(𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡𝑟𝑖𝑝) 

𝐶 = 10𝑙𝑤 + 20𝑙ℎ + 40𝑤ℎ + (
400

𝑙𝑤ℎ
) (

10

100
) 

The dual function is: 

𝐶(𝑎) = (
10𝑙𝑤

𝑎1
)

𝑎1

(
20𝑙ℎ

𝑎2
)

𝑎2

(
40𝑤ℎ

𝑎3
)

𝑎3

(
40

𝑎4𝑙𝑤ℎ
)

𝑎4

 

To satisfy a minimum 𝐶, the dual variables must conform to: 

(𝑙𝑤)𝑎1(𝑙ℎ)𝑎2(𝑤ℎ)𝑎3 (
1

𝑙𝑤ℎ
)

𝑎𝑛

= 1  

And eliminating the variables with the dual function becomes: 

𝐶(𝑎) = (
10

𝑎1
)

𝑎1

(
20

𝑎2
)

𝑎2

(
40

𝑎3
)

𝑎3

(
40

𝑎4
)

𝑎4

 

 

 

 



In order that the dual variables relation be satisfied, the sum of the exponents for each variable must 

equal zero. Thus, 

𝐹𝑜𝑟 𝑙, 𝑎1 + 𝑎2 + 0 − 𝑎4 = 0 

𝐹𝑜𝑟 𝑤, 𝑎1 + 0 + 𝑎3 − 𝑎4 = 0 

𝐹𝑜𝑟 ℎ, 0 + 𝑎2 + 𝑎3 − 𝑎4 = 0 

And 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 = 1 for the inequality to become and equality. 

Solving simultaneously, 

𝑎1 = 1 5⁄  

𝑎2 = 1 5⁄  

𝑎3 = 1 5⁄  

𝑎4 = 2 5⁄  

And 𝐶(𝑎) = (
10

1 5⁄
)

1 5⁄

(
20

1 5⁄
)

1 5⁄

(
40

1 5⁄
)

1 5⁄

(
40

2 5⁄
)

2 5⁄

 

The minimum cost is $100 

To obtain the design parameters, observe that the exponent values yield the proportionate cost of each 

contributing cost. 

Thus for: 

𝑎1:     10𝑙𝑤 =
1 5⁄

5 5⁄
× 100 = 20 

𝑎2:     20𝑙ℎ =
1 5⁄

5 5⁄
× 100 = 20 

𝑎3:     40𝑤ℎ =
1 5⁄

5 5⁄
× 100 = 20 

𝑎4 :    
40

𝑙𝑤ℎ
=

2 5⁄

5 5⁄
× 100 = 40 

Solving the above, the optimum parameter values are: 

𝑙 = 2𝑦𝑑     ;      𝑤 = 1 𝑦𝑑     ;      ℎ = 1 2⁄  𝑦𝑑 

 


