
Lecture (Mar. 12th, 2019)  

𝑈𝑠 =
1 + 𝑣

6𝐸
(2𝑆𝑦𝑝

2 ) 

∴ (𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2 − 2𝑆𝑦𝑝
2  

Introducing the design factor 𝑛𝑑  we have, 

𝜎′ = 𝜎𝑒𝑞 =
𝑆𝑦𝑝

𝑛𝑑
[
(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2

2
]

 
1
2

 

Where: 

𝜎′ =
1

√2
[(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2]

1
2 

IS known at the 𝑉𝑜𝑛 𝑀𝑖𝑠𝑒𝑠 𝑆𝑡𝑟𝑒𝑠𝑠 

For plane stress, 𝜎3 = 0, 

𝜎′ = (𝜎1 + 𝜎2 + 𝜎1𝜎2)
1
2 

Which is the equation of an eclipse. 

Note that in the case of pure shear, 𝜎1 = −𝜎2 or 3𝜎1
2 = 𝑆𝑦𝑝

2 , and 𝜎1 = 0.577𝑆𝑦𝑝  while the maximum 

shear stress theory assumes 𝜎1 = 0.5𝑆𝑦𝑝 

In terms of the rectangular stress components we can write 𝜎′ as 

𝜎′ =
1

√2
[(𝜎𝑥 − 𝜎𝑦)

2
+ (𝜎𝑦 − 𝜎𝑧)

2
+ (𝜎𝑥 − 𝜎𝑧)2 + 6(𝜏𝑥𝑦

2 + 𝜏𝑦𝑧
2 + 𝜏𝑧𝑥

2 )]

1
2

 

And for 2 − 𝐷 stress: 

𝜎′ = (𝜎𝑥
2 − 𝜎𝑥𝑦 + 𝜎𝑦

2 + 3𝜏𝑥𝑦
2 )

1
2
 

Coulomb-Mohr Theory (For Ductile Materials) 

This theory can be used to predict failure for materials whose strength in tension and compression are 

not equal. If states that: 

𝜎1

𝑆𝑡
−

𝜎3

𝑆𝑐
= 1 

Where either yield strength or ultimate strength can be used. 

Incorporating the design factor 𝑛𝑑 : 

𝜎1

𝑆𝑡
−

𝜎3

𝑆𝑐
=

1

𝑛𝑑
 



For plane stress, if the two nonzero principal stresses are 𝜎𝐴 ≥ 𝜎𝐵  then: 

If 𝜎𝐴 ≥ 𝜎𝐵 ≥ 0, then 𝜎1 = 𝜎𝐴 and 𝜎3 = 0 

∴ 𝜎𝐴 =
𝑆𝑡

𝑛𝑑
 

If 𝜎𝐴 ≥ 0 ≥ 𝜎𝐵, then 𝜎1 = 𝜎𝐴 and 𝜎3 = 𝜎𝐵 

∴
𝜎𝐴

𝑆𝑡
−

𝑆𝑡

𝑆𝑐
=

1

𝑛𝑑
 

If 0 ≥ 𝜎𝐴 ≥ 𝜎𝐵, then 𝜎1 = 0 and 𝜎3 = 𝜎𝐵  

∴ 𝜎𝐵 = −
𝑆𝑐

𝑛𝑑
 

Note that for pure shear 𝜏, 𝜎1 = −𝜎3 = 𝜏 

The torsional yield strength occurs when 𝜏𝑚𝑎𝑥 = 𝑆𝑠𝑦 

Substituting into: 

𝜎1

𝑆𝑡
−

𝜎3

𝑆𝑐
= 1 

We get: 

𝑆𝑠𝑦

𝑆𝑦𝑡
+

𝑆𝑠𝑦

𝑆𝑦𝑐
= 1 

𝑆𝑠𝑦𝑆𝑦𝑐 + 𝑆𝑠𝑦𝑆𝑦𝑡 = 𝑆𝑦𝑡𝑆𝑦𝑐  

𝑆𝑠𝑦 =
𝑆𝑦𝑡𝑆𝑦𝑐

𝑆𝑦𝑡 + 𝑆𝑦𝑐
 

Reading Assignment: 

Example 5-1 

Example 5-2 

Maximum-Normal-Stress Theory (For Brittle Materials) 

According to this theory, failure occurs at a point in a body when one of the principal stresses at that 

point equals the critical stress for that material. 

If: 

|𝜎1| > |𝜎2| > |𝜎3| 

Then: 

𝜎1 =
𝑆𝑢𝑡

𝑛𝑑
 



 

Brittle Coulomb-Mohr Theory: 

𝜎𝐴 =
𝑆𝑢𝑡

𝑛𝑑
     ;      𝐹𝑜𝑟 𝜎𝐴 ≥ 𝜎𝐵 ≥ 0 

𝜎𝐴

𝑆𝑢𝑡
−

𝜎𝐵

𝑆𝑢𝑐
=

1

𝑛𝑑
     ;      𝐹𝑜𝑟 𝜎𝐴 ≥ 0 ≥ 𝜎𝐵 

𝜎𝐵 = −
𝑆𝑢𝑐

𝑛𝑑
     ;      𝐹𝑜𝑟 0 ≥  𝜎𝐴 ≥ 𝜎𝐵 

Modified Coulomb-Mohr Theory: 

𝜎𝐴 =
𝑆𝑢𝑡

𝑛𝑑
 

𝐹𝑜𝑟 𝜎𝐴 ≥ 𝜎𝐵 ≥ 0 𝑎𝑛𝑑 𝜎𝐴 ≥ 0 ≥ 𝜎𝐵 𝑎𝑛𝑑 |
𝜎𝐵

𝜎𝐴
| ≤ 1 

𝜎𝐴(𝑆𝑢𝑐 − 𝑆𝑢𝑡)

𝑆𝑢𝑐𝑆𝑢𝑡
−

𝜎𝐵

𝑆𝑢𝑐
=

1

𝑛𝑑
 

𝐹𝑜𝑟 𝜎𝐴 ≥ 0 ≥ 𝜎𝐵 𝑎𝑛𝑑 |
𝜎𝐵

𝜎𝐴
| > 1 

𝜎𝐵 = −
𝑆𝑢𝑐

𝑛𝑑
 



𝐹𝑜𝑟 0 ≥ 𝜎𝐴 ≥ 𝜎𝐵 𝑎𝑛𝑑 |
𝜎𝐵

𝜎𝐴
| > 1 

Reading Assignment: 

Example 5-3 

Example 5-4 

Example 5-5 

Fatigue Failure (Variable Loading) 

Reading Assignment: 

Sections 6.1 to 6.6 

Fluctuating Stresses 

Although most fluctuating stresses in machinery are sinusoidal in nature due to rotating elements, some 

irregular patterns do occur. However, regardless of its shape, if a pattern exhibits a single maximum and 

a single minimum force, its shape is not important, but the peaks are important. Let 𝐹𝑚𝑎𝑥  be the largest 

force and 𝐹𝑚𝑖𝑛 be the smallest force. Then a steady component, 𝐹𝑚, and an alternating component, 𝐹𝑎, 

can be constructed. 

𝐹𝑚 =
𝐹𝑚𝑎𝑥 + 𝐹𝑚𝑖𝑛

2
      ;      𝐹𝑎 = |

𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛

2
| 

(TODO – Picture) 

Where: 

𝜎𝑚𝑖𝑛 = minimum stress 

𝜎𝑚𝑎𝑥 = maximum stress 

𝜎𝑎 = stress amplitude = (𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛)/2 

𝜎𝑚 = mean stress or midrange stress = (𝜎𝑚𝑎𝑥 + 𝜎𝑚𝑖𝑛)/2 

𝜎𝑟 = stress range = 2𝜎𝑎  

𝜎𝑠 = steady, or state stress 

- Key Factors in Fatigue Failure 

1 – A maximum stress of sufficient magnitude 

2 – An applied stress fluctuation of large enough magnitude 

3 – A sufficient number of cycles of the applied stress 

Fatigue design procedure  

One of the most common methods of presenting engineering fatigue data is by means of the  

𝑆 − 𝑁 𝑐𝑢𝑟𝑣𝑒. 



 

  



 

 

 



In this particular graph, if the 𝑆𝐴𝐸 𝑁𝑜. or the ultimate strength is known, and if 𝑁 is known (number of 

cycles). The fatigue or endurance limit of the material can be found. However, the above data is for zero 

mean stress 𝑆𝑚 = 0. To solve for cases where 𝑆𝑚 ≠ 0, first 𝑆𝐴 − 𝑁 𝐶𝑢𝑟𝑒𝑠 are plotted as shown. Then 

for a given 𝑁 = 𝑁1 the 𝑆𝑎 = 𝑆𝑚 curve is plotted. 

 

  



Lecture (Mar. 14th, 2019)  

From the 𝑆𝑛 − 𝑆𝑚  curve as shown in the figure, the following empirical relation was found: 

𝑆𝑎 = 𝑆𝑒 [1 − (
𝑆𝑚

𝑆𝑢𝑙𝑡
)

𝑃

] 

(TODO – Picture) 

For Gerber Curve: 𝑃 = 2 

For Goodman Line: 𝑃 = 1 

When design is based on 𝑆𝑦𝑝  (yield strength) the Soderberg law is followed. 

𝑆𝑚 = 𝑆𝑒 (1 −
𝑆𝑚

𝑆𝑦𝑝
) 

And when a factor of safety is required 

𝜎𝑎 =
𝑆𝑒

𝑛𝑑
(1 −

𝜎𝑚

𝑆𝑦𝑝
𝑛𝑑) 

Where: 

𝜎𝑎 =
𝑆𝑎

𝑛𝑑
     ;      𝜎𝑚 =

𝑆𝑚

𝑛𝑑
 

Or: 

𝜎𝑎

𝑆𝑒
+

𝜎𝑚

𝑆𝑦𝑝
=

1

𝑛𝑑
 

Where: 

𝑆𝑒 = endurance strength for 𝑆𝑚 = 0 

𝑆𝑦𝑝 = yield strength 

𝑆𝑢𝑙𝑡 = minimum ultimate tensile strength 

𝑛𝑑 = design factor 

Using 𝐺𝑜𝑜𝑑𝑚𝑎𝑛 line: 

𝜎𝑎

𝑆𝑒
=

𝜎𝑚

𝑆𝑢𝑙𝑡
=

1

𝑛𝑑
 

Using 𝐺𝑒𝑟𝑏𝑒𝑟 line: 

𝑛𝑑𝜎𝑎

𝑆𝑒
= (

𝑛𝑑𝜎𝑚

𝑆𝑢𝑙𝑡
)

2

= 1 

Using 𝐴𝑆𝑀𝐸-elliptic line: 

(
𝑛𝑑𝜎𝑎

𝑆𝑒
)

2

+ (
𝑛𝑑𝜎𝑚

𝑆𝑢𝑙𝑡
)

2

= 1 



Using 𝐿𝑎𝑛𝑔𝑒𝑟 first-cycle-yielding: 

𝜎𝑎 + 𝜎𝑚 =
𝑆𝑦𝑝

𝑛𝑑
7 

Endurance Limit 

Based on a large number of actual test data from several sources, Charles R Mischke, in his paper 

“Prediction of Stochastic Endurance Strength,” 

Trans. Of ASME, J. Vibration Acoustics Stress and Reliability in Design, Vol. 109, No.1, pp 113-122, 

January 1987, concluded that endurance limit can eb related to tensile strength. 

For Steels: 

𝑆𝑒
′ = {

0.504 𝑆𝑢𝑡      ;      𝑆𝑢𝑡 ≤ 200 𝑘𝑝𝑠𝑖 (1400 𝑀𝑃𝑎)
100 𝑘𝑝𝑠𝑖     ;      𝑆𝑢𝑡 >  200 𝑘𝑝𝑠𝑖

700 𝑀𝑃𝑎     ;      𝑆𝑢𝑡 >  1400 𝑀𝑃𝑎
 

Where: 

𝑆𝑢𝑡 = minimum tensile strength 

𝑆𝑒 = endurance limit 

𝑆𝑒
′ = endurance limit of the rotating beam specimen 

Fatigue Strength 

Recall that: 

∆𝜀𝑒

2
=

𝜎𝐹
′

𝐸
(2𝑁)𝑏  

Where: 

∆𝜀𝑒 = elastic strain range 

𝜎𝐹
′ = true stress corresponding to fracture in one reversal 

𝑏 = fatigue strength exponent 

𝑁 = number of reversals or expected life 

𝐸 = modulus of elasticity 

Defining the specimen fatigue strength at a specific number of cycles as: 

(𝑆𝑓
′)

𝑁
=

𝐸∆𝜀𝑒

2
 

Then, 

(𝑆𝑓
′)

𝑁
=

𝐸∆𝜀𝑒

2
= 𝜎𝐹

′ (2𝑁)𝑏 

At 103 cycles: 

(𝑆𝑓
′)

103 = 𝜎𝐹
′ (2 ∗ 103)6 = 𝑓𝑆𝑢𝑡  

Where: 



𝑓 =
𝜎𝐹

′

𝑆𝑢𝑡  
= (2 ∗ 103)𝑏  

See 𝑇𝑎𝑏𝑙𝑒 𝐴 − 23 for reliable value of 𝜎𝐹
′  for selected steels. Or use 𝜎𝐹

′ = 𝜎𝑜𝜀𝑚, with 𝜀 = 𝜀𝐹
′  is known. 

Otherwise, you may use the SAE approximation for steels with 𝐻𝐵 ≤ 500 given as: 

𝜎𝐹
′ = 𝑆𝑢𝑡 + 50 𝑘𝑝𝑠𝑖     ;      𝜎𝐹

′ = 𝑆𝑢𝑡 + 345 𝑀𝑃𝑎 

Substituting the endurance strength 𝑆𝑒
′  and corresponding cycles 𝑁𝑒 and solving for 𝑏: 

𝑏 = −
log (𝜎𝐹

′ /𝑆𝑒
′ )

log (2𝑁𝑒)
 

With values of 𝜎𝐹
′  and 𝑏 known for 70 ≤ 𝑆𝑢𝑡 ≤ 200 𝑘𝑝𝑠𝑖, Figure 6-18 is plotted where the graph is used 

to find approcimate values of 𝑓 for various values of 𝑆𝑢𝑡  between 70 and 200 kpsi. 

For actual mechanical component, we may write: 

𝑆𝑓 = 𝑎𝑁𝑏 

Where is can be shown that for 103 ≤ 𝑁 ≤ 106 

𝑎 =
(𝑓 𝑆𝑢𝑡 )2

𝑆𝑒
 

𝑏 = −
1

3
log (

𝑓 𝑆𝑢𝑡

𝑆𝑒
) 

If a completely reversed stress 𝜎𝑟𝑒𝑣  is given, then: 

𝑁 = (
𝜎𝑟𝑒𝑣

𝑎
)

1
𝑏

 

For low-cycle, 1 ≤ 𝑁 ≤ 103  cycles: 

𝑆𝑓 ≥ 𝑆𝑢𝑡𝑁(log 𝑓)/3 

For problems in the finite life range, 103 ≤ 𝑁 ≤ 106, stresses 𝜎𝑚 and 𝜎𝑎 are transformed into an 

equivalent completely reversing stress 𝜎𝑅 as follows: 

For Goodman: 

𝜎𝑅 =
𝜎𝑎𝑆𝑢𝑡

𝑆𝑢𝑡 − 𝜎𝑚
= 𝜎𝑟𝑒𝑣  

For Gerber: 

𝜎𝑅 =
𝜎𝑚

1 − (
𝜎𝑚

𝑆𝑢𝑡
)

2 = 𝜎𝑟𝑒𝑣  

Reading assignment:  

Example 6-2 



Example: A bar of steel has the minimum properties 𝑆𝑒 = 40 𝑘𝑝𝑠𝑖, 𝑆𝑦 = 60 𝑘𝑝𝑠𝑖, and𝑆𝑢𝑡 = 80 𝑘𝑝𝑠𝑖. 

The bar is subjected to a steady torsional stress of 15 𝑘𝑝𝑠𝑖 and an alternating bending stress of 25 𝑘𝑝𝑠𝑖. 

Find the factor of safety guarding against a static failure, and either the factor of safety guarding against 

a fatigue failure or the expected life of the part. For static failure use the 𝐷𝑖𝑠𝑡𝑜𝑟𝑠𝑖𝑜𝑛 − 𝐸𝑛𝑒𝑟𝑔𝑦 𝑇ℎ𝑒𝑜𝑟𝑦 

(DE). For fatigue analysis use:  

a) Modified Goodman criterion 

b) Gerber criterion 

c) ASME-elliptic criterion 

Solution: 

Given: 

𝑆𝑒 = 40 𝑘𝑝𝑠𝑖 

𝑆𝑦 = 60 𝑘𝑝𝑠𝑖 

𝑆𝑢𝑡 = 80 𝑘𝑝𝑠𝑖 

𝜎𝑎 = 25 𝑘𝑝𝑠𝑖 

𝜎𝑚 = 𝜏𝑎 = 0 

𝜏𝑚 = 15 𝑘𝑝𝑠𝑖 

Using the Distortion Energy Theorem for the alternating, mid-range, and maximum stresses, the 𝑣𝑜𝑛 −

𝑀𝑖𝑠𝑒𝑠 stresses are: 

𝜎′ = (𝜎𝑥
2 − 𝜎𝑥𝜎𝑦 + 𝜎𝑦

2 + 3𝜏𝑥𝑦
2 )

1
2 

Here 𝜎𝑦 = 0 

∴ 𝜎′ = (𝜎𝑥
2 + 3𝜏𝑥𝑦

2 )
1
2 

And: 

𝜎𝑎
′ = (𝜎𝑎

2 + 3𝜏𝑎
2)

1
2 = [(25)2 + (3)(0)2]

1
2 = 25,000 𝑘𝑝𝑠𝑖 

𝜎𝑚
′ = (𝜎𝑚

2 + 3𝜏𝑚
2 )

1
2 = [(0)2 + (3)(15)2]

1
2 = 25.98 𝑘𝑝𝑠𝑖 

𝜎𝑚𝑎𝑥
′ = (𝜎𝑚𝑎𝑥

′ + 3𝜏𝑚𝑎𝑥
2 )

1
2 = [(𝜎𝑎 + 𝜎𝑚)2 + 3(𝜏𝑎 + 𝜏𝑚)2]

1
2 

= [(25)2 + (3)(15)2]
1
2 = 36.06 𝑘𝑝𝑠𝑖 

𝑛𝑦 =
𝑆𝑦

𝜎𝑚𝑎𝑥
′ =

60

36.06
= 1.66 

a) Modified Goodman: 

𝑛𝑓 =
1

(
𝜎𝑎

𝑆𝑒
) + (

𝜎𝑚

𝑆𝑢𝑡
)

 

𝑛𝑓 =
1

(
25
40

) + (
35.98

80
)

= 1.05 



b) Gerber: 

𝑛𝜎𝑎

𝑆𝑒
+ (

𝑛𝜎𝑚

𝑆𝑢𝑡
)

2

= 1 

Or: 

𝑛𝑓 = (
1

2
) (

𝑆𝑢𝑡

𝜎𝑚
)

2 𝜎𝑎

𝑆𝑒
 [−1 + √1 + (

2𝜎𝑚𝑆𝑒

𝑆𝑢𝑡 𝜎𝑎
)

2

] 

𝑛𝑓 = 1.31 

c) ASME Elliptic: 

𝑛𝑓 =
√

1

(
𝜎𝑎
𝑆𝑒

)
2

+ (
𝜎𝑚
𝑆𝑦

)
2 

𝑛𝑓 = 1.32 


