Lecture (Mar. 12", 2019)

1+v
Us = —=—(255)

w (01 = 03)* + (0, — 03)* + (03 — 0y)* — 2532;;;

Introducing the design factor n; we have,

1
_ Sy (01 = 03) + (0, — 93)* + (05 — 01)%] 2

0" = Oeq = ng 2
Where:
1
o' = E [(01 — 02)* + (02 — 03)* + (03 — 01)]2
IS known at the Von Mises Stress
For plane stress, o3 = 0,
1
o' = (o4 +0,+ 0,0,)2
Which is the equation of an eclipse.
Note that in the case of pure shear, 6; = —0;, or 30{ = Sfp, and g1 = 0.577S,,, while the maximum

shear stress theory assumes g; = 0.5S,,,

In terms of the rectangular stress components we can write ¢’ as

1 1
o' = E [(Jx - JY)Z + (Jy - Uz)z + (o — Uz)z + 6(73%31 + TJZIZ + Tzzx)]z

And for 2 — D stress:

N[

r__ 2 _ 2 2
o = (O‘x Oxy, oy + 3Txy)

Coulomb-Mohr Theory (For Ductile Materials)

This theory can be used to predict failure for materials whose strength in tension and compression are
not equal. If states that:

01 O3
—_==1
Se  S¢

Where either yield strength or ultimate strength can be used.

Incorporating the design factor ng:



For plane stress, if the two nonzero principal stresses are g4 = g then:

O'Aand g3 = 0

If o4 = 0g = 0, then 0y

St
SOy = —
A n
|fO'A =>02= Op, then 01 = Oy and 03 = Op
0y St 1
St Sc Ng
If0 > 04 = 0g,theno; =0and o5 =03
Sc
op = ——
B n
Note that for pure sheart, 0y = —03 =7
The torsional yield strength occurs when Ty, = S
Substituting into:
0y O
2_3_1
St Se
We get:
Ssy Sy
Syt Sye

SsySyc + SsySyt = SytSye
o SyeSyc
Sy + Sye

Reading Assignment:
Example 5-1
Example 5-2

Maximum-Normal-Stress Theory (For Brittle Materials)

According to this theory, failure occurs at a point in a body when one of the principal stresses at that
point equals the critical stress for that material.

If:
loy| > |oz| > |o3]

Then:



Brittle Coulomb-Mohr Theory:

op=— ; Foroy=052=20

——-—=— ; Forou=0=0p

Modified Coulomb-Mohr Theory:

T
4= g
Op
Forog,>0p>0and o, 20>o0gand |[—| <1
)

GA(Suc - Sut) _ O'_B 1

SucSut Suc Ng

Op
Foroy=20>=o0gand |[—|>1

7}

Op = ——
Ng



Op
04

For 0 = 04 = g and >1

Reading Assignment:
Example 5-3
Example 5-4
Example 5-5

Fatigue Failure (Variable Loading)

Reading Assignment:
Sections 6.1 t0 6.6

Fluctuating Stresses

Although most fluctuating stresses in machinery are sinusoidal in nature due to rotating elements, some
irregular patterns do occur. However, regardless of its shape, if a pattern exhibits a single maximum and
a single minimum force, its shape is not important, but the peaks are important. Let F,,, be the largest
force and F,,;;, be the smallest force. Then a steady component, F,,, and an alternating component, F,,
can be constructed.

Fmax +Fmin |Fmax _Fmin

F, =-Rex__min . -
m 2 v ta 2

(TODO - Picture)

Where:

Omin = Minimum stress

Omax = Maximum stress

0, = stress amplitude = (Giax — Tmin)/2

0 = mean stress or midrange stress = (Gpax + Omin)/2
0, = stress range = 20,

05 = steady, or state stress

- Key Factors in Fatigue Failure

1 - A maximum stress of sufficient magnitude

2 — An applied stress fluctuation of large enough magnitude
3 — A sufficient number of cycles of the applied stress
Fatigue design procedure

One of the most common methods of presenting engineering fatigue data is by means of the
S — N curve.
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In this particular graph, if the SAE No. or the ultimate strength is known, and if N is known (number of
cycles). The fatigue or endurance limit of the material can be found. However, the above data is for zero
mean stress S,,, = 0. To solve for cases where S,,, # 0, first S4 — N Cures are plotted as shown. Then

foragiven N = N; the S, = S,,, curve is plotted.

L\30, 150000 g=

—ﬁ\ :__‘L.‘:__\::\ s

— ” -
Shasimen wak

b




Lecture (Mar. 14, 2019)

From the S,, — S,,, curve as shown in the figure, the following empirical relation was found:

S P
Sa=S.|1— (—”‘)
“ ¢ [ Sult ]
(TODO - Picture)

For Gerber Curve: P = 2
For Goodman Line: P =1

When design is based on S,,,, (yield strength) the Soderberg law is followed.

Sm
Spm=Se[1-1
nes(1-52)

And when a factor of safety is required

ng Syp
Where:
Sa Sm
Oy = E ;o Om = E
Or:
Og  Om 1
S Sy ma
Where:

Se = endurance strength for §,,, =0

Syp = yield strength

Swie = minimum ultimate tensile strength
ng = design factor

Using Goodman line:

Using Gerber line:

Using ASME-elliptic line:




Using Langer first-cycle-yielding:
yp
Oq + 0y = 57
Endurance Limit

Based on a large number of actual test data from several sources, Charles R Mischke, in his paper
“Prediction of Stochastic Endurance Strength,”

Trans. Of ASME, J. Vibration Acoustics Stress and Reliability in Design, Vol. 109, No.1, pp 113-122,
January 1987, concluded that endurance limit can eb related to tensile strength.

For Steels:
0.504 S, ; Sy < 200 kpsi (1400 MPa)
Sy = 100 kpsi  ;  Sy: > 200 kpsi
700 MPa ; S, > 1400 MPa
Where:

Syt = minimum tensile strength
Se = endurance limit
S, = endurance limit of the rotating beam specimen

Fatigue Strength

Recall that:

Ae, o b
- = (2N)
Where:

Ag, = elastic strain range

of = true stress corresponding to fracture in one reversal

b = fatigue strength exponent

N = number of reversals or expected life

E = modulus of elasticity

Defining the specimen fatigue strength at a specific number of cycles as:

, EAe
(5, =—5—
Then,
EAe
(57)y =—— = or@N)"

At 103 cycles:
(S7), 5 = 07 (2% 10%)° = Sy,

Where:



!

f=SG_F=(2*1o3)b

ut

See Table A — 23 for reliable value of gy for selected steels. Or use o7 = 0, &, With € = & is known.
Otherwise, you may use the SAE approximation for steels with Hg < 500 given as:

op = Syt +50kpsi ;  oF = Sy + 345 MPa
Substituting the endurance strength S; and corresponding cycles N, and solving for b:

__log(o7/52)
log(2N,)

With values of a7 and b known for 70 < S,,; < 200 kpsi, Figure 6-18 is plotted where the graph is used
to find approcimate values of f for various values of S,,; between 70 and 200 kpsi.

For actual mechanical component, we may write:
Sf = aNb
Where is can be shown that for 103 < N < 10°

_ (fSu)?
a= s,

1 f Sy
b= 31°g( Se)

If a completely reversed stress g, is given, then:

For low-cycle, 1 < N < 103 cycles:
S = S, N8 /3

For problems in the finite life range, 103 < N < 108, stresses o,, and o, are transformed into an
equivalent completely reversing stress gy as follows:

For Goodman:

on = OaSut o
R — - rev
Sut —Onp
For Gerber:
O_m
ORr = 7 = Orev
O_m
1- ()
ut

Reading assighment:
Example 6-2



Example: A bar of steel has the minimum properties S, = 40 kpsi, S,, = 60 kpsi, andS,; = 80 kpsi.
The bar is subjected to a steady torsional stress of 15 kpsi and an alternating bending stress of 25 kpsi.
Find the factor of safety guarding against a static failure, and either the factor of safety guarding against
a fatigue failure or the expected life of the part. For static failure use the Distorsion — Energy Theory
(DE). For fatigue analysis use:

a) Modified Goodman criterion
b) Gerber criterion
c) ASME-elliptic criterion

Solution:
Given:

Se = 40 kpsi
Sy = 60 kpsi
Sut = 80 kpsi
o, = 25 kpsi
Om =T7,=0
Tm = 15 kpsi

Using the Distortion Energy Theorem for the alternating, mid-range, and maximum stresses, the von —
Mises stresses are:

1
o' = (02 — 050y + 02 + 37%,)?
Here g, = 0
1
wo' = (02 +31%)2
And:
1 1
o, = (62 + 312)2 = [(25)? + (3)(0)?]z = 25,000 kpsi
1 1
o), = (62 + 3t2)2 = [(0)? + (3)(15)?]z = 25.98 kpsi

1 1
Omax = (Urlnax + 3Trznax)z = [(Ua + Um)z + 3(Ta + Tm)z]z

= [(25)% + (3)(15)2]% = 36.06 kpsi

n, = S—y = i = 1.66
Y 64 36.06
a) Modified Goodman:
n 1
O
1
ng = = 1.05

ENED



Or:

b) Gerber:

c)

ASME Elliptic:




