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The Design Process 

Horizontal Structure of Design 

The horizontal structure of design may be considered to involve the following 8 stages: 

1. Recognition 

2. Definition 

3. Preparation 

4. Conceptualization 

5. Synthesis 

6. Evaluation 

7. Optimization 

8. Presentation 

These stages are all inter-related. Reconsideration, re-decision, reformulation, re-examination and re-

computation are continuously carried out as needed at any stage of the design. 

Design Process Flow Chart 

 

1. Recognition: The need 

2. Definition: The problem exactly identified and defined. 

3. Preparation: All pertinent information must be collected. Data, formal knowledge, and empirical 

know-how must be gathered, reviewed, and organized. Where anything is lacking, the gap must 

be filled in which the proper assumptions, compromises, and sound engineering judgement. 

The Goal Recognition

The Design Synthesis
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- Analysis

- Experimentation
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- Manufacturing

Optimization Presentation

The Task Definition and 
Preparation
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Conceptualization



4. Conceptualization: Consideration of alternatives. No alternative arrangement that holds promise 

of probable success can be omitted. 

5. Synthesis: At this stage, details must be conceptualized. Exact mechanisms are synthesized to 

supply the required motions, dynamic characteristics and time sequences. Components must be 

selected, material decided upon, fabricating process, etc… 

6. Evaluation or Analysis: The designs, models, or possibly analogs must now be analyzed; critical 

parameters must be checked to see that all is satisfactory. This is performed on all alternatives 

not previously eliminated. The best design is then selected.  

7. Optimization: Such as reliability, economy, weight, and space limitations, and life requirements 

can be very important factors. The design may thus have to be optimized with respect to the 

particular criterion.  

8. Communication, both verbal and graphic, becomes of prime importance at this stage, because 

the design has no value until utilized. 

Chronological or Vertical Structure of Design 

A project must often be carried through the following design and planning phases: 

1. Feasibility study: A technical success can easily go bankrupt when a financially sound need is not 

realized. However, the product must exist at least on paper if its need and feasibility are to be 

established.  

2. Preliminary design: solutions that may have been suggested during the feasibility phase are 

considered. The surviving alternatives are synthesized sufficiently to reveal their overall 

features. The specific design concepts are thoroughly evaluated. 

3. Detail design: Capacities are exactly sized, dimensions calculated, wear account for, parts 

detailed, tolerances established, and treatments completely detailed, and clearly described. It is 

now a producible design. 

  



Lecture (Jan. 10th, 2019) 

Decision Tree 

Assume that three solutions exist to a primary problem. Should two sub-problems arise in the case of 

each solution, six choices are generated. If all six result in two new possible paths each, the number of 

decisions rises to twelve, an so it can continue. 

If there are 𝑚 possibilities at the first stage and (𝑚 ± 𝑖) at each other stage, then the total number of 

required decisions is: 

1 ∙ 𝑚1(𝑚 ± 𝑖)2(𝑚 ± 𝑖)3 … (𝑚 ± 𝑖)𝑛 

Therefore, for the above example we have: 

1 ∙ 3(3 − 1)(3 − 1) = 1 ∙ 3 ∙ 2 ∙ 2 = 12 

The tree is shown below: 

 

For the example above, consider the following:  

line from 0 to 1 (𝑚1) 

line from 1 to 4 (𝑚 − 𝑖)2   

line from 4 to 10 (𝑚 − 𝑖)3   

If the decision paths could flow from each first stage point to each second stage point, then  
(𝑚 + 𝑖)2 = (3 + 3) and the number of decision paths becomes: 

1 ∙ 3(3 + 3)(3 − 1) = 36 

If in addition each second stage point could connect to each third stage point, then: 

1 ∙ 3(3 + 3)(3 + 3) = 108 

Decision-Making 

In making a decision a choice must be made among several possible acts by considering the 

consequences that may result as each act is applied to the problem at hand. Decisions are made under: 

1- Certainty, where the action is known to lead to specific consequences.  

2- Risk, when the action leads to specific outcomes that occurs with only known probability.  

3- Uncertainty, where the action results in consequences that have unknown probabilities.  
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Arriving at a conclusion as to which alternative solutions, answer, decision, or design is best in a 

particular situation is a weighty and not absolutely defined mater. A systematic approach is, 

nevertheless, much more likely to lead to a more appropriate decision than in mere guessing or even 

contemplating.  

One of the more satisfactory methods of decision-making is based on the Bayesian model which will be 

demonstrated by the following example: 

Example (1.1): A large counterweight is to be made. Two questions needing decision confront the design 

engineers. Should the counterweight be cast or forged, and should it be made square or round in cross 

section? 

Solution (1.1):  The consequence matrix is established as shown below. These consequences are 

obviously based on a knowledge of the process of casting and forging involved as well as considerations 

of the relative strengths of different sections.  

 Square Round 

Cast  Cheapest Cheaper 

Forged Faster Stronger 

 

The desirabilities appear to be as shown in the following matrix. A desirability range other than 0-1 is 

used to illustrate its validity.  

 Square Round 

Cast  2.0 1.0 

Forged 0.5 1.5 

 

The probabilities are judged in normalized form:  

 Square Round 

Cast  0.4 0.6 

Forged 0.5 0.5 

 

Thus, the expected desirabilities are: 

Cast: 2 ∙ 0.4 + 1 ∙ 0.6 = 1.4 

Forged: 0.5 ∙ 0.5 + 1.5 ∙ 0.5 = 1.0 

The better choice then seems to be to cast the counterweight. And since there appears a fair chance 

that the square section will prove cheaper, it is decided upon. 

Codes and Standards 

Standards: A standard is a set of specifications for parts materials, or processes intended to achieve 

uniformity, efficiency, and a specified quality.  

Code: A code is a set of specifications for the analysis, design, manufacture, and construction of 

something. The purpose of a code is to achieve a specified degree of safety, efficiency, and performance 

or quality.  



See section 1.6 in your textbook. 

Reading assignment: Sections 1.1 to 1.11, and section 1.14 

Assignment #1: 1.7, 1.8, 1.9, 1.12, 1.23 
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Reliability and Probability of Failure 

The statistical measure of the probability that a mechanical element will not fail in use is called the 

reliability of the element and is related to the probability of failure, 𝑃𝑓  

Probability of Failure, 𝑃𝑓  

The probability density function (PDF) represents the distribution of events within a given range of 

values. The Gaussian (normal) distribution and the Weibull distribution are the most important 

continuous probability distributions for engineering use. The Weibull distribution is used in rolling 

contact bearing design and will be covered with this topic.  

The probability density function (PDF) of the Gaussian (normal) distribution is expressed in terms of its 

mean, 𝜇𝑥  and its standard deviation 𝜎𝑥̂ as: 

𝑓(𝑥) =
1

𝜎𝑥̂   √2𝜋
exp [−

1

2
(

(𝑥 − 𝜇𝑥)

𝜎𝑥̂
)

2

] 

And shown graphically below. 

 

 

The obtain the values of 𝑝𝑓the above equation must be integrated. The integrand in tabulated in Table 

1-10 where x is placed in dimensionless form using the transform. 

𝑧 =
(𝑥 − 𝜇𝑥)

𝜎𝑥̂  
  

 

 

 

a) Small 𝜎𝑥̂  b) Large 𝜎𝑥̂  



And ∝ is defined as shown in the figure below. 

 

The variant 𝑧 has a mean value of zero and a standard deviation of one. In Table A-10, the probability of 

an observation less than 𝑧 is 𝛷(𝑧) for negative values of 𝑧 and 1 − 𝛷(𝑧) for positive values of 𝑧. 

Example: 

The lives of parts are often expressed as the number of cycles of operation that a specified percentage 

of a population will exceed before experiencing failure. The symbol 𝐿 is used to designate this definition 

of life. Thus, we can speak of 𝐿10 life as the number of cycles to failure exceeded by 90 percent of a 

population of parts. Given a normal distribution model, with a mean of 𝐿̅ = 122.9 kilocycles and 

standard deviation of 𝑆𝐿 = 30.3 kilocycles, estimate the corresponding 𝐿10 life.  

Solution: 

𝐿̅ = 122.9 𝐾𝑐𝑦𝑐𝑙𝑒𝑠  ;   𝑆𝐿 = 30.3 𝐾𝑐𝑦𝑐𝑙𝑒𝑠 

𝑧10 =
(𝑥 − 𝜇𝑥)

𝜎𝑥̂  
=

𝑥10 − 122.9

30.3
  

𝑜𝑟, 𝑥10 = 122.9 + 30.3 𝑧10 = 𝐿10 

𝐹𝑟𝑜𝑚 𝑇𝑎𝑏𝑙𝑒 𝐴 − 10,   𝑓𝑜𝑟 10% 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒,   𝑧10 = −1.282 

∴ 𝐿10 = 122.9 + 30.3(−1.282) = 84.1 𝐾𝑐𝑦𝑐𝑙𝑒𝑠 

 

Discrete distributions may be approximated by continuous distributions. In an 𝑁 samples of events, let 

𝑥𝑖  be the value of an event (1, 2, … , 𝑘) and 𝑓𝑖  the number of times the event 𝑥𝑖  occurs within the 

frequency range. The discrete mean 𝑥̅ and the standard deviation 𝑆𝑥  are thus defined as: 

𝑥̅ =
1

N
∑ 𝑓𝑖𝑥𝑖

𝑘

𝑖=1

 

𝑆𝑥 = √
(∑ 𝑓𝑖𝑥𝑖

2𝑘
𝑖=1 − 𝑁𝑥̅2)

𝑁 − 1
  

 



Example – Problem 1-14 

Determination of the ultimate tensile strength of stainless-steel sheet (17-7 PH, condition TH1050), in 

sizes from 0.016 to 0.062 in, in 197 tests combined into seven classes were 

𝑆𝑢𝑡  (𝑘𝑝𝑠𝑖) 174 182 190 198 206 214 222 
𝑓 6 9 44 67 53 12 6 

Where 𝑆𝑢𝑡  is the class mid point and 𝑓 is the class frequency estimate the mean and the standard 

deviation. 

𝑥 𝑓 𝑓𝑥 𝑓𝑥2  
174 6 1044 181656 
182 9 1638 298116 
190 44 8360 1588400 
198 67 13266 2626668 
206 53 10918 2249108 
214 12 2568 549552 
222 6 1332 295704 

Σ 197 39126 7789204 
 

Reliability 

𝑥̅ =
1

N
∑ 𝑓𝑖𝑥𝑖

𝑘

𝑖=1

=
39126

197
= 198.61 𝐾𝑝𝑠𝑖 

𝑆𝑥 = √
(∑ 𝑓𝑖𝑥𝑖

2𝑘
𝑖=1 − 𝑁𝑥̅2)

𝑁 − 1
  

𝑆𝑥 = [
7789204 − 197(198.61)2

197 − 1
]

1
2

= 9.68 𝐾𝑝𝑠𝑖 

 

Reliability Mathematics 

Definition: Reliability is defined as the probability that equipment will perform its intended function 

satisfactorily for the intended time in the intended environment. 

If no units are started with, and 𝑁𝑓  failure are experienced in a given time 𝑡, the reliability 𝑅 for time 𝑡 is 

defined mathematically as (1): 

𝑅 =
𝑁𝑜 − 𝑁𝑓

𝑁𝑜
=

𝑁𝑠

𝑁𝑜
= 1 −

𝑁𝑓

𝑁𝑜
 

= 1 − 𝑝𝑓   𝑤𝑖𝑡ℎ  0 ≤ 𝑅 ≤ 1  

The rate of failure is the time rate of change of reliability or (2): 

𝑟 =
𝑑𝑅

𝑑𝑡
 

 



Substitution (1) in (2) and differentiating: 

𝑑𝑅

𝑑𝑡
=

𝑑

𝑑𝑡
(1 −

𝑁𝑓

𝑁𝑜
) = −

1

𝑁𝑜

𝑑𝑁𝑓

𝑑𝑡
  

And the rate at which units fail and/or survive is: 

𝑑𝑁𝑓

𝑑𝑡
= −𝑁𝑜

𝑑𝑅

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑁𝑜 − 𝑁𝑠) = −

𝑑𝑁𝑠

𝑑𝑡
 

The instantaneous probability of failure per hour, 𝑝, can be found by dividing the above rate by the 

number of units surviving at that instant (3): 

𝜌 =
1

𝑁𝑠

𝑑𝑁𝑓

𝑑𝑡
= −

𝑁𝑜

𝑁𝑠

𝑑𝑅

𝑑𝑡
= −

1

𝑅

𝑑𝑅

𝑑𝑡
 

∴ 𝜌 𝑑𝑡 =  −
𝑑𝑅

𝑅
 

𝑎𝑛𝑑 ln 𝑅 =  − ∫ 𝜌 𝑑𝑡
𝑡

0

 

𝐵𝑢𝑡 𝑎𝑡 𝑡 = 0, 𝑅 = 1 ;  𝑎𝑛𝑑 𝑅(𝑡) = 𝑒− ∫ 𝜌 𝑑𝑡
𝑡

0  

Combining (2) and (3) to get: 

𝑟 =
𝑑𝑅

𝑑𝑡
= −𝜌𝑅 
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Figure 9-1 

The instantaneous probability of failure 𝜌, often called hazard rate, varies with time as indicated. This 

tends to greatly complicate the computation. Fortunately, with little error, for the mid-life period 

between the rapid burn-in and burn-out intervals, 𝜌 is assumed time invariant (𝜌̅) as shown in the figure  

For this region, the law of reliability simplifies to: 

𝑅 = 𝑒−𝜌̅ ∫ 𝑑𝑡
𝑡

0 = 𝑒−𝜌̅∙𝑡  

The hazard rate is the number of failures occurring per hour for each survived unit. Therefore, its 

reciprocal 𝜎 is the number of survival hours to the next failure or the meantime to failure. 

𝜎 =
1

𝜌̅
 

and:  𝑅 = 𝑒−
𝑡

𝜎 

Reliability of Complex Systems 

Systems are made of many components, all interrelated and most of them contributing to the 

unreliability of the system as a unit. The joint reliability is predicted from individual component 

probabilities as follows: 

Series Systems 

Systems consisting of several components so connected and independent that if one part fails the entire 

system fails, are series systems. 

In a series system the reliability is the product of the reliabilities of each component.  

∴ 𝑅𝑠 = 𝑅1 ∙ 𝑅2 ∙ 𝑅3 … 𝑅𝑛 = ∏ 𝑅𝑖

𝑛

1

 

= 𝑒−(𝜌̅1+ 𝜌̅2+ 𝜌̅3+⋯+ 𝜌̅𝑛)𝑡 = 𝑒− ∑ 𝜌̅𝑛
1 𝑖𝑡  

The unreliability or probability of failure of such a system is: 

𝑄𝑠 = 1 − 𝑒− ∑ 𝜌̅𝑛
1 𝑖𝑡  

Parallel Redundant Systems 

When very high system reliabilities are required, duplicate components and even entire duplicate 

circuits become desirable, so that if the first fails, the second will carry on. 

 𝑅 = 𝑒1
−𝜌1̅̅̅̅ 𝑡

  

Begin 𝑅 = 𝑒2
−𝜌2̅̅̅̅ 𝑡

 End 

 𝑅 = 𝑒3
−𝜌3̅̅̅̅ 𝑡

  

 



This parallel reliability is referred to as parallel redundancy, because all units operate simultaneously. 

The probability that one of the two parallel components will survive is the sum of the probabilities of the 

three outcomes; neither of components A and B fails, A fails but not B, and B fails but not A. 

∴ 𝑅𝑝 = 𝑒1
−𝜌1̅̅̅̅ 𝑡

+ 𝑒2
−𝜌2̅̅̅̅ 𝑡

− 𝑒1
−(𝜌1̅̅̅̅ +𝜌2̅̅̅̅ )𝑡

= 𝑅1 + 𝑅2 − 𝑅1𝑅2 

The probability of failure is 𝑄𝑝: 

𝑄𝑝 = (1 − 𝑒1
−𝜌1̅̅̅̅ 𝑡

)(1 − 𝑒2
−𝜌2̅̅̅̅ 𝑡

) 

The probability of survival for 𝑛 components is simpler to compute via unreliability: 

𝑄𝑝 = 𝑄𝑝1 ∙ 𝑄𝑝1 ∙ … ∙ 𝑄𝑝𝑛 = ∏ 𝑄𝑖

𝑛

𝑖=1

 

and:  𝑅𝑝 = 1 − 𝑄𝑝 

Stand-by Systems 

When it is impractical to operate a system with parallel branches, and yet some assurance of continued 

operation is necessary, stand-by units become advisable. Such a system may be regarded as a simple 

system with multiple lives. 

 Stand-by Unit  

Begin  Primary Unit End 

 

This obeys a principle known as 𝑃𝑜𝑖𝑠𝑠𝑜𝑛′𝑠 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 which yields: 

𝑒−𝜌̅𝑡 [1 + 𝜌̅𝑡 +
(𝜌̅𝑡)2

2!
+ ⋯ +

(𝜌̅𝑡)𝑛

𝑛!
] = 1 

If one stand-by unit is present, the system reliability would be: 

𝑅𝐵 = 𝑒−𝜌̅𝑡(1 + 𝜌̅𝑡) 

And with two stand-by units: 

𝑅𝐵 = 𝑒−𝜌̅𝑡 (1 + 𝜌̅𝑡 +
(𝜌̅𝑡)2

2!
) 

And for 𝑛 stand-by units: 

𝑅𝐵 = 𝑒−𝜌̅𝑡 [1 + 𝜌̅𝑡 +
(𝜌̅𝑡)2

2!
+ ⋯ +

(𝜌̅𝑡)𝑛

𝑛!
] 

 

 



Example: A series-parallel system is made of components as depicted in the figure. The probabilities for 

each component, all for the same period of time, is as indicated in the box. Compute the reliability of 

the system.  

Begin 0.96 0.98 0.92 0.95 End 

 0.96 0.98 0.92 0.95  

Solution: 

The reliability of each series branch (since they are the same) is: 

𝑅𝑠 = 𝑅1 ∙ 𝑅2 ∙ 𝑅3 ∙ 𝑅4 

𝑅𝑠 = (0.96)(0.98)(0.92)(0.95) = 0.85 

The reliability of the two parallel branches, and therefore for the system, is 

𝑅𝑝 = 2𝑅𝑠 − 𝑅1𝑅2 = (2)(0.82) − (0.82)(0.82) 

𝑅𝑝 = 0.97 

Example: Calculate the reliability of a system with two stand-by units if each has a mean life to failure of 

100 ℎ𝑟, for a period of 10 ℎ𝑟. Compute this with the reliability for the system after one stand-by unit is 

removed; after both stand-by units are removed. 

Solution: We have: 

𝜌̅ =
1

𝑚
=

1

100
= 0.01 = ℎ𝑎𝑧𝑎𝑟𝑑 𝑟𝑎𝑡𝑒 

i) System reliability with two stand-by units: 

𝑅𝐵 = 𝑒−𝜌̅𝑡 (1 + 𝜌̅𝑡 +
(𝜌̅𝑡)2

2!
) 

𝑅𝐵 = 𝑒−(0.01)(10) [1 + (0.01)(10) +
((0.01)(10))

2

2!
] = 0.9998453 

ii) System reliability with one stand-by unit: 

𝑅𝐵 = 𝑒−(0.01)(10)[1 + (0.01)(10)] = 0.9953211 

iii) System reliability with no stand-by: 

𝑅𝐵 = 𝑒−(0.01)(10) = 0.9048374 

Relating Design Factor to Reliability 

Stress and strength are statistical in nature. In the probability density functions for stress 𝜎 and strength 

𝑆 shown in the figure below, the mean values of stress and strength are 𝜎̅ = 𝜇𝜎  and 𝑆̅ = 𝜇𝑠 respectively. 

∴ 𝑇ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑠𝑖𝑔𝑛𝑓𝑎𝑐𝑡𝑜𝑟 𝑛̅𝑑: 

𝑛̅𝑑 =
𝜇𝑠

𝜇𝜎
 

 



The margin of safety 𝑚 at any value of 𝜎 and 𝑠 is: 

𝑚 = 𝑆 − 𝜎 

The average margin of safety 𝑚̅ is: 

𝑚̅ = 𝜇𝑠 − 𝜇𝜎 
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For the overlap in Fig. (a) 𝜎 > 𝑆 and the margin of safety is negative. The reliability that a part will 

perform without failure, 𝑅, is the area of the margin of safety distribution (Fig. (b)) for 𝑚 > 0. 

Reliability is then the probability that 𝑚 > 0. 

𝑅 = 𝑝 (𝑆 > 𝜎) = 𝑝 ({𝑆 − 𝜎} > 0) = 𝑝 (𝑚 > 0) 

Noting that for normal distributions: 

  𝜇𝑚 = 𝜇𝑠 − 𝜇𝜎  

And: 

𝜎̂𝑚 = (𝜎̂𝑠
2 + 𝜎̂𝜎

2)
1
2 

We write: 

𝑍𝑚 =
(𝑚 − 𝜇𝑚)

𝜎̂𝑚
 

To find the probability that 𝑚 > 0 we substitute 𝑚 = 0 in 𝑍𝑚. 

𝑍𝑚 =
(0 − 𝜇𝑚)

𝜎̂𝑚
=

−𝜇𝑚

𝜎̂𝑚
= −

(𝜇𝑠 − 𝜇𝜎)

(𝜎̂𝑠
2 + 𝜎̂𝜎

2)
1
2

 

Dividing all terms by 𝜇𝜎: 

𝑍𝑚 = −
(

𝜇𝑠
𝜇𝜎

− 1)

(
𝜎̂𝑠

2

𝜇𝜎
+

𝜎̂𝜎
2

𝜇𝜎
)

1
2

= −
𝑛̅𝑑 − 1

(
𝜎̂𝑠

2

𝜇𝜎

𝜇𝑠

𝜇2
+

𝜎̂𝜎
2

𝜇𝜎
)

1
2

= −
𝑛̅𝑑 − 1

(𝑛̅𝑑
2 𝜎̂𝑠

2

𝜇𝑠
2 +

𝜎̂𝜎
2

𝜇𝜎
)

1
2

 

Introducing the terms 𝐶𝑠 = 𝜎𝑠/𝜇𝑠 and 𝐶𝜎 =  𝜎𝜎/𝜇𝜎 

𝑍𝑚 =  −
𝑛̅𝑑 − 1

(𝑛̅𝑑
2 𝐶𝑠

2 + 𝐶𝜎
2)

1
2

 

Solving for 𝑛𝑑 : 

𝑛𝑑 =
1 + [1 − (1 − 𝑍2𝐶𝑠

2)(1 − 𝑍2𝐶𝜎
2)]

1
2

1 − 𝑍2𝐶𝑠
2      𝑤ℎ𝑒𝑟𝑒 𝑅 > 0.5 

𝑛𝑑 =
1 − [1 − (1 − 𝑍2𝐶𝑠

2)(1 − 𝑍2𝐶𝜎
2)]

1
2

1 − 𝑍2𝐶𝑠
2      𝑤ℎ𝑒𝑟𝑒 𝑅 ≤ 0.5 

Where 𝑍 refers to 𝑍𝑚. 

 

 



Important note: Comparing Fig(b) to Tab. A-10 

𝑅 = 1 − 𝛷(𝑧)    𝑧 ≤ 0 

𝑅 = 𝛷(𝑧)            𝑧 > 0 

Optimizing by Differentiation 

When all functional constrains can be involved in a single criterion function, the parameters are readily 

optimized. The derivative of the criterion function with respect to each parameter is set to zero. 

The 𝑛 equations are then solved simultaneously for the optimum parametric values. Of course, these 

must be established consistent with any regional limitations that may apply. 

If the criterion is expressible in terms of a single significant parameter, the mathematical problem 

reduces to finding where the stope is zero.  

Example: A rectangular tank with its base twice as long as wide is to have a volume of 12 𝑓𝑡2. 

Determine the most economical dimensions, if the bottom sheet material costs 20¢/𝑓𝑡2 and the sides 

10¢/𝑓𝑡2. 

Solution: Cost of bottom = 𝑎 × 2𝑎 × 2𝑎 = 40𝑎2¢ 

And the four sides cost = 2 × 𝑎 × 𝑏 × 10 + 2 × 2𝑎𝑏 × 10 = 60𝑎𝑏¢ 

The total cost = 𝐶 = 40𝑎2 + 60𝑎𝑏 

𝑉 = 2𝑎 × 𝑎 × 𝑏 = 12     or     𝑏 = 6/𝑎2 

𝑐 = 40𝑎2 +
360

𝑎
 

𝑑𝑐

𝑑𝑎
= 80𝑎 −

360

𝑎2
= 0 

From which 𝑎 = 1.65′ and 𝑏 = 2.2′ 

And the most economical tank is: 

1.65 𝑓𝑡 × 3.30 𝑓𝑡 × 2.20 𝑓𝑡 

The cost is: 

𝐶 = 40𝑎2 +
360

𝑎
= 40(1.65)2 +

360

1.65
 

𝐶 ≅ 3.27 

Optimization by Dual Variables 

This method consists of the replacement of the generalized function by a dual problem that results in 

the simultaneous solutions of a system of linear equation. If the number of unknowns exceeds the 

number of equations that can be written, the method will not yield a solution. The dual problem derives 

from a particular treatment of arithmetic and geometric mean expressions.  



If 𝑎1 + 𝑎2 + 𝑎3 + ⋯ + 𝑎𝑛 = 1, the expression concerned with the weighted arithmetic mean is: 

𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 

And that for the weighted geometric mean is: 

(𝑥1
𝑎1)(𝑥2

𝑎2)(𝑥3
𝑎3) … (𝑥𝑛

𝑎𝑛) 

The inequality (the arithmetic average is greater than the geometric) becomes an equality only if all of 

the x-terms are, in addition to the above, equal. The inequality is best written in the following form. If 

𝑎𝑖𝑥𝑖 = 𝑢𝑖, then 

𝑢1 + 𝑢2 + ⋯ + 𝑢𝑛 ≥ (
𝑢1

𝑎1
)

𝑎1

(
𝑢2

𝑎2
)

𝑎2

… (
𝑢𝑛

𝑎𝑛
)

𝑎𝑛

  

 

Example: Four hundred (400) 𝑦𝑑3 of sand must be ferried across a river. The sand is to be shipped 

across in open containers of length 𝐿, width 𝑊, and height ℎ. The bottom and sides of the container 

cost $10/𝑦𝑑2 and the ends $20/𝑦𝑑2. Each round trip on the ferry costs 10¢. The containers are 

assumed to have no salvage value after the transfer. Minimize the transfer cost. 

Solution: The total transportation cost is: 

𝐶 = ($10)(𝑏𝑜𝑡𝑡𝑜𝑚) 

+($10)(𝑠𝑖𝑑𝑒)(2 𝑠𝑖𝑑𝑒𝑠) 

+($20)(𝑒𝑛𝑑)(𝑡𝑤𝑜 𝑒𝑛𝑑𝑠) 

+(𝑡𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑎𝑛𝑑/𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟)(𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡𝑟𝑖𝑝) 

𝐶 = 10𝑙𝑤 + 20𝑙ℎ + 40𝑤ℎ + (
400

𝑙𝑤ℎ
) (

10

100
) 

The dual function is: 

𝐶(𝑎) = (
10𝑙𝑤

𝑎1
)

𝑎1

(
20𝑙ℎ

𝑎2
)

𝑎2

(
40𝑤ℎ

𝑎3
)

𝑎3

(
40

𝑎4𝑙𝑤ℎ
)

𝑎4

 

To satisfy a minimum 𝐶, the dual variables must conform to: 

(𝑙𝑤)𝑎1(𝑙ℎ)𝑎2(𝑤ℎ)𝑎3 (
1

𝑙𝑤ℎ
)

𝑎𝑛

= 1  

And eliminating the variables with the dual function becomes: 

𝐶(𝑎) = (
10

𝑎1
)

𝑎1

(
20

𝑎2
)

𝑎2

(
40

𝑎3
)

𝑎3

(
40

𝑎4
)

𝑎4

 

 

 

 



In order that the dual variables relation be satisfied, the sum of the exponents for each variable must 

equal zero. Thus, 

𝐹𝑜𝑟 𝑙, 𝑎1 + 𝑎2 + 0 − 𝑎4 = 0 

𝐹𝑜𝑟 𝑤, 𝑎1 + 0 + 𝑎3 − 𝑎4 = 0 

𝐹𝑜𝑟 ℎ, 0 + 𝑎2 + 𝑎3 − 𝑎4 = 0 

And 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 = 1 for the inequality to become and equality. 

Solving simultaneously, 

𝑎1 = 1 5⁄  

𝑎2 = 1 5⁄  

𝑎3 = 1 5⁄  

𝑎4 = 2 5⁄  

And 𝐶(𝑎) = (
10

1 5⁄
)

1 5⁄

(
20

1 5⁄
)

1 5⁄

(
40

1 5⁄
)

1 5⁄

(
40

2 5⁄
)

2 5⁄

 

The minimum cost is $100 

To obtain the design parameters, observe that the exponent values yield the proportionate cost of each 

contributing cost. 

Thus for: 

𝑎1:     10𝑙𝑤 =
1 5⁄

5 5⁄
× 100 = 20 

𝑎2:     20𝑙ℎ =
1 5⁄

5 5⁄
× 100 = 20 

𝑎3:     40𝑤ℎ =
1 5⁄

5 5⁄
× 100 = 20 

𝑎4 :    
40

𝑙𝑤ℎ
=

2 5⁄

5 5⁄
× 100 = 40 

Solving the above, the optimum parameter values are: 

𝑙 = 2𝑦𝑑     ;      𝑤 = 1 𝑦𝑑     ;      ℎ = 1 2⁄  𝑦𝑑 

 



Lecture (Jan. 29th, 2019) 

Minimization by Method of Lagrange Multipliers 

Given a function 

𝑈(𝑥1, 𝑥2, … , 𝑥𝑛) 

We wish to find its minimum value & co-ordinates of 𝑥1 , 𝑥2 − − − etc. at this minimum. Let the function 

be subject to the constraints  

𝜑1(𝑥1, 𝑥2 − − −  𝑥𝑛) = 0 

𝜑2(𝑥1, 𝑥2 − − − 𝑥𝑛) = 0 

Procedure: 

(1) Form a new function 

𝑈(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑈(𝑥1, 𝑥2, … , 𝑥𝑛) + λ1𝜑1(𝑥1, 𝑥2, … , 𝑥𝑛) + λ2𝜑2(𝑥1 , 𝑥2, − − − 𝑥𝑛) …  𝑒𝑡𝑐. 

Let there be 𝑁 variable & 𝑀 constraints. We now treat the λ’s as variables and write the (𝑚 + 𝑛) 

equations. 

𝜕𝑈∗

𝜕𝑥1
= 0 

𝜕𝑈∗

𝜕𝑥2
= 0 

𝑒𝑡𝑐. 

𝜕𝑈∗

𝜕λ1
= 0 

Final step: solve the set of algebraic equations (2) for the variables 𝑥1, 𝑥2, − − −𝑥𝑛 . The function 

𝑈(𝑥1 , 𝑥2) will be minimum at this point. 

NOTE: The method of Lagrange Multipliers is generally good for handling problems where constraints on 

the variables exist. 

Assignment #2: 3.4, 3.5, 3.6, 3.9, 3.10, 3.14 

Midterm is February 12th, unless we can find a room, and then it will be on the Saturday. 

Load and Stress Analysis 

Beams 

1. Loads Distributed Along a Line 

Let’s assume that the function 𝑤 describing a particular distributed load is known. The graph of 𝑤 is 

called the loading curve. The force acting on an element 𝑑𝑥 of the line is 𝑤𝑑𝑥.  

 



 

The total force 𝐹 is: 

 

 

 

The moment about the origin due to the force exerted on the element 𝑑𝑥 is 𝑥𝑤𝑑𝑥, so the total moment 

about the origin due to the distributed load is: 

𝑀 = ∫ 𝑥𝑤 𝑑𝑥
 

𝐿

 

Or: 

𝑀 = 𝑥̅𝐹 = ∫ 𝑥𝑤 𝑑𝑥
 

𝐿

 

Where 𝐹 is the equivalent load if placed at the position: 

𝑥̅ =
∫ 𝑥𝑤 𝑑𝑥

 

𝐿

∫ 𝑤 𝑑𝑥
 

𝐿

 

Example: The beam is subjected to a triangular distributed load whose value at 𝐵 is 100 𝑁/𝑚. 

Determine the reactions at 𝐴 and 𝐵. 

 

First method:  

𝑤 =
100

12
𝑥      (𝑁/𝑚) 

The total load is:  

𝐹 =  ∫ 𝑤 𝑑𝑥
 

𝐿

= ∫ (
100

12
) 𝑥 𝑑𝑥 = 600 𝑁

12

0

 

𝐹 =  ∫ 𝑤 𝑑𝑥
 

𝐿

 

𝑤 



The clockwise moment about 𝐴 due to the load is: 

𝑀𝐴 = ∫ 𝑥𝑤 𝑑𝑥 = ∫ (
100

12
) 𝑥2 𝑑𝑥

12 

0

 

𝐿

= 4800 𝑁 ∙ 𝑚 

From the equilibrium equations: 

 

∑ 𝐹𝑥 = 𝐴𝑥 = 0     ;      ∑ 𝐹𝑦 = 𝐴𝑦 + 𝐵𝑦 − 600 = 0 

− ∑ 𝑀𝐴 = 12𝐵𝑦 − 4800 = 0 

∴ 𝐴𝑥 = 0     ;      𝐴𝑦 = 200 𝑁     ;      𝐵𝑦 = 400 𝑁 

Second Method 

 

 

𝐹 = (
1

2
) ∙ (12 𝑚) ∙ (100

𝑁

𝑚
) = 600 𝑁 

𝑥̅ = (
2

3
) ∙ (12 𝑚) = 8 𝑚 

∑ 𝐹𝑥 = 𝐴𝑥 = 0     ;      ∑ 𝐹𝑦 = 𝐴𝑦 + 𝐵𝑦 − 600 = 0 

− ∑ 𝑀𝐴 = 12𝐵 − 8 ∙ 600 = 0 

∴ 𝐴𝑥 = 0     ;      𝐴𝑦 = 200 𝑁     ;      𝐵𝑦 = 400 𝑁 

 

 



2. Internal Forces and Moments in Beams 

Determining the internal forces and moment at a particular cross section of a bream typically involves 

three steps: 

1. Determine the external forces and moments – Draw free-body diagram of the beam and 

determine the reactions at tits supports. If the beam is a member of a structure, you must first 

analyze the structure. 

2. Draw the free-body diagram of part of the beam – cut the beam at the point at which you want 

to determine the internal forces and moment and draw the free-body diagram of one of the 

resulting parts. You can choose the part with the simplest free-body diagram, if your cut divides 

a distributed load, don’t represent the distributed load by an equivalent force until after you 

have obtained your free-body diagram. 

3. Apply the equilibrium equations – use the equilibrium equations to determine the axial force 𝑃, 

the shear force 𝑉, and the bending moment 𝑀. 

Example: Determine the internal forces and moment at 𝐶. 

 

∑ 𝐹𝑥 = 𝐴𝑥 = 0     ;      ∑ 𝑀𝐴 = 𝐿𝐵𝑦 − 𝐹 (
3

4
𝐿) = 0     ;     𝐵𝑦 = (

3

4
) 𝐹 

∑ 𝐹𝑦 = (
3

4
) 𝐹 + 𝐴𝑦 − 𝐹 = 0     ;      𝐴𝑦 = (

1

4
) 𝐹 

 



 

∑ 𝐹𝑥 = 𝐴𝑥 = 0     ;      ∑ 𝐹𝑦 = (
1

4
) 𝐹 − 𝑉𝑐 = 0     ;      𝑉𝑐 = (

1

4
) 𝐹 

∑ 𝑀𝐶 = 𝑀𝑐 − (
1

4
) (

𝐹

4
) = 0     ;      𝑀𝑐 = (

1

16
) 𝐹𝐿  

𝑃𝑐 = 0     ;      𝑉𝑐 = (
1

4
) 𝐹     ;      𝑀𝑐 = (

1

16
) 𝐹𝐿 

 

Example: Determine the internal forces and moment at (a) and 𝐵 and (b) at 𝐶 

 

∑ 𝐹𝑥 = 𝐴𝑥 = 0     ;      ∑ 𝐹𝑦 = 𝐴𝑦 + 𝐷𝑦 − 180 = 0  

∑ 𝑀𝐴 = 12𝐷𝑦 − 4(180) = 0 

𝐴𝑥 = 0     ;      𝐴𝑦 = 120 𝑁     ;      𝐷𝑦 = 60 𝑁 



 

∑ 𝐹𝑥 = 𝑃𝐵 = 0     ;      ∑ 𝐹𝑦 = 120 − 45 − 𝑉𝐵 = 0      

∑ 𝑀𝐵 = 𝑀𝐵 + (1)(45) − (3)(120) = 0 

𝑃𝐵 = 0     ;     𝑉𝐵 = 75 𝑁     ;      𝑀𝐵 = 315 𝑁 ∙ 𝑚 

 

∑ 𝐹𝑥 = −𝑃𝐶 = 0 

∑ 𝐹𝑦 = 𝑉𝑐 + 60 = 0 

∑ 𝑀𝐶 = −𝑀𝐶 + (3)(60) = 0 

Solving we obtain: 

𝑃𝐶 = 0     ;      𝑉𝐶 = −60     ;      𝑀𝐶 = 180 𝑁 ∙ 𝑚 



Lecture (Jan. 31st, 2019) 

3. Shear Force and Bending Moment Diagrams 

The shear force and bending moment diagrams are simply the graphs of 𝑉 and 𝑀 respectively, as 

functions of 𝑥. They show the changes in the shear force and bending moment that occur along the 

beam’s length as well as their maximum and minimum values. 

 

 

 

 



3. Relations between Distributed Load, Shear Force, and Bending Moment 

𝑑𝑣

𝑑𝑥
= −𝑤 

𝑑𝑀

𝑑𝑥
= 𝑣 

If we define 𝑞(𝑥) as the load intensity with units of force per unit length and is positive in the positive 

𝑦 −direction. Then, 

𝑞 = −𝑤 =
𝑑𝑣

𝑑𝑥
=

𝑑2𝑀

𝑑𝑥2
 

And: 

𝑉 = ∫ 𝑑𝑉
𝑉𝐵

𝑉𝐴

= 𝑉𝐵 − 𝑉𝐴 = ∫ 𝑞 𝑑𝑥
𝑥𝐵

𝑥𝐴

 

And: 

𝑀 = ∫ 𝑑𝑀
𝑀𝐵

𝑀𝐴

= 𝑀𝐵 − 𝑀𝐴 = ∫ 𝑉 𝑑𝑥
𝑥𝐵

𝑥𝐴

 

Singularity Functions 

Singularity functions are shown in Table 3.1 constitute an easy means of integrating across 

discontinuities. Consequently, they are used to write general expressions for shear force and bending 

moment in beams in the presence of concentrated forces and moments.  

Example – Derive expressions for the loading, shear force, and bending moment of the beams as shown. 

 

Solution  

𝑞 =  𝑅1 < 𝑥 >−1− 𝐹1 < 𝑥 − 𝑎1 >−1− 𝐹2 < 𝑥 − 𝑎2 >−1+ 𝑅2 < 𝑥 − 𝐿 >−1 

Have: 

∫ 𝑑𝑉
𝑉𝐵

𝑉𝐴

= ∫ 𝑞 𝑑𝑥
𝑥𝐵

𝑥𝐴

= 𝑉𝐵 − 𝑉𝑎  

 



And:  

𝑉 = 0 𝑎𝑡 𝑥 = −∞ 

∴ 𝑉 = ∫ 𝑞 𝑑𝑥
𝑥

−∞

=  𝑅1 < 𝑥 >0− 𝐹1 < 𝑥 − 𝑎1 >0− 𝐹2 < 𝑥 − 𝑎2 >0+ 𝑅2 < 𝑥 − 𝐿 >0 

Also have: 

𝑉 = 0 𝑎𝑡 𝑥 > 𝐿 

∴ 𝑅1 − 𝐹1 − 𝐹2 + 𝑅2 = 0 −  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1) 

The bending moment: 

∫ 𝑑𝑀
𝑀𝐵

𝑀𝐴

= ∫ 𝑉 𝑑𝑥
𝑥𝐵

𝑥𝐴

= 𝑀𝐵 − 𝑀𝐴 

∴ 𝑀 = ∫ 𝑉 𝑑𝑥
𝑥

−∞

= 𝑅1 < 𝑥 >1− 𝐹1 < 𝑥 − 𝑎1 >1− 𝐹2 < 𝑥 − 𝑎2 >1+ 𝑅2 < 𝑥 − 𝐿 >1 

And: 

𝑅1𝐿 − 𝐹1(𝐿 − 𝑎1) − 𝐹2(𝐿 − 𝑎2) = 0 − 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2) 

(1) 𝑎𝑛𝑑 (2) 𝑎𝑟𝑒 𝑠𝑜𝑙𝑣𝑒𝑑 𝑓𝑜𝑟 𝑅1 𝑎𝑛𝑑 𝑅2 

 

Example – The figure shows the loading diagram for a beam cantilevered at 0 and having a uniform load 

𝑤 acting on the position 𝑎 ≤ 𝑥 ≤ 𝐿. Derive the shear force and moment sections. 𝑀1 and 𝑅1 are the 

support reactions.  

 

 



Solution – The loading function is: 

𝑞 = −𝑀1 < 𝑥 >−2+ 𝑅1 < 𝑥 >−1− 𝑤 < 𝑥 − 𝑎 >0 

First integration to obtain 𝑉: 

𝑉 = ∫ 𝑞 𝑑𝑥
𝑥

−∞

= −𝑀, 𝑥 >−1+ 𝑅1 < 𝑥 >0−
𝑤

2
< 𝑥 − 𝑎 >1 

Second Integration: 

𝑀 = ∫ 𝑉 𝑑𝑥
𝑥

−∞

= −𝑀1 < 𝑥 >0+ 𝑅1 < 𝑥 >−1−
𝑤

2
< 𝑥 − 𝑎 >2 

For 𝑥 slightly larger than 𝐿: 

𝑉 = 𝑀 = 0 

∴ 𝑉𝑥 > 𝐿 = −𝑀1(0) + 𝑅1 − 𝑤(𝐿 − 𝑎) = 0  −   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1) 

And: 

𝑀𝑥 > 𝐿 = −𝑀1 + 𝑅1𝐿 −
𝑤

2
(𝐿 − 𝑎)2 = 0 −   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2) 

 

- Pure Tension or Compression 

𝜎 =
𝐹

𝐴
 

 

 

- Pure Shear Stress 

𝜏 =
𝐹

𝐴
 



 

Elastic Strain 

- Strain 

𝜀 =
𝛿

𝐿
 

From Hooke’s Law: 

𝜎 = 𝐸𝜀 

𝜏 = 𝐺𝛾 

Where: 

𝐸 − 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 

𝜀 − 𝑠𝑡𝑟𝑎𝑖𝑛 

𝐺 − 𝑠ℎ𝑒𝑎𝑟 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 

𝛾 − 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑎𝑖𝑛 

And: 

∴  
𝐹

𝐴
= 𝐸

𝛿

𝐿
 

And: 

𝛿 =
𝐹𝐿

𝐴𝐸
 

- Poisson’s Ratio 𝜇 or 𝑣 

𝜇 = −
𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛

𝑎𝑥𝑖𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛
 

 

The three elastic constants are related by: 

𝐸 = 2𝐺(1 + 𝜇) 

Stress-Strain Relations 

- Uniaxial Stress 

𝜀1 =
𝜎1

𝐸
     ;     𝜀2 = −𝜇 ∙ 𝜀1     ;      𝜀3 = −𝜇 ∙ 𝜀1 



- Biaxial Stress 

𝜀1 =
𝜎1

𝐸
− 𝜇

𝜎2

𝐸
 

𝜀2 =
𝜎2

𝐸
− 𝜇

𝜎1

𝐸
 

𝜀3 =
−𝜇𝜎1

𝐸
−

𝜇𝜎2

𝐸
 

Solving for 𝜎1 and 𝜎2: 

𝜎1 = 

 

𝜎2 = 

 

- Triaxial Stress 

𝜀1 =
𝜎1

𝐸
− 𝜇

𝜎2

𝐸
− 𝜇

𝜎3

𝐸
 

𝜀2 =
𝜎2

𝐸
− 𝜇

𝜎1

𝐸
− 𝜇

𝜎3

𝐸
 

𝜀3 =
𝜎3

𝐸
− 𝜇

𝜎1

𝐸
− 𝜇

𝜎2

𝐸
 

Or: 

𝜎1 =
𝐸𝑒1(1 − 𝜇) + 𝜇𝐸(𝜀2 + 𝜀3)

1 − 𝜇 − 2𝜇2
 

𝜎2 =
𝐸𝑒2(1 − 𝜇) + 𝜇𝐸(𝜀1 + 𝜀3)

1 − 𝜇 − 2𝜇2
 

𝜎3 =
𝐸𝑒3(1 − 𝜇) + 𝜇𝐸(𝜀1 + 𝜀2)

1 − 𝜇 − 2𝜇2
 



Lecture (Feb. 5th, 2019) 

Midterm - ATAC-1003, 1:00pm on Saturday 

Will cover material from Weeks 1-4 only 

Normal Stress in Bending 

It can be shown that the neutral axis and centroidal axis in straight beams are the same. 

 

Moment of 𝑑𝐹 about 𝑂 is: 

𝑑𝑀 = 𝑑𝐹 𝑦 

And: 

𝑀 = ∫ 𝑦 𝜎 𝑑𝐴
𝐴

 

 

But:  

𝜎

𝑦
=

𝜎𝑐

𝑐
     ;      𝜎 =

𝜎𝑐

𝑐
 

And: 

𝑀 = ∫ 𝑦2  
𝜎𝑐

𝑐
 𝑑𝐴

𝐴

 

 

=
𝜎𝑐

𝑐
∫ 𝑦2 𝑑𝐴

𝐴

 

 

=
𝜎

𝑦
∫ 𝑦2 𝑑𝐴

𝐴

 

 

But:  

∫ 𝑦2 ∙ 𝑑𝐴
𝐴

 

= 𝐼 

And: 

𝑀 =
𝜎

𝑦
∙ 𝐼 

 



And: 

𝜎 =
𝑀𝑦

𝐼
 

𝜎 = Stress at distance 𝑦 from the neutral axis 

𝐼 = Moment of inertia of the cross-section about the neutral axis 

𝑀 = Applied bending moment 

𝜎𝑡,𝑚𝑎𝑥 =
𝑀𝑐𝑡

𝐼
     ;      𝜎𝑐,𝑚𝑎𝑥 =

𝑀𝑐𝑐

𝐼
 

For symmetric beam sections: 

𝑐𝑡 = 𝑐𝑐 = 𝑐 

|𝜎𝑡| = |𝜎𝑐| =
𝑀𝑐

𝐼
 

Shear Stress Due to Bending 

In addition to normal stresses induced by bending of a beam, transverse shearing stresses are induced 

between he elements or fibers, provided the bending moment varies along the length of the beam. 

According to the strength-of-materials methods. 

𝜏 =
𝑉

𝐼𝑏
∫ 𝑦 𝑑𝐴

𝑐

𝑧

=
𝑉𝑄

𝐼𝑏
 

𝜏 = Shear Stress 

𝐼 = Moment of inertia of the cross-section 

𝑏 = beam width at the section 

𝑄 =  ∫ 𝑦 𝑑𝐴
𝑐

𝑧
= moment of area of the element about the neutral axis 

𝑉 = shearing force at the section  

𝑧 = location where shear stress is of interest 

 



For rectangular cross-section: 

𝜏𝑚𝑎𝑥 =
3𝑉

𝐴
 

For solid circular cross section: 

𝜏𝑚𝑎𝑥 =
4𝑉

3𝐴
 

For thin-walled circular tube: 

𝜏𝑚𝑎𝑥 =
2𝑉

𝐴
 

𝐴 = cross sectional area 

Two-Plane Bending 

When bending occurs in both 𝑥𝑦 and 𝑥𝑧 planes of cross sections with one or two planes of symmetry, 

the bending stresses are given by: 

𝜎𝑥 =
𝑀𝑧  𝑦

𝐼𝑧
+

𝑀𝑦  𝑧

𝐼𝑦
 

The maximum bending stress for a solid circular section in this case is: 

𝜎𝑚𝑎𝑥 =
𝑀 𝑐

𝐼
=

(𝑀𝑦
2 + 𝑀𝑧

2)
1
2 (

𝑑
2

)

𝜋
𝑑4

64

 

𝜎𝑚𝑎𝑥 =
32

𝜋𝑑3
(𝑀𝑦

2 + 𝑀𝑧
2)

1
2 

Torsion of Circular Shafts 

Torsional moments induce shear stresses on cross-sections normal to the axis of bars and shaft. 

For circular shafts: 

𝜏 =
𝑇 𝑟

𝐽
 

𝜏 = Induced shear stress 

𝑟 = distance from the center of the shaft to the point of stress 

𝐽 = polar moment of inertia 

For a solid circular shaft: 

𝜏𝑚𝑎𝑥 =
𝑇 𝑑

2 𝐽
=

𝑇 𝑑

2 𝜋
𝑑4

32

=
16 𝑇

𝜋 𝑑3
 

 



Torsion of Rectangular Bars 

The general equations for stress and deformation in rectangular bars may be written in the following 

form. 

 

For point 𝐴1: 

𝜏 =
𝑇

∝1  𝑏 𝑐2
 

For point 𝐴2: 

𝜏 =
𝑇

∝2  𝑏 𝑐2
 

For angular deformation (radians per inch of length): 

𝜃1 =
𝑇

𝛽 𝐺 𝑏 𝑐3
 

𝑇 = Torque 

𝑏 = 𝑑 = breadth of section (width) 

𝑡 = 𝑐 = thickness of section  

∝𝑖  = coefficient from the table below 

𝛽 = coefficient from the table below 

𝐺 = shear modulus 

The maximum shear stress on the cross-section occurs at the center 𝐴1 of the long side and is found by 

using ∝1 

 



The following approximate formula for the maximum torsional stress in a rectangular section was given 

by Timoshenko and McCullough 

𝜏𝑚𝑎𝑥 =
𝑇

𝑏 𝑡2
(3 + 1.8

𝑡

𝑏
) 

Pressure Cylinder 

Thin walled cylinders 𝑑 𝑡⁄ ≫ 10: 

Neglecting the effects of curvature of the cylinder wall, and assuming tensile stresses are uniformly 

distributed over the section of the wall.  

 

2 𝜎1 𝑡 = 𝑃𝑖  𝑑𝑖 

 

The average tangential stress is: 

𝜎1 = 𝜎𝑡 =
𝑃𝑖𝑑𝑖

2𝑡
 

𝜎1 = 𝜎𝑡 = tangential stress or hoop stress 



And an approximation to the maximum tangential stress is: 

𝜎𝑡,𝑚𝑎𝑥 =
𝑃𝑖(𝑑𝑖 + 𝑡)

2𝑡
 

The longitudinal tensile stress or 𝜎𝑧 is: 

 

𝐹 = 𝑝𝑖𝐴     ;     𝐴 =
𝜋𝑑𝑖

2

4
 

𝐹 = 𝑝𝑖

𝜋𝑑𝑖
2

4
 

∴  𝜋 𝑑𝑖  𝑡 𝜎2 =
𝜋 𝑑𝑖

2 𝑝𝑖

4
 

𝜎2 = 𝜎𝐿 =
𝑝𝑖 𝑑𝑖

4 𝑡
 

𝜎1 = circumferential, or hoop, or tangential stress 

𝜎2 = longitudinal stress 

𝑑𝑖 = internal diameter 

𝑡 = wall thickness 

𝑝 = internal pressure 



Lecture (Feb. 12th, 2019) 

𝜋𝑑𝑖𝑡𝜎2 =
𝜋𝑑𝑖

2𝑝𝑖

4
 

Where: 

𝜎1 = circumferential (hoop) stress, tangential stress 

𝜎2 = longitudinal stress 

𝑑𝑖 = internal diameter 

𝑡 = wall thickness 

𝑝 = internal pressure 

Thick-walled Cylinders with Internal and External Pressures 

 

𝜎𝑟 =
𝑝𝑖𝑟𝑖

2 − 𝑝𝑜𝑟𝑜
2

𝑟𝑜
2 − 𝑟𝑖

2 −
(𝑝𝑖 − 𝑝𝑜)𝑟𝑜

2𝑟𝑖
2

𝑟2(𝑟𝑜
2 − 𝑟𝑖

2)
  

𝜎𝑡 =
𝑝𝑖𝑟𝑖

2 − 𝑝𝑜𝑟𝑜
2

𝑟𝑜
2 − 𝑟𝑖

2 +
(𝑝𝑖 − 𝑝𝑜)𝑟𝑜

2𝑟𝑖
2

𝑟2(𝑟𝑜
2 − 𝑟𝑖

2)
  

Thick Walled Cylinders with Internal Pressure only 

Tangential Stress: 

𝜎𝑡 =
𝑝𝑖𝑟𝑖

2

𝑟𝑜
2 − 𝑟𝑖

2 (1 +
𝑟𝑜

2

𝑟2
) 

Radial Stress: 

𝜎𝑟 =
𝑝𝑖𝑟𝑖

2

𝑟𝑜
2 − 𝑟𝑖

2 (1 −
𝑟𝑜

2

𝑟2
) 

Axial Stress: 

𝜎𝑡 =
𝑝𝑖𝑟𝑖

2

𝑟𝑜
2 − 𝑟𝑖

2 



𝜎𝑡,𝑚𝑎𝑥 =
𝑝𝑖(𝑟𝑜

2 − 𝑟𝑖
2)

𝑟𝑜
2 − 𝑟𝑖

2      (𝐴𝑡 𝑟 = 𝑟𝑖) 

𝜎𝑟,𝑚𝑎𝑥 = −𝑝𝑖      (𝐴𝑡 𝑟 = 𝑟𝑖) 

23.2 Metal Fits 

- Basic size is the exact theoretical size. Limiting variations begin from the basic dimension. 

- The nominal size of a part is the designation used for the purpose of general identification. 

- Limits are the stated maximum and minimum permissible dimensions. 

- Tolerance is the total permissible variation in size. (- The difference between the two limits) 

Example: A 1.500 ± 0.010 𝑖𝑛 shaft is a shaft that has a basic size of 1 − 1 2⁄  𝑖𝑛, (in this case the basic 

size is also the nominal size), in diameter and a tolerance of 0.020 𝑖𝑛. 

 

- Unilateral tolerance is when one of the limits is the basic size 

Example: 1.500−0.010
+0.000 

Unilateral tolerances are usually used in specifying fits for interchangeable parts. 

 

- Bilateral tolerance is when variation is permitted in both directions from the basic size.  

Example: 1.500 ± 0.010 

- Natural tolerance is equal to plus and minus three standard deviations from the mean. For 

normal distributions, 99.73% of production is within natural tolerance limits.  

- Clearance is used when the internal member of two mating parts is smaller than the external 

member. 

a – diametral clearance is the measured difference in the two diameters. 

b – radial clearance is the difference in the two radii. 

- Interference is when the internal member is larger than the external member. 

23.3 Force Fits and Shrink Fit 

In a force-fit assembly, the pressure between the parts depends on the amount of interference. 

If the radial interference is 𝛿, the contact pressure at the interference radius 𝑅 is: 

𝑝 =
𝛿

𝑅 [
1

𝐸𝑜
(

𝑟𝑜
2 + 𝑅2

𝑟𝑜
2 − 𝑅2 + 𝑣𝑜) +

1
𝐸𝑖

(
𝑅2 + 𝑟𝑖

2

𝑅2 − 𝑟𝑖
2 − 𝑣𝑖)]

 

If the members are of the same material, then: 

𝑝 =
𝐸𝛿

2𝑅3
[
(𝑟𝑜

2 − 𝑅2)(𝑅2 − 𝑟𝑖
2)

𝑟𝑜
2 − 𝑟𝑖

2 ] 



If the mating parts are of the same material and 𝑟𝑖 = 0 (hub and solid shaft): 

𝑝 =
𝐸𝛿

2𝑅
[1 −

𝑅2

𝑟𝑜
2 ] 

The maximum tangential and radial stresses at the inside surface of the external member are: 

(𝜎𝑡)𝑚𝑎𝑥 = 𝑝
𝑟𝑜

2 + 𝑅2

𝑟𝑜
2 − 𝑅2

=

𝑝 (1 +
𝑅2

𝑟𝑜
2 )

(1 −
𝑅2

𝑟𝑜
2 )

     ;      (𝜎𝑝)
𝑚𝑎𝑥

= −𝑝 

Substituting for 𝑝: 

(𝜎𝑡)𝑚𝑎𝑥 =
𝐸𝛿

2𝑅
[1 +

𝑅2

𝑟𝑜
2 ] 

(𝜎𝑟)𝑚𝑎𝑥 =
−𝐸𝛿

2𝑅
[1 −

𝑅2

𝑟𝑜
2 ] 

The maximum shearing stress is: 

𝜏𝑚𝑎𝑥 = √(
𝜎𝑡 − 𝜎𝑟

2
)

2

=
𝐸𝛿

2𝑅
 

For brittle material, the maximum normal stress should not exceed the ultimate tensile strength of the 

material. 

𝑆𝑢𝑙𝑡

𝑛𝑑
=

𝐸𝛿

2𝑅
(1 +

𝑅2

𝑟𝑜
2 ) 

For ductile material, based on the maximum shear theory. 

𝑆𝑦𝑝

𝑛𝑑
=

𝐸𝛿

𝑅
 

Where  

𝑛𝑑 = design factor 

𝑆𝑢𝑙𝑡 = ultimate tensile strength, 𝑝𝑠𝑖 

𝑆𝑦𝑝 =yield strength, 𝑝𝑠𝑖 

(𝜎𝑟)𝑚𝑎𝑥 = −
𝐸𝛿

2𝑅
(1 −

𝑅2

𝑟𝑜
2 ) 

The maximum shearing stress is: 

𝜏𝑚𝑎𝑥 = √(
𝜎𝑡 − 𝜎𝑟

2
)

2

=
𝐸𝛿

2𝑅
 



For brittle material, the maximum normal stress should not exceed the ultimate tensile strength of the 

material. 

𝑆𝑢𝑙𝑡

𝑛𝑑
=

𝐸𝛿
 

23-4 Force Fits – Steel Shaft & Cast-iron Hub 

𝑝 =

𝐸𝑐𝛿 [1 − (
𝑑𝑖

2

𝑑𝑜
2)]

𝑑𝑖 [1.53 + 0.47 (
𝑑𝑖

2

𝑑𝑜
2)]

 

Where, 𝐸𝑐 = modulus of elasticity of cast iron. And: 

𝑆𝑢𝑙𝑡

𝑓𝑠
=

𝐸𝑐𝛿 [1 − (
𝑑𝑖

2

𝑑𝑜
2)]

𝑑𝑖 [1.53 + 0.47 (
𝑑𝑖

2

𝑑𝑜
2)]

 

23-5 Holding ability of Force and Shrink Fits 

𝑇 =
𝑓𝑝𝜋𝑑𝑖

2𝐿

2
 

Where: 

𝑇 = Transmitted torque, 𝑙𝑏 − 𝑖𝑛 

𝑝 = contact pressure, 𝑝𝑠𝑖 

𝑑𝑖 = Diameter, 𝑖𝑛 

𝐿 = length of hub, 𝑖𝑛 

𝑓 = coefficient of friction (usually from 0.1 to 0.05) 

𝛿 = diametral interference, 𝑖𝑛 

-Thermal-stresses and strains 

When the temperature of an unrestrained body is uniformly increased, the body expands, and the 

normal strain is: 

𝜀𝑥 = 𝜀𝑦 = 𝜀𝑧 = 𝛼(∆𝑇) 

Where: 

𝛼 = coefficient of thermal expansion (Table 3.3) 

∆𝑇 = temperature change in degrees 

If a straight bar is restrained at the ends, the compressive stress is: 

𝜎 = 𝜀𝐸 = 𝛼(∆𝑇)𝐸 

If a uniform plate is restrained at the edges 

𝜎 =
𝛼(∆𝑇)𝐸

1 − 𝑣
 



Although referred to as thermal stresses, the above are not thermal stresses, but arise from the edge 

restrains. A thermal stress is one which arises because of the existence of a temperature gradient in a 

body. 

23-6 Assembly of Shrink Fits 

- The minimum change in temperature for assembly is: 

∆𝑇 =
𝛿

𝛼𝑑𝑖
 

Where: 

𝛿 = diametral interference, 𝑖𝑛 

𝛼 = coefficient of expansion, 𝑖𝑛 𝑝𝑒𝑟 𝑖𝑛 𝑝𝑒𝑟 °𝐹 

∆𝑇 = exchange in temperature, °𝐹 

- The force required to press the parts together is: 

𝐹 = 2𝜋𝑟𝑖𝐿𝑝𝑓 

𝜋𝑑𝑖𝐿𝑝𝑓 
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Curved Beams in Bending 

The neutral axis and the centroidal axis of a curbed beam do not coincide, and the stress distribution is 

not linear. 

The location of the neutral axis with respect to the center of curvature is given by: 

𝑟𝑛 =
𝐴

∫
𝑑𝐴
𝑟

 

For rectangular section: 

𝑅𝑐 = 𝑟𝑖 +
ℎ

2
 

And: 

𝑟𝑛 =
𝐴

∫
𝑑𝐴
𝑟

=
𝑏ℎ

∫
𝑏
𝑟 

𝑟𝑜

𝑟𝑖
𝑑𝑟

=
ℎ

ln (
𝑟𝑜

𝑟𝑖
)

 

 

For solid round section: 

𝑅𝑐 = 𝑟𝑖 +
𝑑

2
 

And: 

𝑟𝑛 =
𝑑2

4 (2𝑅𝑐 − √4𝑅𝑐
2 − 𝑑2)

 

The stress distribution is given by: 

𝜎 =
𝑀𝑦

𝐴𝑒(𝑟𝑛 − 𝑦)
 

(Where 𝑒 is the distance between the neutral axis and the centroidal axis.) 

 

 



At the inner fiber: 

𝜎𝑖 =
𝑀𝑐𝑖

𝐴𝑒𝑟𝑖
 

At the outer fiber: 

𝜎𝑜 =
𝑀𝑐𝑜

𝐴𝑒𝑟𝑜
 

(For other cross-section shapes refer to Table 3.4) 

 

 



 

Hertz Contact Stresses 

When two solid spheres are passed together with a force 𝐹, the radius of the circular contact area is: 

𝑎 = √
3𝐹

8

[(1 − 𝑣1
2)/𝐸] + [(1 − 𝑣2

2)/𝐸2]

(1/𝑑1) + (1/𝑑2)

3

 

Where: 

𝑎 = radius of the circular area of contact 

𝑑1 = diameter of sphere 1 

𝑑2 = diameter of sphere 2 

𝐸1 = modulus of elasticity of sphere 1 

𝐸2 = modulus of elasticity of sphere 2 

𝑣1 = Poisson’s radio of sphere 1 

𝑣2 = Poisson’s ratio of sphere 2 

𝐹 = applied force 

The maximum pressure at the centre of the contact area is: 

𝑝𝑚𝑎𝑥 =
3𝐹

2𝜋𝑎2
 

The above equations are also valid for the case of a sphere and a plane surface on a sphere and an 

internal spherical surface. For a plane surface use 𝑑 = ∞, and for internal surfaces the diameter is 

expressed as a negative quantity. 

Plane: 𝑑 = ∞ 

Internal Spherical Surface: 𝑑 < 0 



The maximum stress occur on the 𝑧 − 𝑎𝑥𝑖𝑠 which is the axis of application of external force: (These are 

principal stresses) 

 

 

In using the above equations, the value of Poisson’s ratio used must be that of the sphere under 

consideration. 

Also: 

𝜏𝑥𝑧 = 𝜏𝑦𝑧 =
𝜎𝑥 − 𝜎𝑧

2
=

𝜎𝑦 − 𝜎𝑧

2
= 𝜏𝑚𝑎𝑥  

Since: 

𝜎𝑥 = 𝜎𝑦 = 𝜏𝑥𝑦 = 0 

In the case of two contacting cylinders of length 𝑙 and diameter, 𝑑1 and 𝑑2, the area of contact is a 

rectangle of width 2𝑏 where: 

 

And the maximum pressure is: 

 

The above equations are also applicable for a cylinder and a plane surface as well as for a cylinder and 

an internal cylindrical surface where: 

For a plane surface: 𝑑 = ∞ 

For cylindrical surface: 𝑑 < 0 

The stress state on the 𝑧 − 𝑎𝑥𝑖𝑠 given by the following: 



 

Note that: 

For 0 ≤ 𝑧 ≤ 0.436𝑏: 𝜎1 = 𝜎𝑥      ;      𝜏𝑚𝑎𝑥 = (𝜎1 − 𝜎3)/2 

And: 

For 𝑧 ≥ 0.436𝑏: 𝜎1 = 𝜎𝑦      ;      𝜏𝑚𝑎𝑥 = (𝜎1 − 𝜎3)/2 

Also note that 𝜏𝑥𝑦  here is not the largest of the three shears for all values of 𝑧/𝑏, but is max for 

𝑧/𝑏 = 0.786 and is the larger at this point. 

6.2 - Determination of Principal Stresses 

Whatever the aspect of the stress at a joint may be, it can always be expressed in terms of normal 

stresses and shear stresses. 

 



Where: 

𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧     ;     are normal stresses 

𝜏𝑦𝑥 = 𝜏𝑥𝑦 

𝜏𝑦𝑧 = 𝜏𝑧𝑦  

𝜏𝑧𝑥 = 𝜏𝑥𝑧     ;     are shear stresses 

Two-dimensional Stress 

Consider a section of this element: 

 

∑ 𝐹𝑛 = 0 

𝜎𝑛 𝑑𝐴 − 𝜎𝑥  𝑐𝑜𝑠𝜃 𝑑𝐴 − 𝜎𝑦  𝑠𝑖𝑛𝜃 𝑑𝐴 𝑠𝑖𝑛𝜃 + 𝜏𝑥𝑦  𝑐𝑜𝑠𝜃 𝑑𝐴 𝑠𝑖𝑛𝜃 + 𝜏𝑥𝑦  𝑠𝑖𝑛𝜃 𝑑𝐴 𝑐𝑜𝑠𝜃 = 0 

𝜎𝑛 = 𝜎𝑥 cos2 𝜃 + 𝜎𝑦 sin2 𝜃 − 2𝜏𝑥𝑦𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 

𝜎𝑛 = 𝜎𝑥 cos2 𝜃 + 𝜎𝑦 sin2 𝜃 − 𝜏𝑥𝑦2𝑠𝑖𝑛𝜃 

{2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 = 𝑠𝑖𝑛2𝜃} 

𝑅𝑒𝑝𝑙𝑎𝑐𝑖𝑛𝑔 cos2 𝜃 = (
1

2
) (1 + 𝑐𝑜𝑠2𝜃) 

∑ 𝐹𝑡 = 0 leads to 

𝜏𝑛𝑡 = (𝜎𝑥 − 𝜎𝑦)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 + 𝜏𝑥𝑦(cos2 𝜃 + sin2 𝜃) 

𝜏𝑛𝑡 =
𝜎𝑥 − 𝜎𝑦

2
𝑠𝑖𝑛2𝜃 + 𝜏𝑥𝑦𝑐𝑜𝑠2𝜃 

The direction of the principal stresses (maximum and minimum values) is found by differentiating 

𝜎𝑛with respect to 𝜃, setting the values to zero and solving for 𝜃. The result is: 

𝑡𝑎𝑛2𝜃1,2 = −
𝜏𝑥𝑦

(𝜎𝑥 − 𝜎𝑦)/2
 



Substituting in the expression of 𝜎𝑛 to find: 

𝜎1,2 =
𝜎𝑥 − 𝜎𝑦

2
±  √(

𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2  

𝜏1,2 = 0 

6.3 - Mohr’s Circle 

The above results can be represented graphically by a diagram known as “Mohr’s Circle” as shown: 
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General Three-Dimensional Stresses 

With the exception of contact stress, most maximum stress states occur under plane (2-D) stress 

conditions. 

In the presence of 3-D stresses, the three principal stresses are found by solving the following 

equilibrium equation: 

 

The root of which are: 

𝜎1 ≥  𝜎2 ≥  𝜎3 

The three principal shear stresses are: 

 

Hooke’s Law 

𝐹 = 𝑘𝛿 

Or: 

𝛿 =
𝐹

𝑘
 

Where: 

𝐹 = The applied force 

𝑘 = Spring rate (elastic zone) 

𝛿 = Resulting spring deflection 

We also have: 

𝜎 =
𝐹

𝐴
 𝑜𝑟 

𝑃

𝐴
     (1) 

𝜀 =
𝛿

𝐿
     (2) 

𝜎 = 𝜀𝐸 𝑜𝑟 𝜀 =
𝜎

𝐸
     (3) 

Substituting (1) and (3) into (2): 

𝛿 =
𝐹𝑙

𝐴𝐸
=

𝑃𝑙

𝐴𝐸
=

𝐹

𝑘
 



Or: 

𝑘 =
𝐴𝐸

𝑙
 

Where: 

𝐴 = cross-section 

𝐸 = modulus of elasticity 

𝑙 = length 

Torsion 

 

Hooke’s Law:  

𝑇 = 𝑘𝑡𝜃 

Or: 

𝜃 =
𝑇

𝑘𝑡
 

𝜏 =
𝑇𝑟

𝐽𝑝
     (1) 

𝛾 =
𝑟𝜃

𝑙 
     (2) 

𝜏 = 𝛾𝐺     𝑜𝑟    𝛾 =
𝜏

𝐺
    (3) 

Substituting (1) and (3) into (2): 

𝑇𝑟

𝐽𝑝𝐺
=

𝑟𝜃

𝑙
 

Or: 

𝜃 =
𝑇𝐿

𝐽𝑝𝐺
=

𝑇

𝑘𝑡
 

𝑘𝑡 =
𝐽𝑝𝐺

𝐿
 



Statically Indeterminate Problems 

Statically indeterminate systems are characterized by the presence of more supports or members than 

the minimum required for the equilibrium of the structure. For such situations, the deformations of the 

parts must be taken into consideration.  

Example: 

a- The figure shows a 
3

8
 x 1

1

2
 in rectangular steel bar welded to fixed supports as each end. The bar 

is axially loaded by the forces 𝐹𝐴 = 10,000 𝑙𝑏 and 𝐹𝑎 = 5,000 𝑙𝑏 acting on pins at 𝐴 and 𝐵. 

Assuming that the bar will not buckle laterally, find the reactions at the fixed supports. 

b- A very stiff horizonal bar, supported by four identical spring as shown is subjected to a center 

load of 50 𝑁. What load is applied to each spring? 

 

 



 

∴ 𝑅𝑐 + 5,000 = 10,000 − 𝑅𝑜  

∴ 𝑅𝑐 + 𝑅𝑜 = 5000     (1) 

Also: 

𝛿𝑂𝐴 = 𝛿𝐴𝐵 + 𝛿𝐵𝐶 

Or: 

20𝑅𝑜

𝐴𝐸
=

10(𝑅𝑐 + 5000)

𝐴𝐸
+

15𝑅𝑐

𝐴𝐸
 

20𝑅𝑜 = 50,000 + 25𝑅𝑐  

From (1):     𝑅𝑜 = 5000 − 𝑅𝑐  

Substituting in (2):     20(5000 − 𝑅𝑐) = 50,000 + 25𝑅𝑐  

𝑜𝑟 𝑅𝑐 = 1111.11 𝑙𝑏 

𝑎𝑛𝑑 𝑅𝑜 = 5000 − 1111.111 = 3888.888 𝑙𝑏 

𝑅𝑐 ≅ 1111 𝑙𝑏 

𝑅𝑜 ≅ 3889 𝑙𝑏 

Upper springs each deflect only half as much as lower springs, hence carry only half the load. 

Let 𝐿 = load carried by each lower spring. 

2𝐿 +
𝐿

2
= 50 𝑁 

∴ 𝐿 = 20 𝑁 



Lower springs carry 20 𝑁 each. 

Upper springs carry 10 𝑁 each. 

Stresses Due to Shock and Impact Loading 

 

Where: 

𝑊 = falling weight, lb 

ℎ = height of free fall, in 

𝛿 = deflection, in 

𝑃 = impact load, lb 

𝐶 = 𝑃/𝛿 = 𝑙𝑏/𝑖𝑛 of deflection 

Energy balance: 
1

2
 𝑃𝛿 = 𝑊(ℎ + 𝛿) 

𝑃 = 2
𝑊

𝛿
(ℎ + 𝛿) 

𝑃

𝑊
= 2 (

ℎ

𝛿
+ 1) 

But:  

𝛿 =
𝑃

𝑐
 

∴
𝑃

𝑊
= 2 (

ℎ𝐶

𝑃
+ 1) 

𝑃2 = 2𝑊(ℎ𝐶 + 𝑃) 

𝑃2 − 2𝑊𝑃 − 2𝑊ℎ𝐶 = 0 



𝑃 =
2𝑊 ± √4𝑊2 + 8𝑊ℎ𝐶

2
 

𝑃 = 𝑊 (1 + √1 +
2ℎ𝐶

𝑊
) 

𝑃

𝑊
= 1 + √1 +

2ℎ𝐶

𝑊
 

For a bar in Tension: 

𝛿 =
𝑃𝐿

𝐴𝐸
 

∴ 𝐶 =
𝑃

𝛿
=

𝑃

𝑃𝐿/𝐴𝐸
=

𝐴𝐸

𝐿
 

Special case: if the load is applied instantaneously without velocity of approach then: 

𝑃 = 2𝑊 

Example 9: 

 

Where: 

𝑊 = 8 𝑙𝑏  

𝑎 = 1/2 𝑖𝑛  

𝑏 = 3/8 𝑖𝑛 

𝑙 = 12 𝑖𝑛 

Find the max bending stress in the beam 

𝑎 − load applied gradually 

𝑏 − load dropped from a distance of 3/16 in 

Solution:  

𝑆𝑚𝑎𝑥 =
𝑀

𝐼/𝑐
 

𝐼

𝑐
=

𝑏𝑎2

6
=

(
3
8

) (0.5)2

6
= 0.0156 𝑖𝑛3 



a) 𝑀 = (8)(12) = 96 𝑙𝑏 − 𝑖𝑛 

𝜎𝑚𝑎𝑥 =
96

0.0156
≅ 6154 𝑝𝑠𝑖 

 

b) Impact stress 

𝛿 =
𝑃𝑙3

3𝐸𝐼
 

𝐼 =
𝑏𝑎3

12
=

(
3
8

) (
1
2

)
3

12
= 0.0039 𝑖𝑛4 

𝐶 =
𝑃

𝛿
=

3𝐸𝐼

𝐿3
=

(3)(30)(106)(0.0039)

(12)3
= 204 𝑙𝑏/𝑖𝑛 

𝑃 = 𝑊 (1 + √1 +
2ℎ𝐶

𝑊
) = (8) (1 + √1 +

(2)(204)(3/16)

(8)
) 

𝑃 = 34.64 𝑙𝑏 

𝜎𝑚𝑎𝑥 =
𝑀

𝐼/𝐶
=

(34.64)(12)

(0.0156)
= 26646 𝑝𝑠𝑖  
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3.7 Instability Considerations 

 

-  Short compressive members  

 



- Euler Analysis (Slender columns, i.e. long with small cross-section) 

𝐵

𝜌2
> 2 

Elastic instability; deformation within the elastic limit 

 

𝑀 = −𝑃 𝑦(𝑥) 

But from strength of material 

𝑀 = 𝐸𝐼
𝑑2𝑦

𝑑𝑥2
= 𝐸𝐼 𝑦′′(𝑥) 

∴  𝐸𝐼 𝑦′′(𝑥) + 𝑃 𝑦(𝑥) = 0     𝐷. 𝐸. 

Let 

𝛼2 =
𝑃

𝐸𝐼
 

Then 

𝑦′′(𝑥) + 𝛼2 𝑦(𝑥) = 0 

Solution 

𝑦(𝑥) = 𝐴 sin (𝛼𝑥 + 𝑃) 

B.C.  𝑦 = 0   𝑎𝑡   𝑥 = 0 

and 𝑦 = 0   𝑎𝑡   𝑥 = 𝜌 

∴ 𝐹𝑜𝑟 𝑥 = 0     0 = 𝐴 sin(0 + 𝛽)      ∴ 𝑃 = 0 

𝐹𝑜𝑟 𝑥 = 𝜌     0 = 𝐴 sin 𝛼𝜌 

∴ 𝑠𝑖𝑛𝛼𝜌 = 0     𝑠𝑖𝑛𝑐𝑒 𝐴 ≠ 0 

𝐵𝑢𝑡 𝛼2 =
𝑃

𝐸𝐼
 

∴ (𝛼𝜌)2 = 𝑛2𝜋2 =
𝑃

𝐸𝐼
𝜌2  

𝑃 =
𝑛2𝜋2𝐸𝐼

𝜌2
 



𝑃𝑐𝑜𝑛𝑡 =
2𝜋2𝐸𝐼

𝜌2
 

Solving for other boundary conditions it can be proven that: 

𝐹𝑐𝑟𝑖𝑡 =
𝑛𝜋2𝐸𝐼

𝜌2
 

Where: 

𝑛 = end fixity coefficient (Figure 4-18, page 196, Table 4-2 Page 199) 

Introducing the quantity 

𝐵 =
𝑆𝑦𝜌2

𝑛𝜋2𝐸
 

And replacing 𝐼 by 𝜌2𝐴 

Then: 

𝐹𝑐𝑟𝑖𝑡 =
𝑛𝜋2𝐴𝐸

(𝐿/𝜌2)
=

𝑆𝑦𝐴𝜌2

𝐵
  

- J.B. Johnson Formula (less slender formula) 

𝐵

𝜌2
< 2 

 

(plastic instability; allowable stresses exceeded) 

∴ 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 

𝐹𝑐𝑟𝑖𝑡 = 𝐴𝑆𝑦 (1 −
𝑆𝑦𝜌2

4𝑛𝜋2𝐸𝜌2
) 

introducing 𝐵: 

𝐹𝑐𝑟𝑖𝑡 = 𝐴𝑆𝑦 (1 −
𝐵

4𝜌2
) 

If 𝐹𝑐𝑟𝑖𝑡  (Euler) equated to 𝐹𝑐𝑟𝑖𝑡  (Johnson) we find: 

𝐵

𝜌2
= 2 



 

∴ 𝑖𝑓
𝐵

𝜌2
< 2 𝑼𝒔𝒆 𝑱𝒐𝒉𝒏𝒔𝒐𝒏 

(most machine members are in this range) 

∴ 𝑖𝑓
𝐵

𝜌2
> 2 𝑼𝒔𝒆 𝑬𝒖𝒍𝒆𝒓 

Start with Johnson. Find 𝐵/𝜌2 − if < 2 𝑂. 𝐾. if not go to Euler 

Where: 

𝐹𝑐𝑟𝑖𝑡 = critical load causing failure, 𝑙𝑏 

𝐴 = cross-sectional area, 𝑖𝑛2 

𝐼 = moment of inertia of area, 𝑖𝑛4 

𝐿 = length of column, 𝑖𝑛 

𝜌 = least radius of gyration of cross-section, 𝑖𝑛  

𝑛 = end-fixity coefficient, see Figure 4-18 and Table 4-2 

𝐸 = modulus of elasticity, 𝑝𝑠𝑖 

𝑆𝑦 = yield point of material, 𝑝𝑠𝑖 

𝐵 = 𝑆𝑦𝐿2/𝑛𝜋2𝐸 

Columns with Eccentric Loading 



 

IT can be shown that at 𝑥 = 𝑙/2 , the deflection: 

𝛿 = 𝑦𝑙
2

= 𝑒 [sec (√
𝑃

𝐸𝐼
∙

𝑙

2
) − 1] 

The maximum bending moment occurs at 𝜌/2 and is: 

𝑀𝑚𝑎𝑥 = 𝑃(𝑒 + 𝛿) = 𝑃 ∙ 𝑒 ∙ sec (
𝑙

2
√

𝑃

𝐸𝐼
) 

The maximum compressive stress: 

𝜎𝑐 =
𝑃

𝐴
+

𝑀𝑐

𝐼
=

𝑃

𝐴
+

𝑀𝑐

𝐴𝜌2
=

𝑃

𝐴
[1 +

𝑒𝑐

𝜌2
𝑠𝑒𝑐

𝑙

2𝜌
√

𝑃

𝐸𝐴
 ] 

In the case of short compressive members, valid if (
𝑙

𝜌
) ≤ 0.282 (

𝐴𝐸

𝑃
)

1

2
 

𝜎𝑐 =
𝑃

𝐴
+

𝑀𝑐

𝐼
=

𝑃

𝐴
+

𝑃 ∙ 𝑒 ∙ 𝑐 ∙ 𝐴

𝐼 ∙ 𝐴
=

𝑃

𝐴
(1 +

𝑒𝑐

𝜌2
) 



 

Where: 

𝜌2 =
𝐼

𝐴
 

Example: 

A strut of circular cross-section  

Material is SAE10HR Steel  

Diameter of loading pin 0.5”  

Allowable bearing pressure at pin = 10,000 𝑝𝑠𝑖 

𝑙 = 6" 

𝑃 = 2,000 𝑙𝑏 

Using a design factor of 1.5 determine the dimensions for the strut  

 



Solution: 

From Table A-20, 𝑆𝑦 = 42,000 𝑝𝑠𝑖 

From Table A-23, 𝐸 = 29 ∙ 106 𝑝𝑠𝑖 

From Table 4-2, 𝑛 = 1 

𝐵 =
𝑆𝑦𝑙2

𝑛𝜋2𝐸
=

(42 ∙ 103)(62)

(1)𝜋2(29 ∙ 106)
= 0.00528 

𝐹𝑐𝑟𝑖𝑡 = 𝑛𝑑𝑃 = (1.5)(2,000) = 3,000 𝑙𝑏 

Starting with Johnson’s equation, assuming 𝐵/𝜌2 <  2: 

𝐹𝑐𝑟𝑖𝑡 = 𝐴𝑆𝑦 (1 −
𝐵

4𝜌2
)    ;      𝐴 =

𝜋𝑑2

4
    ;     𝜌 =

𝑑

4
 

Substituting and solving for 𝑑2: 

𝑑2 = (
4𝐹𝑐𝑟𝑖𝑡

𝜋𝑆𝑦
) + 4𝐵 

𝑑2 =
(4)(3,000)

(𝜋)(42,000)
+ (4)(0.00528) = 0.112 𝑖𝑛2 

𝑑 = 0.335 𝑖𝑛 

Using standard 3/8 𝑖𝑛 we check for 𝐵/𝜌2 

𝐵

𝜌2
=

16𝐵

𝑑2
=

(16)(0.00528)

(
3
8

)
2 = 0.601 

∴
𝐵

𝜌2
< 2;      𝐽𝑜ℎ𝑛𝑠𝑜𝑛′𝑠 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 𝐽𝑢𝑠𝑡𝑖𝑓𝑖𝑒𝑑 

For the eye, 𝑆 = 𝑃/𝑡𝑑  

10,000 = 2,000/(𝑡 ∙ 0.5) 

𝑡 =
0.2

0.5
= 0.4 𝑖𝑛 

Use 1/2 𝑖𝑛 to allow for machining of the faces of the eye.  

 

Beam Deflection 

- Castigliano’s Theorem  

The displacement corresponding to any force of a system of forces acting on an elastic body can be 

determined by taking the partial derivative of the elastic strain energy with respect to that force. 

𝛿𝑢

𝛿𝑃𝑟
= 𝛿𝑟 
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𝐷𝑢 = (
1

2
) (𝜎𝑥  𝑑𝑦 𝑑𝑥)(𝜀𝑥  𝑑𝑥) 

𝐷𝑢 = (
1

2
) (𝜎𝑥𝜀𝑥)(𝑑𝑥 𝑑𝑦 𝑑𝑧) 

The strain energy per unit volume is: 

𝑑𝑢 = (
1

2
)𝜎𝑥𝜀𝑥(𝑑𝑥 𝑑𝑦 𝑑𝑧)/(𝑑𝑥 𝑑𝑦 𝑑𝑧) 

𝑑𝑢 = (
1

2
)𝜎𝑥𝜀𝑥 =

𝜎𝑥
2

2𝐸
     ;      𝑁𝑜𝑡𝑒 𝑡ℎ𝑎𝑡 𝜀𝑥 =

𝜎𝑥
𝐸

 

And: 

𝑈 = ∫ 𝑑𝑢
𝑣

    =      (
1

2
)∫ ∫

𝜎𝑥
2

𝐸𝐴𝐿

 𝑑𝐴 𝑑𝑥 

  =      (
1

2
)∫ ∫ (

1

𝐸
) (
𝑀𝑦

𝐼
)
2

𝐴𝐿

 𝑑𝐴 𝑑𝑥 

𝑈 = (
1

2
)∫

1

𝐸𝐿

𝑀2

𝐼2
𝑑𝑥∫ 𝑦2 𝑑𝐴

𝐴

= (
1

2
)∫

𝑀2

𝐸𝐼

𝐿

0

𝑑𝑥 

 

 



From Castegliano’s Theorem: 

𝛿 =
𝜕𝑢

𝜕𝑃
 

𝛿 =
𝜕𝑢

𝜕𝑃
= (

1

2
)∫

𝜕

𝜕𝑃
(
𝑀2

𝐸𝐼
)𝑑𝑥

𝐿

 

= ∫ 𝑀
𝜕𝑀/𝜕𝑃

𝐸𝐼
𝑑𝑥

𝐿

 

𝛿 = ∫
(−𝑃𝑥)(−𝑥)

𝐸𝐼
𝑑𝑥 =

𝑃𝐿3

3𝐸𝐼

𝐿

0

 

The deflection is always in the direction of the force. 

If an applied force does not exist at the pint where the deflection is to be determined, then a fictitious 

force Q must be applied. After the strain energy equation has been differentiated with respect to Q, the 

force Q is set equal to zero. The resulting expression is the displacement at the point of application of Q 

and Is in the same direction as Q was assumed to be acting. 

The following provided strain energy expressions for various types of loading: 

Tension and Compression: 

𝑈 =
𝐹2𝐿

2𝐴𝐸
 

Torsion: 

𝑈 =
𝑇2𝐿

2𝐴𝐺
 

Direct Shear: 

𝑈 =
𝐹2𝐿

2𝐴𝐺
 

Bending: 

𝑈 = ∫
𝑀2

2𝐸𝐼
𝑑𝑥 

Example: 

Determine the end deflection of a uniformly loaded cantilever beam. 

 



Assume a fictitious force Q acting as shown at the point where the deflection is required. 

 

𝑀 = −𝑄𝑥 −
𝑤𝑥2

2
 

𝜕𝑀

𝜕𝑄
= −𝑥 

 

𝛿 =
𝜕𝑢

𝜕𝑄
= ∫ 𝑀

𝐿

0

(−𝑃𝑥)(−𝑥)

𝐸𝐼
𝑑𝑥 =

𝑤𝐿4

8𝐸𝐼
 

Alternative solution: 

Recall that if 𝑦 is the beam deflection function and 𝑞 is the load per unit length, then: 

𝑦 = 𝑓(𝑥) 

𝜃 =
𝑑𝑦

𝑑𝑥
= 𝑠𝑙𝑜𝑝𝑒 

𝑀 =
𝑑2𝑦

𝑑𝑥2
𝐸𝐼 

𝑉 =
𝑑3𝑦

𝑑𝑥3
 𝐸𝐼 

𝑞 =
𝑑4𝑦

𝑑𝑥4
 𝐸𝐼 



 

𝑀 =
𝐸𝐼 𝑑2𝑦

𝑑𝑥2
= −𝑃(𝐿 − 𝑥) 

𝑑2𝑦

𝑑𝑥2
= −

1

𝐸𝐼
[𝑃(𝐿 − 𝑥)] 

𝑑𝑦

𝑑𝑥
= −

𝑃

𝐸𝐼
∫(𝐿 − 𝑥) 𝑑𝑥 = −

𝑃

𝐸𝐼
(𝐿𝑥 −

𝑥2

2
+ 𝐶1) 

𝑦 = −
𝑃

𝐸𝐼
∫(𝐿𝑥 −

𝑥2

2
+ 𝐶1)𝑑𝑥 

𝑦 = −
𝑃

𝐸𝐼
(
𝐿𝑥2

2
−
𝑥3

6
+ 𝐶1𝑥 + 𝐶2) 

𝐵𝐶:     𝑎𝑡 𝑥 = 0;      𝑦′ = 0 ∴ 𝐶1 = 0  

                                  𝑦 = 0 ∴ 𝐶2 = 0 

And: 

𝑦 = −
𝑃

𝐸𝐼
(
𝐿𝑥2

2
−
𝑥3

6
) 

At 𝑥 = 𝐿; 

𝑦 = 𝛿 = −
𝑃

𝐸𝐼
(
𝐿3

2
−
𝐿3

6
) = −

𝑃𝐿3

3𝐸𝐼
=
𝑃𝐿3

3𝐸𝐼
↓ 

Deflection by use of singularity functions: 

 



𝐹𝑜𝑟 0 ≤ 𝑥 ≤ 𝐿     ;     
𝐸𝐼 𝑑4𝑦

𝑑𝑥4
= 𝑞 = −𝑃 < 𝑥 − 𝐿 >−1 

𝑉 = −𝑃 < 𝑥 − 𝐿 >0 + 𝐶1 

𝑀 = −𝑃 < 𝑥 − 𝐿 >1 + 𝐶1𝑥 + 𝐶2 

𝐸𝐼 𝜃 = −
𝑃

2
< 𝑥 − 𝐿 >2 +

𝐶1
2
𝑥2 + 𝐶2𝑥 + 𝐶3 

𝐸𝐼 𝑦 = −
𝑃

6
< 𝑥 − 𝐿 >3+

𝐶1
6
𝑥3 +

𝐶2
2
𝑥2 + 𝐶3𝑥 + 𝐶4 

𝐵𝐶: 𝐴𝑡 𝑥 = 0; 𝐸𝐼 𝜃 = 𝐸𝐼 𝑦 = 0 ∴ 𝐶3 = 𝐶4 = 0 

𝐴𝑡 𝑥 = 0; 𝑉 = 𝑅1   ∴ 𝐶1 = 𝑅1 

𝑎𝑡 𝑥 = 𝐿; 𝑀 = 0   ∴ 𝐶2 = −𝑅1𝐿   

∴ 𝐸𝐼 𝑦 = −
𝑃

6
< 𝑥 − 𝐿 >3 + 

Beam Deflection by Superposition 

The results of many simple load cases and boundary conditions have been solved and tabulated. A 

limited number of these cases is presented in Table A-9. The effect of a combined loading on a structure 

can be obtained by adding the effects of each individual loading algebraically. 

 

𝑀 = −𝑃𝑅𝑠𝑖𝑛𝜃 

𝜕𝑀

𝜕𝑃
= −𝑅𝑠𝑖𝑛𝜃 

𝛿 =
𝜕𝑢

𝜕𝑃
= ∫

𝑀 (
𝜕𝑀
𝜕𝑃
)

𝐸𝐼
𝑅𝑑𝜃

𝜋
2

0

 

= ∫
(−𝑃𝑅𝑠𝑖𝑛𝜃)(−𝑅𝑠𝑖𝑛𝜃)

𝐸𝐼
𝑅𝑑𝜃

𝜋
2

0

 

=
𝑃𝑅3

𝐸𝐼
∫ sin2 𝜃 𝑑𝜃

𝜋
2

0

=
𝜋𝑃𝑅3

4𝐸𝐼
 



sin2 𝜃 = (
1

2
) (1 − cos 2𝜃)  

∫sin2 𝜃  𝑑𝜃 = (
1

2
)∫(1 − 𝑐𝑜𝑠2𝜃)𝑑𝜃 = (

1

2
)𝜃 − (

1

4
) 𝑠𝑖𝑛2𝜃 + 𝐶 

 

𝑀 = 𝑄𝑅𝑠𝑖𝑛𝜃    𝑓𝑜𝑟  0 ≤ 𝜃 ≤ 𝜋/2 

𝑀 = 𝑄𝑅𝑠𝑖𝑛𝜃 + 𝑃𝑅𝑠𝑖𝑛 (𝜃 −
𝜋

2
)   

𝜋

2
≤ 𝜃 ≤ 𝜋 

      = 𝑄𝑅𝑠𝑖𝑛𝜃 − 𝑃𝑅𝑐𝑜𝑠𝜃 

𝜕𝑀

𝜕𝑄
= 𝑅𝑠𝑖𝑛𝜃    𝑓𝑜𝑟 0 ≤ 𝜃 ≤ 𝜋 

𝛿𝑞 =
𝜕𝑢

𝜕𝑄
= ∫

(𝑄𝑅𝑠𝑖𝑛𝜃)(𝑅𝑠𝑖𝑛𝜃)

𝐸𝐼
𝑅 𝑑𝜃

𝜋
2

0

+∫
𝜋(𝑄𝑅𝑠𝑖𝑛𝜃 − 𝑃𝑅𝑐𝑜𝑠𝜃)(𝑅𝑠𝑖𝑛𝜃)

𝐸𝐼

𝜋

𝜋/2

𝑅 𝑑𝜃 

= −
𝑃𝑅3

𝐸𝐼
∫ 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑑𝜃
𝜋

𝜋
2

= −
𝑃𝑅3 sin2 𝜃

2𝐸𝐼
|𝜋
2

𝜋 

𝛿𝑞 =
𝑃𝑅3

2𝐸𝐼
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Castigliano’s Theorem may also be employed to calculate the angle of twist in members subject to 

torsion. 

 

 

𝑑𝑈𝑠ℎ𝑒𝑎𝑟 = (
1

2
) 𝜏𝑥𝑦  𝑑𝑥 𝑑𝑧 ∙ 𝛾𝑥𝑦  𝑑𝑦 = (

1

2
) 𝜏𝑥𝑦  𝑑𝑣 𝛾𝑎𝑣𝑔 

But 𝛾𝑎𝑣𝑔 = 𝜏/𝐺  

∴ 𝑑𝑢 =
𝜏2

2𝑔
 𝑑𝑣 

And: 

𝑈 = ∫ ∫
𝜏2

2𝐺
 𝑑𝑥 𝑑𝐴

𝐴𝐿

 

But: 

𝜏 =
𝑇𝑟

𝐽
 

∴ 𝑈 = ∫ ∫
𝑇2𝜏2

2𝐺𝐽2
 𝑑𝑥 𝑑𝐴

𝐴𝐿

 

𝑈 = ∫
𝑇2

2𝐺𝐽2
 𝑑𝑥

𝐿

= ∫ 𝑟2 𝑑𝐴
𝐴

= ∫
𝑇2

2𝐽𝐺
 𝑑𝑥

𝐿

0

 



Where: 

𝜏 = shear stress, 𝑝𝑠𝑖 

𝛾 =shear strain, 𝑖𝑛/𝑖𝑛 

𝐴 = cross-sectional area, 𝑖𝑛2  

𝑇 = torque, 𝑖𝑛 − 𝑙𝑏 

𝐽 =polar moment of inertia, 𝑖𝑛4 

 (𝑓𝑜𝑟 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑠ℎ𝑎𝑓𝑡)  =  ∫ 𝑟2 𝑑𝐴
𝐴

 

𝜃 =
𝜕𝑈

𝜕𝑇
= ∫

2𝑇

2𝐽𝐺
 𝑑𝑥

𝐿

0

= ∫
𝑇 𝑑𝑥

𝐽𝐺
 

𝐿

0

 

If the torque is uniform along the length of the shaft: 

𝜃 =
𝑇𝐿

𝐽𝐺
= 𝑡𝑜𝑡𝑎𝑙 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑡𝑤𝑖𝑠𝑡 

The rotation of a section of a beam at a particular section is found to be: 

𝜃 =
𝜕𝑈

𝜕𝐶
= ∫

𝑀(𝜕𝑀/𝜕𝐶)

𝐸𝐼
 𝑑𝑥

𝐿

0

     (𝐶 = 𝑐𝑜𝑢𝑝𝑙𝑒) 

Where 𝐶 is the couple at the section of interest. 

Case of pure bending where 𝑀 = 𝐶 throughout the length of the beam: 

𝜃 = 𝑀𝐿/𝐸𝐼 

Where 𝐸 and 𝐼 are assumed to be constant 

Example: Determine the rotation 𝜃 of the free end of a tube in the plane of a torque 𝑇𝑜; see Fig. Both 

portions of the tube lie in the same plane. Neglect the effect of deflection of the radius of the quarter 

load. 

 



Length 𝐿1 of pipe is subjected to torque 𝑇𝑜 

Length 𝐿2 of pipe is subjected to bending moment 𝑇𝑜 (about 𝑦 − 𝑎𝑥𝑖𝑠) 

∴ 𝑈1 = ∫
𝑇2

2𝐽𝐺
 𝑑𝑦

𝐿1

0

     ;      𝑈2 = ∫
𝑀2

2𝐸𝐼
 𝑑𝑥

𝐿2

0

 

Where: 

𝑀 = 𝑇 = 𝑇𝑜 

𝑈 = 𝑈1 + 𝑈2 = ∫
𝑇𝑜
2

2𝐽𝐺
 𝑑𝑦

𝐿1

0

+∫
𝑇𝑜
2

2𝐸𝐼
 𝑑𝑥

𝐿2

0

 

And: 

𝜃 =
𝜕𝑈

𝜕𝑇𝑜
= ∫

𝑇𝑜
𝐽𝐺
 𝑑𝑦

𝐿1

0

+∫
𝑇𝑜
𝐸𝐼
 𝑑𝑥

𝐿2

0

=
𝑇𝑜𝐿1
𝐽𝐺

+
𝑇𝑜𝐿2
𝐸𝐼

 

Failure Preventions = Static Loading 

Stress Concentration: Stress concentration is a localized effect that may be caused by a surface scratch, 

variation in material properties, localized high pressure points, or abrupt changes of section. 

The stress at a point in a member influenced by one or more of these causes is, in general, grater than 

the nominal stress determined by elementary strength of materials. 

The definition of geometric or theoretical stress concentration factor for normal stress (𝑘𝑡) and shear 

stress (𝑘𝑡𝑠) is given by: 

𝜎𝑚𝑎𝑥 = 𝑘𝑡𝜎𝑛𝑜𝑚      ;      𝜏𝑚𝑎𝑥 = 𝑘𝑡𝑠𝜏𝑛𝑜𝑚  

Table A.15 provides charts for the theoretical stress concentration factors for several load conditions 

and geometry. 

Material Static Load Cyclic Load 

Brittle Serious Very Serious 

Ductile Not Serious Serious 

   

Failure Theories: The generally accepted failure theories for ductile materials (yield criteria) are: 

- Maximum Shear Stress theory (MSS) 

- Distortion Energy theory (DE) 

- Ductile Coulomb-Mohr theory (DCM) 

And for brittle materials (fracture criteria) are: 

- Maximum normal stress theory (MNS) 

- Brittle Coulomb-Mohr Theory (BCM) 

- Modified Mohr Theory (MM) 

 

 



Maximum Shear-Stress Theory (For Ductile Materials) 

This theory assumes that failure occurs for a combined stress condition when the maximum shear stress 

equals the value of a critical shear stress produced in an element subjected to simple tension, which is: 

(𝑆𝑠)𝑦𝑝 =
𝑆𝑦𝑝

2
 

For 3𝐷 stressed, the maximum shear stress is given by one of the following, whichever is largest: 

(𝜎1 − 𝜎2)

2
    ;      

(𝜎2 − 𝜎3)

2
    ;      

(𝜎3 − 𝜎1)

2
 

Or: 

𝑆𝑦𝑝

2
=

{
 
 

 
 
(𝜎1 − 𝜎2)

2
(𝜎2 − 𝜎3)

2
(𝜎3 − 𝜎1)

2

     𝑜𝑟 𝑆𝑦𝑝 = {

𝜎1 − 𝜎2
𝜎2 − 𝜎3
𝜎3 − 𝜎1

 

For 2𝐷 stresses, 𝜎3 = 0, then: 

If 𝜎1 and 𝜎2 are of opposite sign: 

𝜎1 − 𝜎2 = ±𝑆𝑦𝑝  

[or 𝑛𝑑 = 𝑆𝑦𝑝/(𝜎1 − 𝜎2)] 

If 𝜎1 and 𝜎2 are of the same sign:  

𝜎1 = ±𝑆𝑦𝑝 if |𝜎1| > |𝜎2| 

[or 𝑛𝑑 = 𝑆𝑦𝑝/𝜎1] 

𝜎2 = ±𝑆𝑦𝑝 if |𝜎2| > |𝜎1| 

[or 𝑛𝑑 = 𝑆𝑦𝑝/𝜎2] 

Distortion-Energy Theorem (For Ductile Materials) 

This theory assumes that yielding will occur when the strain energy of distortion per unit volume equals 

the strain energy of distortion per unit volume for a specimen in uniaxial tension or compression 

strained to the yield stress. This energy is found to be for the body under 3𝐷 stress. 

𝑈𝑠 =
(1 + 𝑣)

6𝐸
[(𝜎1 − 𝜎2)

2 + (𝜎2 − 𝜎3)
2 + (𝜎3 − 𝜎1)

2] 

For the specimen,  

𝑈𝑠 =
(1 + 𝑣)

6𝐸
(2𝑆𝑦𝑝

2 ) 

∴ (𝜎1 − 𝜎2)
2 + (𝜎2 − 𝜎3)

2 + (𝜎3 − 𝜎1)
2 = 2𝑆𝑦𝑝

2  
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𝑈𝑠 =
1 + 𝑣

6𝐸
(2𝑆𝑦𝑝

2 ) 

∴ (𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2 − 2𝑆𝑦𝑝
2  

Introducing the design factor 𝑛𝑑  we have, 

𝜎′ = 𝜎𝑒𝑞 =
𝑆𝑦𝑝

𝑛𝑑
[
(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2

2
]

 
1
2

 

Where: 

𝜎′ =
1

√2
[(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2]

1
2 

IS known at the 𝑉𝑜𝑛 𝑀𝑖𝑠𝑒𝑠 𝑆𝑡𝑟𝑒𝑠𝑠 

For plane stress, 𝜎3 = 0, 

𝜎′ = (𝜎1 + 𝜎2 + 𝜎1𝜎2)
1
2 

Which is the equation of an eclipse. 

Note that in the case of pure shear, 𝜎1 = −𝜎2 or 3𝜎1
2 = 𝑆𝑦𝑝

2 , and 𝜎1 = 0.577𝑆𝑦𝑝  while the maximum 

shear stress theory assumes 𝜎1 = 0.5𝑆𝑦𝑝 

In terms of the rectangular stress components we can write 𝜎′ as 

𝜎′ =
1

√2
[(𝜎𝑥 − 𝜎𝑦)

2
+ (𝜎𝑦 − 𝜎𝑧)

2
+ (𝜎𝑥 − 𝜎𝑧)2 + 6(𝜏𝑥𝑦

2 + 𝜏𝑦𝑧
2 + 𝜏𝑧𝑥

2 )]

1
2

 

And for 2 − 𝐷 stress: 

𝜎′ = (𝜎𝑥
2 − 𝜎𝑥𝑦 + 𝜎𝑦

2 + 3𝜏𝑥𝑦
2 )

1
2
 

Coulomb-Mohr Theory (For Ductile Materials) 

This theory can be used to predict failure for materials whose strength in tension and compression are 

not equal. If states that: 

𝜎1

𝑆𝑡
−

𝜎3

𝑆𝑐
= 1 

Where either yield strength or ultimate strength can be used. 

Incorporating the design factor 𝑛𝑑 : 

𝜎1

𝑆𝑡
−

𝜎3

𝑆𝑐
=

1

𝑛𝑑
 



For plane stress, if the two nonzero principal stresses are 𝜎𝐴 ≥ 𝜎𝐵  then: 

If 𝜎𝐴 ≥ 𝜎𝐵 ≥ 0, then 𝜎1 = 𝜎𝐴 and 𝜎3 = 0 

∴ 𝜎𝐴 =
𝑆𝑡

𝑛𝑑
 

If 𝜎𝐴 ≥ 0 ≥ 𝜎𝐵, then 𝜎1 = 𝜎𝐴 and 𝜎3 = 𝜎𝐵 

∴
𝜎𝐴

𝑆𝑡
−

𝑆𝑡

𝑆𝑐
=

1

𝑛𝑑
 

If 0 ≥ 𝜎𝐴 ≥ 𝜎𝐵, then 𝜎1 = 0 and 𝜎3 = 𝜎𝐵  

∴ 𝜎𝐵 = −
𝑆𝑐

𝑛𝑑
 

Note that for pure shear 𝜏, 𝜎1 = −𝜎3 = 𝜏 

The torsional yield strength occurs when 𝜏𝑚𝑎𝑥 = 𝑆𝑠𝑦 

Substituting into: 

𝜎1

𝑆𝑡
−

𝜎3

𝑆𝑐
= 1 

We get: 

𝑆𝑠𝑦

𝑆𝑦𝑡
+

𝑆𝑠𝑦

𝑆𝑦𝑐
= 1 

𝑆𝑠𝑦𝑆𝑦𝑐 + 𝑆𝑠𝑦𝑆𝑦𝑡 = 𝑆𝑦𝑡𝑆𝑦𝑐  

𝑆𝑠𝑦 =
𝑆𝑦𝑡𝑆𝑦𝑐

𝑆𝑦𝑡 + 𝑆𝑦𝑐
 

Reading Assignment: 

Example 5-1 

Example 5-2 

Maximum-Normal-Stress Theory (For Brittle Materials) 

According to this theory, failure occurs at a point in a body when one of the principal stresses at that 

point equals the critical stress for that material. 

If: 

|𝜎1| > |𝜎2| > |𝜎3| 

Then: 

𝜎1 =
𝑆𝑢𝑡

𝑛𝑑
 



 

Brittle Coulomb-Mohr Theory: 

𝜎𝐴 =
𝑆𝑢𝑡

𝑛𝑑
     ;      𝐹𝑜𝑟 𝜎𝐴 ≥ 𝜎𝐵 ≥ 0 

𝜎𝐴

𝑆𝑢𝑡
−

𝜎𝐵

𝑆𝑢𝑐
=

1

𝑛𝑑
     ;      𝐹𝑜𝑟 𝜎𝐴 ≥ 0 ≥ 𝜎𝐵 

𝜎𝐵 = −
𝑆𝑢𝑐

𝑛𝑑
     ;      𝐹𝑜𝑟 0 ≥  𝜎𝐴 ≥ 𝜎𝐵 

Modified Coulomb-Mohr Theory: 

𝜎𝐴 =
𝑆𝑢𝑡

𝑛𝑑
 

𝐹𝑜𝑟 𝜎𝐴 ≥ 𝜎𝐵 ≥ 0 𝑎𝑛𝑑 𝜎𝐴 ≥ 0 ≥ 𝜎𝐵 𝑎𝑛𝑑 |
𝜎𝐵

𝜎𝐴
| ≤ 1 

𝜎𝐴(𝑆𝑢𝑐 − 𝑆𝑢𝑡)

𝑆𝑢𝑐𝑆𝑢𝑡
−

𝜎𝐵

𝑆𝑢𝑐
=

1

𝑛𝑑
 

𝐹𝑜𝑟 𝜎𝐴 ≥ 0 ≥ 𝜎𝐵 𝑎𝑛𝑑 |
𝜎𝐵

𝜎𝐴
| > 1 

𝜎𝐵 = −
𝑆𝑢𝑐

𝑛𝑑
 



𝐹𝑜𝑟 0 ≥ 𝜎𝐴 ≥ 𝜎𝐵 𝑎𝑛𝑑 |
𝜎𝐵

𝜎𝐴
| > 1 

Reading Assignment: 

Example 5-3 

Example 5-4 

Example 5-5 

Fatigue Failure (Variable Loading) 

Reading Assignment: 

Sections 6.1 to 6.6 

Fluctuating Stresses 

Although most fluctuating stresses in machinery are sinusoidal in nature due to rotating elements, some 

irregular patterns do occur. However, regardless of its shape, if a pattern exhibits a single maximum and 

a single minimum force, its shape is not important, but the peaks are important. Let 𝐹𝑚𝑎𝑥  be the largest 

force and 𝐹𝑚𝑖𝑛 be the smallest force. Then a steady component, 𝐹𝑚, and an alternating component, 𝐹𝑎, 

can be constructed. 

𝐹𝑚 =
𝐹𝑚𝑎𝑥 + 𝐹𝑚𝑖𝑛

2
      ;      𝐹𝑎 = |

𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛

2
| 

(TODO – Picture) 

Where: 

𝜎𝑚𝑖𝑛 = minimum stress 

𝜎𝑚𝑎𝑥 = maximum stress 

𝜎𝑎 = stress amplitude = (𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛)/2 

𝜎𝑚 = mean stress or midrange stress = (𝜎𝑚𝑎𝑥 + 𝜎𝑚𝑖𝑛)/2 

𝜎𝑟 = stress range = 2𝜎𝑎  

𝜎𝑠 = steady, or state stress 

- Key Factors in Fatigue Failure 

1 – A maximum stress of sufficient magnitude 

2 – An applied stress fluctuation of large enough magnitude 

3 – A sufficient number of cycles of the applied stress 

Fatigue design procedure  

One of the most common methods of presenting engineering fatigue data is by means of the  

𝑆 − 𝑁 𝑐𝑢𝑟𝑣𝑒. 



 

  



 

 

 



In this particular graph, if the 𝑆𝐴𝐸 𝑁𝑜. or the ultimate strength is known, and if 𝑁 is known (number of 

cycles). The fatigue or endurance limit of the material can be found. However, the above data is for zero 

mean stress 𝑆𝑚 = 0. To solve for cases where 𝑆𝑚 ≠ 0, first 𝑆𝐴 − 𝑁 𝐶𝑢𝑟𝑒𝑠 are plotted as shown. Then 

for a given 𝑁 = 𝑁1 the 𝑆𝑎 = 𝑆𝑚 curve is plotted. 

 

  



Lecture (Mar. 14th, 2019)  

From the 𝑆𝑛 − 𝑆𝑚  curve as shown in the figure, the following empirical relation was found: 

𝑆𝑎 = 𝑆𝑒 [1 − (
𝑆𝑚

𝑆𝑢𝑙𝑡
)

𝑃

] 

(TODO – Picture) 

For Gerber Curve: 𝑃 = 2 

For Goodman Line: 𝑃 = 1 

When design is based on 𝑆𝑦𝑝  (yield strength) the Soderberg law is followed. 

𝑆𝑚 = 𝑆𝑒 (1 −
𝑆𝑚

𝑆𝑦𝑝
) 

And when a factor of safety is required 

𝜎𝑎 =
𝑆𝑒

𝑛𝑑
(1 −

𝜎𝑚

𝑆𝑦𝑝
𝑛𝑑) 

Where: 

𝜎𝑎 =
𝑆𝑎

𝑛𝑑
     ;      𝜎𝑚 =

𝑆𝑚

𝑛𝑑
 

Or: 

𝜎𝑎

𝑆𝑒
+

𝜎𝑚

𝑆𝑦𝑝
=

1

𝑛𝑑
 

Where: 

𝑆𝑒 = endurance strength for 𝑆𝑚 = 0 

𝑆𝑦𝑝 = yield strength 

𝑆𝑢𝑙𝑡 = minimum ultimate tensile strength 

𝑛𝑑 = design factor 

Using 𝐺𝑜𝑜𝑑𝑚𝑎𝑛 line: 

𝜎𝑎

𝑆𝑒
=

𝜎𝑚

𝑆𝑢𝑙𝑡
=

1

𝑛𝑑
 

Using 𝐺𝑒𝑟𝑏𝑒𝑟 line: 

𝑛𝑑𝜎𝑎

𝑆𝑒
= (

𝑛𝑑𝜎𝑚

𝑆𝑢𝑙𝑡
)

2

= 1 

Using 𝐴𝑆𝑀𝐸-elliptic line: 

(
𝑛𝑑𝜎𝑎

𝑆𝑒
)

2

+ (
𝑛𝑑𝜎𝑚

𝑆𝑢𝑙𝑡
)

2

= 1 



Using 𝐿𝑎𝑛𝑔𝑒𝑟 first-cycle-yielding: 

𝜎𝑎 + 𝜎𝑚 =
𝑆𝑦𝑝

𝑛𝑑
7 

Endurance Limit 

Based on a large number of actual test data from several sources, Charles R Mischke, in his paper 

“Prediction of Stochastic Endurance Strength,” 

Trans. Of ASME, J. Vibration Acoustics Stress and Reliability in Design, Vol. 109, No.1, pp 113-122, 

January 1987, concluded that endurance limit can eb related to tensile strength. 

For Steels: 

𝑆𝑒
′ = {

0.504 𝑆𝑢𝑡      ;      𝑆𝑢𝑡 ≤ 200 𝑘𝑝𝑠𝑖 (1400 𝑀𝑃𝑎)
100 𝑘𝑝𝑠𝑖     ;      𝑆𝑢𝑡 >  200 𝑘𝑝𝑠𝑖

700 𝑀𝑃𝑎     ;      𝑆𝑢𝑡 >  1400 𝑀𝑃𝑎
 

Where: 

𝑆𝑢𝑡 = minimum tensile strength 

𝑆𝑒 = endurance limit 

𝑆𝑒
′ = endurance limit of the rotating beam specimen 

Fatigue Strength 

Recall that: 

∆𝜀𝑒

2
=

𝜎𝐹
′

𝐸
(2𝑁)𝑏  

Where: 

∆𝜀𝑒 = elastic strain range 

𝜎𝐹
′ = true stress corresponding to fracture in one reversal 

𝑏 = fatigue strength exponent 

𝑁 = number of reversals or expected life 

𝐸 = modulus of elasticity 

Defining the specimen fatigue strength at a specific number of cycles as: 

(𝑆𝑓
′)

𝑁
=

𝐸∆𝜀𝑒

2
 

Then, 

(𝑆𝑓
′)

𝑁
=

𝐸∆𝜀𝑒

2
= 𝜎𝐹

′ (2𝑁)𝑏 

At 103 cycles: 

(𝑆𝑓
′)

103 = 𝜎𝐹
′ (2 ∗ 103)6 = 𝑓𝑆𝑢𝑡  

Where: 



𝑓 =
𝜎𝐹

′

𝑆𝑢𝑡  
= (2 ∗ 103)𝑏  

See 𝑇𝑎𝑏𝑙𝑒 𝐴 − 23 for reliable value of 𝜎𝐹
′  for selected steels. Or use 𝜎𝐹

′ = 𝜎𝑜𝜀𝑚, with 𝜀 = 𝜀𝐹
′  is known. 

Otherwise, you may use the SAE approximation for steels with 𝐻𝐵 ≤ 500 given as: 

𝜎𝐹
′ = 𝑆𝑢𝑡 + 50 𝑘𝑝𝑠𝑖     ;      𝜎𝐹

′ = 𝑆𝑢𝑡 + 345 𝑀𝑃𝑎 

Substituting the endurance strength 𝑆𝑒
′  and corresponding cycles 𝑁𝑒 and solving for 𝑏: 

𝑏 = −
log (𝜎𝐹

′ /𝑆𝑒
′ )

log (2𝑁𝑒)
 

With values of 𝜎𝐹
′  and 𝑏 known for 70 ≤ 𝑆𝑢𝑡 ≤ 200 𝑘𝑝𝑠𝑖, Figure 6-18 is plotted where the graph is used 

to find approcimate values of 𝑓 for various values of 𝑆𝑢𝑡  between 70 and 200 kpsi. 

For actual mechanical component, we may write: 

𝑆𝑓 = 𝑎𝑁𝑏 

Where is can be shown that for 103 ≤ 𝑁 ≤ 106 

𝑎 =
(𝑓 𝑆𝑢𝑡 )2

𝑆𝑒
 

𝑏 = −
1

3
log (

𝑓 𝑆𝑢𝑡

𝑆𝑒
) 

If a completely reversed stress 𝜎𝑟𝑒𝑣  is given, then: 

𝑁 = (
𝜎𝑟𝑒𝑣

𝑎
)

1
𝑏

 

For low-cycle, 1 ≤ 𝑁 ≤ 103  cycles: 

𝑆𝑓 ≥ 𝑆𝑢𝑡𝑁(log 𝑓)/3 

For problems in the finite life range, 103 ≤ 𝑁 ≤ 106, stresses 𝜎𝑚 and 𝜎𝑎 are transformed into an 

equivalent completely reversing stress 𝜎𝑅 as follows: 

For Goodman: 

𝜎𝑅 =
𝜎𝑎𝑆𝑢𝑡

𝑆𝑢𝑡 − 𝜎𝑚
= 𝜎𝑟𝑒𝑣  

For Gerber: 

𝜎𝑅 =
𝜎𝑚

1 − (
𝜎𝑚

𝑆𝑢𝑡
)

2 = 𝜎𝑟𝑒𝑣  

Reading assignment:  

Example 6-2 



Example: A bar of steel has the minimum properties 𝑆𝑒 = 40 𝑘𝑝𝑠𝑖, 𝑆𝑦 = 60 𝑘𝑝𝑠𝑖, and𝑆𝑢𝑡 = 80 𝑘𝑝𝑠𝑖. 

The bar is subjected to a steady torsional stress of 15 𝑘𝑝𝑠𝑖 and an alternating bending stress of 25 𝑘𝑝𝑠𝑖. 

Find the factor of safety guarding against a static failure, and either the factor of safety guarding against 

a fatigue failure or the expected life of the part. For static failure use the 𝐷𝑖𝑠𝑡𝑜𝑟𝑠𝑖𝑜𝑛 − 𝐸𝑛𝑒𝑟𝑔𝑦 𝑇ℎ𝑒𝑜𝑟𝑦 

(DE). For fatigue analysis use:  

a) Modified Goodman criterion 

b) Gerber criterion 

c) ASME-elliptic criterion 

Solution: 

Given: 

𝑆𝑒 = 40 𝑘𝑝𝑠𝑖 

𝑆𝑦 = 60 𝑘𝑝𝑠𝑖 

𝑆𝑢𝑡 = 80 𝑘𝑝𝑠𝑖 

𝜎𝑎 = 25 𝑘𝑝𝑠𝑖 

𝜎𝑚 = 𝜏𝑎 = 0 

𝜏𝑚 = 15 𝑘𝑝𝑠𝑖 

Using the Distortion Energy Theorem for the alternating, mid-range, and maximum stresses, the 𝑣𝑜𝑛 −

𝑀𝑖𝑠𝑒𝑠 stresses are: 

𝜎′ = (𝜎𝑥
2 − 𝜎𝑥𝜎𝑦 + 𝜎𝑦

2 + 3𝜏𝑥𝑦
2 )

1
2 

Here 𝜎𝑦 = 0 

∴ 𝜎′ = (𝜎𝑥
2 + 3𝜏𝑥𝑦

2 )
1
2 

And: 

𝜎𝑎
′ = (𝜎𝑎

2 + 3𝜏𝑎
2)

1
2 = [(25)2 + (3)(0)2]

1
2 = 25,000 𝑘𝑝𝑠𝑖 

𝜎𝑚
′ = (𝜎𝑚

2 + 3𝜏𝑚
2 )

1
2 = [(0)2 + (3)(15)2]

1
2 = 25.98 𝑘𝑝𝑠𝑖 

𝜎𝑚𝑎𝑥
′ = (𝜎𝑚𝑎𝑥

′ + 3𝜏𝑚𝑎𝑥
2 )

1
2 = [(𝜎𝑎 + 𝜎𝑚)2 + 3(𝜏𝑎 + 𝜏𝑚)2]

1
2 

= [(25)2 + (3)(15)2]
1
2 = 36.06 𝑘𝑝𝑠𝑖 

𝑛𝑦 =
𝑆𝑦

𝜎𝑚𝑎𝑥
′ =

60

36.06
= 1.66 

a) Modified Goodman: 

𝑛𝑓 =
1

(
𝜎𝑎

𝑆𝑒
) + (

𝜎𝑚

𝑆𝑢𝑡
)

 

𝑛𝑓 =
1

(
25
40

) + (
35.98

80
)

= 1.05 



b) Gerber: 

𝑛𝜎𝑎

𝑆𝑒
+ (

𝑛𝜎𝑚

𝑆𝑢𝑡
)

2

= 1 

Or: 

𝑛𝑓 = (
1

2
) (

𝑆𝑢𝑡

𝜎𝑚
)

2 𝜎𝑎

𝑆𝑒
 [−1 + √1 + (

2𝜎𝑚𝑆𝑒

𝑆𝑢𝑡 𝜎𝑎
)

2

] 

𝑛𝑓 = 1.31 

c) ASME Elliptic: 

𝑛𝑓 =
√

1

(
𝜎𝑎
𝑆𝑒

)
2

+ (
𝜎𝑚
𝑆𝑦

)
2 

𝑛𝑓 = 1.32 



Lecture (Mar. 19th, 2019)  

We have seen how to relate 𝑆𝑒 to 𝑆𝑢𝑡 . The endurance limit of a general mechanical element is obtained 

from 𝑆𝑒 through the use of a variety of modifying factors.  

𝑆𝑒 = 𝑘𝑎𝑘𝑏𝑘𝑐𝑘𝑑𝑘𝑒𝑘𝑓𝑆𝑒
′  

Where: 

𝑆𝑒 = endurance limit 

𝑆𝑒
′ = endurance limit of test specimen 

𝑘𝑎 = surface factor 

𝑘𝑏 = size factor 

𝑘𝑐 = load factor 

𝑘𝑑 = temperature factor 

𝑘𝑒 = reliability factor 

𝑘𝑓 = miscellaneous effects factor 

Surface Factor, 𝒌𝒂   

𝑘𝑎 = 𝑎𝑆𝑢𝑡
𝑏  

Where: 

𝑘𝑎 = modifying surface factor 

𝑆𝑢𝑡 = minimum tensile strength 

𝑎 = a factor from Table 6-2 

𝑏 = exponent from Table 6-2 

 

Size Factor, 𝒌𝒃   

The results from 133 rotating circular beam tested in bending and torsion may be written as: 

 

For axial loading, 𝑘𝑏 = 1 



For nonrotating and noncircular cross section an equivalent diameter 𝑑𝑒 is used from Table 6-3 

 

Loading Factor, 𝒌𝒄   

 

Temperature Factor, 𝒌𝒅   

Table 6-4 shows the effect of operating temperature on the tensile strength of steel, where 𝑆𝑅𝑇  is the 

strength at room temperature. 



 

A fourth order polynomial curve fit gives: 

𝑘𝑑 = 0.975 + 0.432(10−3)𝑇𝐹 − 0.115(10−5)𝑇𝐹
2 + 0.104(10−8)𝑇𝐹

3 − 0.595(10−12)𝑇𝐹
4 

Where: 

70 ≤ 𝑇𝐹 ≤ 1000 °𝐹 

Or: 

𝑘𝑑 =
𝑆𝑇

𝑆𝑅𝑇
     ;      From Table 6 − 4 

Reliability Factor, 𝒌𝒆   

𝑘𝑒 = 1 − 0.08𝑍𝑎  

Where: 

𝑍𝑎 =
𝑥 − 𝜇𝑥

𝜎𝑥̂
     ;      𝐴𝑛𝑑 𝑐𝑎𝑛 𝑏𝑒 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑇𝑎𝑏𝑙𝑒 𝐴 − 10 

Table 6-5 list values for 𝑘𝑒 for some standard reliabilities. 



 

 

Miscellaneous-Effects Factor, 𝒌𝒇   

Actual values of 𝑘𝑓  are not always available. However, its presence is a reminder that other effects such 

as corrosion and others must be considered. 

Stress Concentration and Notch Sensitivity 

Some materials are not fully sensitive to the presence of discontinuities, such as holes, grooves, or 

notches. For these, a reduced value of the stress concentration factor 𝑘𝑡  or 𝑘𝑡𝑠 can be used. 

The reduced value 𝑘𝑓  or 𝑘𝑓𝑠, which is called the fatigue stress-concentration factor, is given as: 

𝑘𝑓 = 1 + 𝑞(𝑘𝑡 − 1) 

Or: 

𝑘𝑓𝑠 = 1 + 𝑞𝑠ℎ𝑒𝑎𝑟(𝑘𝑡𝑠 − 1) 

Where 𝑞 is known as the notch sensitivity. Some known values of 𝑞 and 𝑞𝑠ℎ𝑒𝑎𝑟 are shown in Figures 6.20 

and 6.21. The functions in these figures are: 

𝑘𝑓 = 1 +
𝑘𝑡 − 1

1 + √𝑎/𝑟 
     ;      𝑞 =

1

1 + √𝑎/𝑟 
 

Where: 

𝑟 = notch radius 

√𝑎 = Neuber constant given as 

For bending and axial: 

√𝑎 = 0.246 − 3.08(10−3)𝑆𝑢𝑡 + 1.51(10−5)𝑆𝑢𝑡
2 − 2.67(10−8)𝑆𝑢𝑡

3  

For torsion: 

√𝑎 = 0.190 − 2.51(10−3)𝑆𝑢𝑡 + 1.35(10−5)𝑆𝑢𝑡
2 − 2.67(10−8)𝑆𝑢𝑡

3  



 

 

The notch sensitivity of cast iron is very low. However, to be on the conservative side, it is 

recommended that 𝑞 = 0.20 be used for all grades of cast iron. 

Reading Assignment:  

Exampes 6.6 to 6.9 

Section 6.17 

Load Line Concept 

When Goodman relation is used, the safe-stress line through the working stress point 𝐴, as shown in the 

figure, is constructed parallel to the Goodman line. Note that the sage-stress-line is the locus of all sets 

of 𝜎𝑎 , 𝜎𝑚  stresses having a factor of safety 𝑛 and that 𝑆𝑚 = 𝑛𝜎𝑚 and 𝑆𝑎 = 𝑛𝜎𝑎. 



(TODO – Picture) 

Let: 

𝜎𝑝 = the static component of a working stress 

𝜎𝑚 = the mean stress corresponding to 𝑘𝑓𝜎𝑎 

𝑆𝑚 = the critical mean stress corresponding to 𝑆𝑎  

The line going through the point (0, 𝜎𝑝), (𝑘𝑓𝜎𝑎 , 𝜎𝑚) and (𝑆𝑎 , 𝑆𝑚) is the load line 𝐿 of slope 𝑚. 

Have: 

𝑆𝑜 = 𝑛𝜎𝑎𝑘𝑓      ;      𝑛 =
𝑆𝑜

𝜎𝑎𝑘𝑓
=

𝑆𝑚 − 𝜎𝑝

𝜎𝑚 − 𝜎𝑝
     ;      (𝐵𝑦 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠) 

From Goodman relation: 

𝑆𝑚 = 𝑆𝑢𝑡 (1 −
𝑆𝑎

𝑆𝑒
) 

The load line slope is: 

𝑚 =
𝜎𝑎𝑘𝑓

𝜎𝑚 − 𝜎𝑝
=

𝑆𝑎

𝑆𝑚 − 𝜎𝑝
 

∴ 𝑆𝑎 = 𝑚(𝑆𝑚 − 𝜎𝑝) = 𝑚𝑆𝑢𝑡 (1 −
𝑆𝑎

𝑆𝑒
) − 𝑚𝜎𝑝 

= 𝑚(𝑆𝑢𝑡 − 𝜎𝑝) −
𝑚𝑆𝑎𝑆𝑢𝑡

𝑆𝑒
 

Or: 

𝑆𝑎 +
𝑚𝑆𝑎𝑆𝑢𝑡

𝑆𝑒
= 𝑚(𝑆𝑢𝑡 − 𝜎𝑝) 

𝑆𝑎 (1 +
𝑚𝑆𝑢𝑡

𝑆𝑒
) = 𝑚(𝑆𝑢𝑡 − 𝜎𝑝) 

And: 

𝑆𝑎 =
𝑚(𝑆𝑢𝑡 − 𝜎𝑝)

1 +
𝑚𝑆𝑢𝑡

𝑆𝑒

 

Where: 

𝑚 =
𝑘𝑓𝜎𝑎

𝜎𝑚 − 𝜎𝑝
 

But: 

(𝜎𝑚 − 𝜎𝑝) = 𝜎𝑎  



∴ 𝑚 = 𝑘𝑓  

(TODO – Picture) 

The concept of the load line in conjunction with the failure criteria is used to tabulate the principal 

intersection in Table 6-6 to 6-8, where 𝑟 = 𝑆𝑎/𝑆𝑚 =  𝜎𝑎/𝜎𝑚 . The first column in each table gives the 

intersection equations and the second column gives the intersection coordinates. 

Reading Assignment: 

Examples 6-10 to 6-12 

Fatigue Failure of Brittle Materials 

(TODO – Picture) 

Not enough work has been done on brittle fatigue. Consequently, designed stay in the first and a bit in 

the second quadrant in the range from: 

−𝑆𝑢𝑡 ≤  𝜎𝑚 ≤ 𝑆𝑢𝑡  

  



Lecture (Mar. 21st, 2019)  

The first quadrant failure fatigue criteria for many brittle materials follows the Smith-Dolan locus given 

by: 

𝑆𝑎

𝑆𝑒
=

1 −
𝑆𝑚
𝑆𝑢𝑡

1 +
𝑆𝑚

𝑆𝑢𝑡

 

Or: 

𝑛𝜎𝑎

𝑆𝑒
=

1 −
𝑛𝜎𝑚
𝑆𝑢𝑡

1 +
𝑛𝜎𝑚

𝑆𝑢𝑡

  

If 𝑟 is the load line slope 𝑟 = 𝑆𝑎/𝑆𝑚, substituting 𝑆𝑎/𝑟 for 𝑆𝑚  and solving for 𝑆𝑎  we get, 

𝑆𝑎 =
𝑟𝑆𝑢𝑡 + 𝑆𝑒

2 
[−1 + √1 +

4𝑟𝑆𝑢𝑡𝑆𝑒

(𝑟𝑆𝑢𝑡 + 𝑆𝑒)2
] 

The portion of the second quadrant is represented by a straight line between the two points (−𝑆𝑢𝑡 , 𝑆𝑢𝑡 ) 

and (0, 𝑆𝑒), which is represented by, 

𝑆𝑎 = 𝑆𝑒 + (
𝑆𝑒

𝑆𝑢𝑡
− 1) 𝑆𝑚       ;     −𝑆𝑢𝑡 ≤ 𝑆𝑚 ≤ 0 

Properties of gray cast iron are found in Table A-24, where the endurance limit stated include 𝑘𝑎  and 𝑘𝑏  

 



Reading Assignment: 

Example 6.13 

Section 6-13 

Combination of Loading Modes 

As we have seen, the load factor 𝑘𝑐  depends on the type of loading. There may also be stress-

concentration factors, which may depend on the type of loading. The question is therefore, ‘How do we 

proceed when the loading is a mixture of axial, bending, and torsional loads?” 

To answer this question, we first generate the two stress elements 𝜎𝑎 and 𝜎𝑚 and apply the appropriate 

fatigue stress-concentration factors to them.  

Second, we calculate the equivalent von Mises stress, for each of these two stress elements, 𝜎𝑎
′  and 𝜎𝑚

′  

Finally, select a fatigue failure criterion to complete the fatigue analysis. 

For the endurance limit, 𝑆𝑒, we only use 𝑘𝑎 , 𝑘𝑏, and 𝑘𝑐  for bending and account for the axial load factor 

by dividing the alternating axial stress by 0.85. 

In the common case of a shaft with bending stresses, torsional shear stresses and axial stresses, the von 

Mises stress is: 

𝜎′ = (𝜎𝑥
2 + 3𝜏𝑥𝑦

2 )
1
2

 

And therefore: 

 

For first-cycle localized yielding, 

First add the axial and bending alternating and midrange stresses to obtain 𝜎𝑚𝑎𝑥 

Second add the alternating stress to the midrange shear stresses to obtain 𝜏𝑚𝑎𝑥 

Then substitute 𝜎𝑚𝑎𝑥 and 𝜏𝑚𝑎𝑥 into the von-mises stress equation 

A simpler and more conservative method is to add 𝜎𝑎
′  and 𝜎𝑚

′  to find 𝜎𝑚𝑎𝑥
′  

𝜎𝑚𝑎𝑥
′ = 𝜎𝑎

′ + 𝜎𝑚
′ =

𝑆𝑦

𝑛
  

Reading Assignment: 

Example 6.14 



The fatigue factor of safety is then found using one of the following: 

Modified Goodman and Langer Failure Criteria 

𝑛𝑓 =
1

𝜎𝑎

𝑆𝑒
+

𝜎𝑚

𝑆𝑢𝑡

 

For Gerber and Langer Failure Criteria 

𝑛𝑓 =
1

2
(

𝑆𝑢𝑡

𝜎𝑚
)

2

(
𝜎𝑒

𝑆𝑒
) [−1 + √1 + (

2𝜎𝑚𝑆𝑒

𝑆𝑢𝑡 𝜎𝑎
)

2

 ]    ;      𝜎𝑚 > 0  

For ASME Elliptic and Langer Failure Criteria 

𝑛𝑓 = √
1

(𝜎𝑚/𝑆𝑒)2 + (𝜎𝑚/𝑆𝑦)
2 

For First-cycle failure 

𝑛𝑦 =
𝑆𝑦

𝜎𝑎 + 𝜎𝑚
=

𝑆𝑦

𝜎𝑚𝑎𝑥
 

In the case of pure shear, it is convenient to use the maximum shear-stress theory and replacing 𝜎 by 𝜏 

in the above equations and 𝑆𝑢𝑡  by 𝑆𝑠𝑢 from Equation 6.54:  

𝑆𝑠𝑢 = 0.67𝑆𝑢  

And: 

𝑛𝑓 =

𝑆𝑦

2
𝜏𝑚𝑎𝑥

 

Section 6.17 pp 338-341 provides a good summary for fatigue failure.  

Surface Endurance Shear (Buckingham Wear Factor) 

When two surfaces roll, slide, or roll and slide against each other with sufficient force, a pitting failure 

will occur after a certain number of cycles of operation. To determine the surface strength of mating 

materials, Buckingham conducted many tests which were later extended by Talbourdet. Based on the 

data obtained, and using Heart constant stresses equations, Buckingham defined a wear factor, which is 

also known as load-stress factor, as follow: 

Hearty equations for contacting cylinders are: 

𝑏 = [
2𝐹

𝜋𝑙

(1 − 𝑣1
2)

𝐸1
+

(1 − 𝑣2
2) 

𝐸2

(
1

𝑑1
) + (

1
𝑑2

)
   ]

1
2

 



𝑃𝑚𝑎𝑥 = 2𝐹/𝜋𝑏𝑙 

Where: 

𝑏 = half width of rectangular contact area 

𝐹 = contact force 

𝑤 𝑜𝑟 𝑙 = width of cylinders (length of contact) 

𝑣 = poisson’s ratio 

𝐸 = modulus of elasticity 

𝑑 = cylinder diameter 

Replacing 𝑑 by 2𝑟, 𝑙 by 𝑤 and using an average value of 0.3 for 𝑣1 and 𝑣2 to get: 

𝑏2 = 1.16 (
𝐹

𝑤
)

(
1
𝐸1

) + (
1

𝐸2
)

(
1
𝑟1

) + (
1
𝑟2

)
 

Defining surface strength as the maximum pressure at which surface fatigue failure starts to get: 

𝑆𝑒 =
2𝐹

𝜋𝑏𝑤
 

This is also known as the contact strength, the contact fatigue strength, or the Hertigan endurance 

strength. 

Substituting 𝑏 and rearranging to get: 

2.857𝑆𝑒
2 (

1

𝐸1
+

1

𝐸2
) =

𝐹

𝑤
(

1

𝑟1
+

1

𝑟2
) 

Buckingham’s load-stress factor 𝑘1 is defined as: 

𝑘1 = 2.857𝑆𝑐
2 (

1

𝐸1
+

1

𝐸2
) 

The design equation for surface fatigue strength is then: 

𝑘1 =
𝐹

𝑤
(

1

𝑟1
+

1

𝑟2
) 

In the presence of a factor of safety 𝑛 this equation is written as: 

𝑘1

𝑛
=

𝐹

𝑤
(

1

𝑟1
+

1

𝑟2
) 

The Hertigian endurance strength of steels for 108 cycles of repeated contact stress is obtained from the 

following equation: 

𝑆𝑒 = {
0.4𝐻𝐵 − 10𝑘𝑝𝑠𝑖

2.76𝐻𝐵 − 70 𝑀𝑃𝑎
 

Where 𝐻𝐵  is the Brinnel hardness number.  


