
2.4 Hooke’s Law for a 2D Unidirectional Lamina 

1. Plane stress 

𝜎3 = 𝜏23 = 𝜏31 = 0 

𝛾23 = 𝛾31 = 0 

However, 𝜀 ≠ 0 (See Eq. 2.76) 

2. [C] and [S] for plane stress situation 

[𝐶]6𝑥6  → [𝑄]3𝑥3 Reduced stiffness/compliance matrix 

[𝑆]6𝑥6  → [𝑆]3𝑥3 

{

𝜎1

𝜎2

𝜎6

} = [𝑄] {

𝜀1

𝜀2

𝜀6

}     (𝐸𝑞𝑛. 2. 78 ∗) 

{

𝜀1

𝜀2

𝜀6

} = [𝑆] {

𝜎1

𝜎2

𝜎6

}     (𝐸𝑞𝑛. 2. 77 ∗) 

[𝑄] = [
𝑄11 𝑄12 0

 𝑄22 0
𝑠𝑦𝑚.  𝑄66

]      (𝐸𝑞𝑛. 2. 78) 

[𝑆] = [
𝑆11 𝑆12 0

 𝑆22 0
𝑠𝑦𝑚.  𝑄66

]      (𝐸𝑞𝑛. 2. 77) 

3. 𝑄𝑖𝑗 (2.93 𝑎~𝑑)– in terms of 𝐸1 𝐸2 𝐺12 𝑎𝑛𝑑 𝑣12 

𝑆𝑖𝑗(2.92 𝑎~𝑑) – in terms of 𝐸1 𝐸2 𝐺12 𝑎𝑛𝑑 𝑣12 

𝑖, 𝑗 = 1, 2, 6 

2.5 Hooke’s Law for a 2D Unidirectional Angle Lamina (off-axis stiffness and compliance) 

In 2.4, we have: 

{

𝜎1

𝜎2

𝜎6

} = [𝑄] {

𝜀1

𝜀2

𝜀6

}       𝑜𝑟     {

𝜀1

𝜀2

𝜀6

} = [𝑆] {

𝜎1

𝜎2

𝜎6

}      

[Q], [S]: used with 1-2-3 coordinates, or local coordinates. 

For application, more than 1 lamina will be used; and the laminas are typically placed at various angles, 

hence angle lamina.  

 

{

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

} = [𝑄̅] {

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

}       𝑜𝑟     {

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

} = [𝑆̅] {

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

}      

[𝑄] → [𝑄̅]?     [𝑆] → [𝑆̅]? 



Step 1: Transformation Matrix [T] 

 

Global stresses: 𝜎𝑥, 𝜎𝑦 , 𝜏𝑥𝑦 

Local stresses: 𝜎1, 𝜎2, 𝜎6 = 𝜏12 

Define 𝑐 = 𝑐𝑜𝑠𝜃,   𝑠 = 𝑠𝑖𝑛𝜃 

Then: 

[𝑇] = [
𝑐2 𝑠2 2𝑠𝑐
𝑠2 𝑐2 −2𝑠𝑐

−𝑠𝑐 𝑠𝑐 𝑐2 − 𝑠2

] 

[𝑇] is orthogonal, i.e., [𝑇]−1 = [𝑇(−𝜃)] 

∴ {

𝜎1

𝜎2

𝜎6

} = [𝑇] {

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

} 

𝑜𝑟 {

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

} = [𝑇]−1 {

𝜎1

𝜎2

𝜎6

} 

Where: 

{

𝜎1

𝜎2

𝜎6

} = [𝑄] {

𝜀1

𝜀2

𝜀6

} 

∴ {

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

} = [𝑇−1][𝑄] {

𝜀1

𝜀2

𝜀6

} 

Step 2: [T] is applicable to tensorial strains, i.e. 

{

𝜀1

𝜀2

1

2
𝜀6

} = [𝑇] {

𝜀𝑥

𝜀𝑦

1

2
𝛾𝑥𝑦

} 



Step 3: Reuter’s matrix 

[𝑅] = [
1 0 0
0 1 0
0 0 2

] 

∴  {

𝜀1

𝜀2

𝜀6

} = [𝑅] {

𝜀1

𝜀2

1

2
𝜀6

} 

= [𝑅][𝑇] {

𝜀𝑥

𝜀𝑦

1

2
𝛾𝑥𝑦

} 

= [𝑅][𝑇][𝑅−1]  {

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

} 

Step 4: Subs into (A) 

{

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

} = [𝑇]−1[𝑄][𝑅][𝑇][𝑅]−1 {

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

} 

Where: 

[𝑄̅] = [𝑇]−1[𝑄][𝑅][𝑇][𝑅]−1 

And it can be shown that: 

[𝑆̅] = [𝑅][𝑇]−1[𝑅]−1[𝑆][𝑇] 

[𝑆̅] = [𝑄̅]−1 

[𝑄] = [
𝑄11 𝑄12 0

 𝑄22 0
𝑠𝑦𝑚.  𝑄66

] 

[𝑄̅] = full matrix symmetric (𝐸𝑞𝑛. 2.104 𝑎~𝑓) 

[𝑆] = [
𝑆11 𝑆12 0

 𝑆22 0
𝑠𝑦𝑚.  𝑆66

] 

[𝑆̅] = full matrix symmetric (𝐸𝑞𝑛. 2.104 𝑎~𝑓) 

2.6 Engineering Constants of an Angle Lamina 

Elastic moduli in the 𝑥 and 𝑦 directions: 

𝐸𝑥 = 1/ 𝑆11
̅̅ ̅̅  

𝐸𝑦 = 1/ 𝑆22
̅̅ ̅̅  

Shear modulus in the 𝑥 − 𝑦 plane: 

𝐺𝑥𝑦 = 1/𝑆66
̅̅ ̅̅  

 

 



Poisson’s ratios: 

𝑣𝑥𝑦 = −𝑆12
̅̅ ̅̅ /𝑆11

̅̅ ̅̅  

𝑣𝑦𝑥 = −𝑆12
̅̅ ̅̅ /𝑆22

̅̅ ̅̅  

Shear coupling factors: 

Unlike isotropic materials, an angle lamina may develop shear strains when subject to normal stresses; or 

when being stretched/compressed, shear stress may be developed. 

𝑚𝑥 = −𝑆16
̅̅ ̅̅ ∙ 𝐸1 (non-dimensional quantity) 

 relating 𝜀𝑥  to 𝜏𝑥𝑦 , or 𝜎𝑥 to 𝛾𝑥𝑦  

𝑚𝑦 = −𝑆26
̅̅ ̅̅ ∙ 𝐸1 (non-dimensional quantity) 

 relating 𝜀𝑥  to 𝜏𝑥𝑦 , or 𝜎𝑦 to 𝛾𝑥𝑦  

 
No shear strain (deformation) if angle is 0° or 90° 

2.8 Strength Failure Theories of an Angle Lamina 

7 sub-sections 

Overview: 

2.8.7 - Comparing theories, and with experimental data 

 

2.8.2 – Strength ratio 

2.8.3 – Failure envelopes 

 

2.8.1 – 4 theories (Note: 𝜏12 and 𝜎6 are interchangeable, so are 𝛾12 and 𝜀6) 

2.8.4  

2.8.5 

2.8.6 

  



Overview on Strength Theories 

A) Purpose of strength theories 

Similar to isotropic materials such as metals, strength theories are to allow for determination of when 

failure occurs if a component is in 2- or 3- dimensional state of stress. 

B) Strength theories available to isotropic materials 

Ductile materials 

• Max. shear stress theory 

• Distortion energy theory (von Mises theory) 

Brittle materials 

• Max. normal stress theory 

• Coulomb-Mohr theory 

• Modified Coulomb-Mohr theory 

C) Challenges when dealing with unidirectional laminas 

• They are direction/orientation dependent 

• Tensile and compressive strengths are different in both the longitudinal and transverse directions; 

e.g., (𝜎1
𝑇)𝑢𝑙𝑡 > (𝜎1

𝐶)
𝑢𝑙𝑡

, but (𝜎2
𝑇)𝑢𝑙𝑡 < (𝜎2

𝐶)
𝑢𝑙𝑡

 

• They retain part of ductile behavior; at the same time , they retain part of brittle behavior 

D) List of strength theories 

Unidirectional Laminas Isotropic Materials 

Max. stress Max. normal stress 

Max. strain Max. normal strain 

Tsai-Hill Distortion energy 

Tsai-Wu (Quadratic) Total strain energy 

 

  



2.8.7 Comparison of Experimental Results with Failure Theories 

1) Max. stress & max strain theories don’t compare well with experimental results. 

2) Tsai-Hill and Tsai-Wu theories don’t compare well with experimental results. 

3) Tsai-Hill or Tsai-Wu theory, however, doesn’t indicate the specific mode of failure, which max. stress 

and max. strain theories do. 

Failure Mode Shorthand Notation 

1: Tensile failure in longitudinal direction  
(or fiber direction) 

1T 

2: Compressive failure in longitudinal direction 1C 

3: Tensile failure in transverse failure 2T 

4: Compressive failure in the transverse direction 2C 

5: in-plane shear 6S 

 

  



Transformation between local (1-2-3) axes and global (x-y-z) axes: 

{𝜎}𝑙𝑜𝑐𝑎𝑙      {𝜎}𝑙𝑜𝑐𝑎𝑙

{𝜀}𝑙𝑜𝑐𝑎𝑙       {𝜀}𝑙𝑜𝑐𝑎𝑙

{𝜎}𝑔𝑙𝑜𝑏𝑎𝑙      {𝜎}𝑔𝑙𝑜𝑏𝑎𝑙

{𝜀}𝑔𝑙𝑜𝑏𝑎𝑙      {𝜀}𝑔𝑙𝑜𝑏𝑎𝑙

 

Example 1: 

A unidirectional graphite/epoxy lamina (𝜃 = 50°) is subject to 𝜎𝑥 = 0, 𝜎𝑦 = −3 𝑀𝑃𝑎, 𝜏𝑥𝑦 = 4 𝑀𝑃𝑎. 

Find the local stresses and local strains. Given, for the lamina, 𝐸1 = 181 𝐺𝑃𝑎, 𝐸2 = 10.3 𝐺𝑃𝑎, 𝑣12 =

0.28, and 𝐺12 = 7.2 𝐺𝑃𝑎. 

Solution: 

Global stresses → (𝑣𝑖𝑎 [𝑇])  Local stresses → (𝑣𝑖𝑎 [𝑆]) Local strains 

[𝑇] = [
0.4132 0.5868 0.9848
0.5868 0.4131 −0.9848

−0.4924 0.4924 −0.1736
] 

[𝑆] = [
0.5525 −0.1547 0

 9.709 0
𝑠𝑦𝑚.   13.89

] (10−9) (
1

𝑃𝑎
) 

Local stress = [𝑇] ∗global stress = {
2.179

−5.179
−2.172

} (𝑀𝑃𝑎) 

Local strain = [𝑆] ∗global stress = {
−0.0200
−0.505
−0.302

} (10−3) 

Example 2: 

A unidirectional graphite/epoxy lamina (𝜃 = 50°) is subject to 𝜎𝑥 = 𝜎1, 𝜎𝑦 = −𝜎, and 𝜏𝑥𝑦 = 0 (where 𝜎 

is in 𝑃𝑎). Find the local stresses and local strains in terms of 𝜎. Given, for the lamina, 𝐸1 = 181 𝐺𝑃𝑎, 

𝐸2 = 10.3 𝐺𝑃𝑎, 𝑣12 = 0.28, 𝐺12 = 7.2 𝐺𝑃𝑎. 

Solution: 

Global stresses → (𝑣𝑖𝑎 [𝑇])  Local stresses → (𝑣𝑖𝑎 [𝑆]) Local strains 

Local stress = [𝑇] ∗global stress 

[𝑇] {
𝜎

−𝜎 
0

} = 𝜎 {
−0.1736
0.1736

−0.9848
}   

Local strain = [𝑆] ∗local stress 

𝜎[𝑆] {
−0.1736
0.1736

−0.9848
} = 𝜎 {

−0.001228
0.01713
−0.1368

} (10−9) 

 

 


