2.4 Hooke’s Law for a 2D Unidirectional Lamina
1. Plane stress

03 =Ty3 =T33 =0

Y23 =V31 =0

However, € # 0 (See Eq. 2.76)

2. [C] and [S] for plane stress situation
[Cleéxs — [Qlsx3 Reduced stiffness/compliance matrix
[

Slexe = [Sl3x3
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[Q] = [ Q2z O ] (Eqn.2.78)
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[s]= [ Sz 0 ] (Eqn.2.77)
sym. Qss

3.Q;j (293 a~d)—in terms of E; E; Gy, and vy,
5ij(2.92 a~d) —interms of E; E; G and vy,
i,j=1,2,6

2.5 Hooke’s Law for a 2D Unidirectional Angle Lamina (off-axis stiffness and compliance)

In 2.4, we have:
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[Q], [S]: used with 1-2-3 coordinates, or local coordinates.

For application, more than 1 lamina will be used; and the laminas are typically placed at various angles,
hence angle lamina.
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Step 1: Transformation Matrix [T]
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X-Y- gfobaf ¢cosrdinates
1-2: Jtoca| coordinates
.  +4ve of cew, maasured from +ve /X

Global stresses: gy, gy, Tyy
Local stresses: a1, 03, 0 = T1>

Define ¢ = cosO, s = sin6
Then:

[T]is orthogonal, i.e., [T]™1 = [T(—6)]

Where:
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Step 3: Reuter’s matrix
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Step 4: Subs into (A)
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{Uy} = [T]7'[Q][R] [T][R]‘lisy}

Txy Yxy
Where:
[Q] = [T]7*[Q]I[RI[T][R]*

And it can be shown that:
[S] = [RI[T]~*[R]~*(S][T]

[S] = [Q]*
Q11 Q12 0
[Q] = [ Q22 0 ]
sym. Qss

[Q] = full matrix symmetric (Eqn.2.104 a~f)

S11. S12 O
[S] = S22 0
sym. Se6
[S] = full matrix symmetric (Eqn. 2.104 a~f)

2.6 Engineering Constants of an Angle Lamina

Elastic moduli in the x and y directions:
E, =1/ 51_1
Ey = 1/ 522

Shear modulus in the x — y plane:
ny =1/Se6



Poisson’s ratios:
Uyy = =512/511
Vyx = —512/522
Shear coupling factors:

Unlike isotropic materials, an angle lamina may develop shear strains when subject to normal stresses; or
when being stretched/compressed, shear stress may be developed.

m, = —S;6 * E; (non-dimensional quantity)
relating &y to Tyy, OF 0y 10 Vyy

my, = —S,6 * E1 (non-dimensional quantity)
relating &y to Tyy, Or g, t0 Yy,
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No shear strain (deformation) if angle is 0° or 90°

2.8 Strength Failure Theories of an Angle Lamina
7 sub-sections

Overview:
2.8.7 - Comparing theories, and with experimental data

2.8.2 — Strength ratio
2.8.3 — Failure envelopes

2.8.1 -4 theories (Note: 74, and g are interchangeable, so are Y1, and &)
2.84
2.85
2.8.6



Overview on Strength Theories
A) Purpose of strength theories

Similar to isotropic materials such as metals, strength theories are to allow for determination of when
failure occurs if a component is in 2- or 3- dimensional state of stress.

B) Strength theories available to isotropic materials

Ductile materials
e Max. shear stress theory
e Distortion energy theory (von Mises theory)

Brittle materials

e Max. normal stress theory

e Coulomb-Mohr theory

e Modified Coulomb-Mohr theory

C) Challenges when dealing with unidirectional laminas

e They are direction/orientation dependent

e Tensile and compressive strengths are different in both the longitudinal and transverse directions;
€.g8. (O{)ult > (O-lc)ult/ but (O{)ult < (O-ZC)ult

e They retain part of ductile behavior; at the same time , they retain part of brittle behavior

D) List of strength theories

Unidirectional Laminas Isotropic Materials
Max. stress Max. normal stress
Max. strain Max. normal strain
Tsai-Hill Distortion energy
Tsai-Wu (Quadratic) Total strain energy




2.8.7 Comparison of Experimental Results with Failure Theories
1) Max. stress & max strain theories don’t compare well with experimental results.

2) Tsai-Hill and Tsai-Wu theories don’t compare well with experimental results.

3) Tsai-Hill or Tsai-Wu theory, however, doesn’t indicate the specific mode of failure, which max. stress
and max. strain theories do.

Failure Mode Shorthand Notation

1: Tensile failure in longitudinal direction

. . . 1T
(or fiber direction)
2: Compressive failure in longitudinal direction 1C
3: Tensile failure in transverse failure 2T
4: Compressive failure in the transverse direction 2C
5:in-plane shear 6S




Transformation between local (1-2-3) axes and global (x-y-z) axes:

{G}local {U}local
{g}local {5}local
{a}global/{a}global
{E}global {S}global

Example 1:

A unidirectional graphite/epoxy lamina (6 = 50°) is subject to o, = 0, 0, = =3 MPa, T4, = 4 MPa.
Find the local stresses and local strains. Given, for the lamina, E; = 181 GPa, E, = 10.3 GPa, v, =
0.28,and G, = 7.2 GPa.

Solution:
Global stresses — (via [T]) Local stresses — (via [S]) Local strains

0.4132 0.5868 0.9848
[T]=] 05868 0.4131 —0.9848
—0.4924 0.4924 -0.1736

0.5525 —0.1547 0 1
[s] = \ 9709 0 ] (10-9) (P—)
sym. 13.89 a
2.179
Local stress = [T] *global stress = {—5.179; (MPa)
—2.172
—0.0200
Local strain = [S] *global stress = { —0.505 { (1073)
—0.302
Example 2:
A unidirectional graphite/epoxy lamina (6 = 50°) is subject to o, = 01, 0, = —0, and Ty, = 0 (where o

isin Pa). Find the local stresses and local strains in terms of o. Given, for the lamina, E; = 181 GPa,
E, =10.3 GPa, vy, = 0.28, G;, = 7.2 GPa.

Solution:
Global stresses — (via [T]) Local stresses — (via [S]) Local strains

o —-0.1736
[T] {—O‘} =0y 0.1736
—0.9848

Local stress = [T] *global stress

Local strain = [S] *local stress

—-0.1736 —0.001228
a[S]14 0.1736 { =04 0.01713 {(107°)
—0.9848 —0.1368



