3.3.4 Transversely Isotropic Fibers

e Glass fibers are isotropic
e Carbon/graphite and aramid fibers are transversely isotropic

1) Elastic modulus for the fibers

Ef1: Young's Modulus in the Longitudinal direction
Efr: Young’s Modulus in the Transverse direction
Vr1,: Major Poisson’s Ratio (that is vs,7)

Vpr: Minor Poisson’s Ratio (or vgr)

Ggr: Shear modulus in the L-T plane

2) Elastic moduli of the composite (Mechanics of Materials Approach)
El = EfL]/f + Eme
vlz = va]/f + Ume
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3) Elastic moduli of the composite (Halpin-Tsai Method)
EZ: Ef «— EfT

Glz: Gf «— GfT

4) Elastic moduli of the composite (Elasticity approach)
Ell Ef — EfL ; Uf — va
Vi2:Vp < Vs ; Ef < Efy
Glz: Gf — GfT
Eyivp <« vpp
Gf — GfTT
Ef — EfT



Gyrr fibers shear modulus in the T-T plane
)
ST 21+ vyr)

Example: Find E4, E,, G1,, and v;, by the three approaches.

Graphite fibers:
Vr,=0.6
Ef, = 345 GPa
Efr =9.66 GPa
Gsr = 2.07 GPa
Ve, = 0.2

Epoxy fibers:
Vi = 0.4

E, = 3.45GPa
Gy = 1.28 GPa
Uy, = 0.35

Solution:
Ver = 0.0056
GfTT = 4‘.80 GPa

Mechanics of Materials method:
E; = 208.38 GPa

E, =5.6163 GPa

G, = 1.6602 GPa

v, = 0.26000

Halpin-Tsai method:
E, = 6.4988 GPa

p = 2.2419
n = 0.35701

Gy, = 1.7070 GPa
p = 1.2419

n = 0.21587

Elasticity method:
E, = 208.42 GPa
v, = 0.25103
G1, = 1.7019 GPa

A = —38.7795
B = 22.3345
C = 69.2433

G,3 = 2.59971 GPa
Va3 = 0.275602



E, = 6.6324 GPa
3.4 Ultimate Strength of a Unidirectional Lamina

It's observed that,
1) Fibers behave like ductile materials, but matrix behaves like brittle material

2) Both are not linearly elastic

Within the section, it's assumed that o — € plots for both fiber and matrix are linear up to failure (by
breakage or by fracture)

What we need before determining ultimate strengths.
Fibers: V or V¢
(Uf)ult: strength of fibers in tension and compression

(Tf)ult: ultimate shear strength of fibers

Matrix: 1, or V;,

(o) e or (1) ultimate strength of matrix in tension
(05) e ultimate strength of matrix under compression
(Ty)we: ultimate shear strength of matrix

Composite: Eq, E5, V13, G412

What we determine:

(o7)¢: Ultimate longitudinal tensile strength
(Uf)ult: Ultimate longitudinal compressive strength

(T12)wt: Ultimate shear strength



5 sub-sections to determine such ultimate strength

I . T
3.4.1 Longitudinal Tensile Strength (ol)ult

There are 2 scenarios:
Fibers fail first; or matrix fails first

Fibers-fail-first:
Typically takes place for:

e MMCs
e Thermoplastic polymer composites
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(Ef)ult < (&m)wit indicates that fibers fail first.

Matrix-fail-first (not in the textbook):
Typically takes place if:

e Vrislow

e PMC

s =

e i (Ee)antiz:

(Erdue < (gf)ult indicates that matrix fail first.

- fibers and matrix taking the load together
- g, follows ROM, similar to ROM on E;
w0y = Vrop + Vo

=ViEre + VipEne (Eq.A)
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~» matrix-fails-first (&,,) 1 < (gf)ult

8= (e =
VeE
20y = @ (Vo + =) (Bq. A1)
m

The full load transfers to the fibers, but due to low V, fibers see a large jump in stress and fails
immediately.

VeE
o @De = @ndue (Vi +22)  (Ea.B)
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Fibers-fail-first
Fibers and matrix taking the load together
oy =ViEre + VinEppe  (Eq.A)

Load reaches the level that will break the fibers;
(Ef)ult < (Emut

(O'f)
LE= (Ef)ult = Ef”lt

mEm

v
woy=(of) Vf+E—f (Eq.A2)

Load transfers to the matrix, causing increase in stress in the matrix, and fracture in matrix, leading to
failure of composite.

o (0 e = (07) <Vf +%> (Eq.C)

Loads can be further increased if there is sufficient matrix to take the load.

Once fibers break, the volume originally occupied by the fibers is regarded as void content. (Eq. A)
becomes:

01 = Vmom

(O-lT) = Vm(am)ult (Eq' D)

Now the question is which (a7),,;; to use, (Eq. C) or (Eq. D)?



(Tadux |
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() i = —
f minimum
(Gf)ult (1 - E_) + (O-m)ult
IfVr < (Vf)minimum use (Eq.D)
IfVr = (Vf)minimum use (Eq.C)

However it is practically impossible if (67 ), by (Eq. C) or (Eq. D) is less than (0,,) e

(Uf)
(Um)ult —Ep- Efult

) e = :
critica (O_f)ult _ (O'f)ultE—r;l

it vy < (V)
It vy = (Vr)

(O{)ult = (Omuie
use (Eq.C)

critical

critical

3.4.2 Longitudinal Compressive Strength ( af)ult
1. Modes of failure (3 or 4)

1) Tensile Failure:
e Excessive tensile strain in the matrix

o Matrix fractures or fiber-matrix bonding fractures
e Common with thermoset

2) Microbuckling: refers to fibers buckling “inside” the matrix
e Common with Kevlar
e  Two possible microbucklng modes

o In-phase or shear mode

o Out-of-phase or extensional mode
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3) Kinging/Shearing: refers to direct shear failure of fibers, or kinking of fibers if not sheared.

2. Tensile failure

T
(05 = 2820t (3169

3. Microbuckling
Extensional mode:

Si=2|V,;+(1-V;) :"":E (3.173a)
f
Shear mode:
G
Sg=—m_ ,

2= 7 v, (3.173b)

4. Shearing/kinking:
(69 =2[ (€ )V + (@) Vs | (3.175)

5. Conclusion:
4values of (af ) . by (Eq.3.169), (Eq.3.173a), (Eq.3.173b), and (Eq.3.175)

Choose the smallest value.
Example 3.14 for detail.



[a]

(b)

lc)

(d)

Fiber microbuckling extensional mode

Fiber microbuckling shear mode

Transverse tensile failure of matrix

Shear failure

3.4.3 Transverse Tensile Strength (o{)uu

Example 3.15 for detail.

{G; }rn’f = EE (Eg}rn’f ’

3.4.4 Transverse Compressive Strength (ag )ult

Example 3.17 for detail.

C C
(03 ) = Ex (€5 ) st

(3.182)

(3.183)



3.4.5 In-Plane Shear Strength (T12) ¢

(T12)ur = G2 (Y12 )

ic p (3.191)

=Gy, 1= (Y12)muie-
s Gy S

Example 3.17 for detail.

A few notes regarding equation in subsections 3.4.2 ~ 3.4.4:

1) Sf and S are by buckling analysis (or eigenvalue analysis)

2) All other equations are mostly results of doing simple mechanics of materials analyses; the RVEs are
similar or identical to those used in 3.3.1

3) Where (e]),,; is needed, it should be the lesser of

e Empirical formula, (Eq.3.170)

e Mechanics of materials approach (Eq.3.171)

4) ROM is applied a few times.

(1), mechanics of materials formula:

Gy
Matrix
Fiber [, d -
Matrix s
Fiber [, ; d S

Matrix

8]
Transverse-direction deformations
Fiber: 6y = ¢¢ - d
Matrix: 6, = € - (s — d)
Composite: 6, = €. s

But, 8¢ = & + 6,



LErs=¢grdte,(s—d)
d d
& =E£f + (1 —E)em
Erer = Epy&y (same stress in fibers and in matrix)

[dE d
see=enfigr+ (175)

If £,,, reaches (&X,)t, & reaches its ultimate value (&1),¢; that is:
) a

e = |7+ (1-5)| e

Where,

(€m)wie = ultimate tensile strain of the matrix

d = diameter of the fibers

s = center-to-center spacing between fibers

%depends on packing and V¢

And, (1), the empirical formula
(Eg)m'f - (E?;' }n.ff (1 - V;F!IS)I (31?0)

State-of-the-art in terms of predicting or evaluating ultimate strengths

a) With the availability of new (and newer) materials, there are composites with combinations of
brittle fibers and brittle matrix, brittle fibers and ductile matrix, in addition to ductile fibers plus
brittle matrix as discussed in class.

b) Interms of the combination of ductile fibers plus brittle matrix, the trend seems to be moving away
from assuming linear ¢ — & up to failure for matrix; Various approaches are seen to deal with the
non-linearity, and to various degree of success.

c) Itis known that predicting elastic moduli remains a challenge. It is an even bigger challenge for
predicting ultimate strengths.

Chapter 2: Macromechanical Analysis of a Lamina

2.1

2.2

2.3 — done before chapter 3 (previously covered)

24

2.5

2.6

2.7 — stiffness matrix, compliance matrix, and their applications
2.8 —failure theories of a lamina

2.9 — hydrothermal situation (not covered)

Basics
Contacted notation, [C] and [S]



Stress vector

01 01
03 02
_ )03 | _ )O3
lo} = Tz~ )04
T31 Og
T12 3
Strain vector
&1 €1
& &
)& | _ )&
le} = Yoz [~ )€
V31 €5
Y12 €6
Stiffness matrix [C]:
{o} = [Cl{e}
Compliance matrix [S]:
{e} = [Sl{a}
And:
[S]=[c]™!
[C]=[s]"!

Shear strains are the so-called engineering shear strains instead of torsional shear strains



Example 1:
A fiber-reinforced lamina of unidirectional continuous fibers consists of the high-strength graphite fiber
and epoxy. The lamina has V = 0.45 and zero void content. Find (01 )uie of the lamina, given the

following:

E; = 280 GPa

(97),,, = 5700 MPa

E,, = 3.45 GPa

(O-m)ult = 60 Mpa

(97)

(e f)ult ——4E — 0,020
f

(Em)uie = Omduic _ 017
m

Therefore, matrix fails first, and Eq. (B) is used to determine (GlT)ult:
T Ef
(01 )ult = (O'm)ult (Vm + Vf E_) = 2,224 MPa
m

Example 2:

A fiber-reinforced lamina of unidirectional continuous fibers consists of the high-modulus graphite fiber
and epoxy. The lamina has V; = 0.45 and zero void content. Find (o)t of the lamina, given the
following:

Ef = 530 GPa
(o7),,, = 1900 MPa
Ep = 3.45 GPa

(Om)ue = 60 Mpa

( f)ult

= 0.0036

(&) e =
o
(emdute = % = 0.017
m
Therefore, fiber fails first, and we need to decide what equation to use.
(Eq.3.165): Vipinimum = 0.0244 = 2.44%

(EqQ.3.166): Vepigicar = 0.0252 = 2.52%

So, use Eq. (C) or (Eq.3.164)

E
(@D = (07) ,, <Vf + VU, E—’”> = 861.8 MPa
1



Example 3:
. T C T c -
For the lamina in Example 2, evaluate (o7 )yt (01 )ult’ (03 )it (02 )ult and (T15) e, given the

following:
Ef = 530 GPa
Gy = 215 GPa

(97),,, = 1900 MPa
(Tf)ult =36 MPa

E,, = 3.45 GPa
Um = 0.30
G, = 133 GPa

(Om)wt =72 MPa
(Tm)ult = 34 MPa

E, = 240.4 GPa
E, = 11.66 GPa
Vi = 02685

GlZ = 3.472 GPa
Hexagonal packing
Solution:

(67wt = 861.8 MPa
(af) ., =69.80 MPa
1 e

(67t = 56.87 MPa

(o5),,, = 103.5 MPa
(T12)we = 26.63 MPa






Textbook changes (errors in equations):

Qn = Q1'l£4 + Q2254 +2(Q,, + zQeﬁ)Szﬂz /

Qi = (Qu + Qo —4Q)5%c* +Qus(c* +5),
Qo = Qus* + Qe +2(Quz +2Qu)5c?,
Qre = Q11 ~ Q12 = 2Que)cs ~ (Qer = Q1> ~2Qu)s°,
Qa = (Qu ~ Qi ~2Q56)es* = (Qr ~ Qi ~2Qu ),

Q&a =(Qy1 +Qpn =204, —2Q )s’c’ +Q66(54 +c). (2.104a—f)
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1. 4 2x10°+3x10°
=—tan | - Z
2 2(4 % 10°)

1
= 16-DOD,

8. The principal strains are given by*

Bottom line should be -16.00°
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from Equation (3.2) as
ZU'f + W = we -

From the definition of the density of a single material,

w,=r7v,,
w;=rsv;, and (3.3a—)
_—— -

1 H"m = rmz}m' |

P ——

Bottom line should be w,,, = pp, v

FIGURE 3.23
Longitudinal and transverse direction in a transversely isotropic fiber.

E'J = Eﬂ'vf + Eru‘v;nF

Bottom line should be vy, = v¢ Vr + vy Vi
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56.66 4232 4287
+% 4232 56.66  —42.87 |(107)[(0.0075)> - (0.0025)?]
—4287 -42.87 4659

— e - -y,

-3.129x10°  9.855x10° {—1 972 x 10“'
[B]= _9.855% 10° 1.158 x10° 1-1.972x 10b Pa-m* .

—1 072x10° -1.072x 106' 9.855x% 10°

Highlighted areas should be zero.



Midterm Review

Chapter 1

Definition of composite materials:

Reinforcing phase: purpose, shapes, types of fibers
matrix: purpose, materials choices for matrix

Manufacture of Fibers
Applications

Chapter 2

2.3: Independent mechanical properties vs. Types of materials

(and why we use those constants as well)

e.g. orthotropic materials, 9 transversely isotropic materials (what do we need to determine 9
transversely isotropic materials, what is the plane of symmetry), resulting5...

Chapter 3

3.2: Vg, Vi, We, Wi, void content

a few fibers + a few matrices + voids

Vf', Vi Vemax, RVE

When an equation in the text is only valid for zero void content

3.3: Isotropic fibers + isotropic matrix

transversely isotropic fibers + isotropic matrix

mech. of mat’ls

Halpin-Tsai

elasticity (E4, E5, v1, won’t appear on midterm, too long — but G, could)



