
3.3.4 Transversely Isotropic Fibers 

• Glass fibers are isotropic 

• Carbon/graphite and aramid fibers are transversely isotropic 

 

1) Elastic modulus for the fibers 

𝐸𝑓𝐿: Young’s Modulus in the Longitudinal direction 

𝐸𝑓𝑇: Young’s Modulus in the Transverse direction 

𝑣𝑓𝐿: Major Poisson’s Ratio (that is 𝑣𝑓𝐿𝑇) 

𝑣𝑓𝑇: Minor Poisson’s Ratio (or 𝑣𝑓𝑇𝐿) 

𝐺𝑓𝑇: Shear modulus in the L-T plane 

2) Elastic moduli of the composite (Mechanics of Materials Approach) 

𝐸1 = 𝐸𝑓𝐿𝑉𝑓 + 𝐸𝑚𝑉𝑚 

𝑣12 = 𝑣𝑓𝐿𝑉𝑓 + 𝑣𝑚𝑉𝑚 

1

𝐸2
=
𝑉𝑓

𝐸𝑓𝑇
+
𝑉𝑚
𝐺𝑚

 

1

𝐺12
=
𝑉𝑓

𝐺𝑓1
+
𝑉𝑚
𝐺𝑚

 

3) Elastic moduli of the composite (Halpin-Tsai Method) 

𝐸2: 𝐸𝑓 ← 𝐸𝑓𝑇 

𝐺12: 𝐺𝑓 ← 𝐺𝑓𝑇 

4) Elastic moduli of the composite (Elasticity approach) 

𝐸1: 𝐸𝑓 ← 𝐸𝑓𝐿  ;  𝑣𝑓 ← 𝑣𝑓𝐿 

𝑣12: 𝑣𝑓 ← 𝑣𝑓𝐿  ;  𝐸𝑓 ← 𝐸𝑓𝐿 

𝐺12: 𝐺𝑓 ← 𝐺𝑓𝑇 

𝐸2: 𝑣𝑓 ← 𝑣𝑓𝑇  

       𝐺𝑓 ← 𝐺𝑓𝑇𝑇  

       𝐸𝑓 ← 𝐸𝑓𝑇  



𝐺𝑓𝑇𝑇  fibers shear modulus in the T-T plane 

𝐺𝑓𝑇𝑇 =
𝐸𝑓𝑇

2(1 + 𝑣𝑓𝑇)
 

Example: Find 𝐸1, 𝐸2, 𝐺12, and 𝑣12 by the three approaches. 

Graphite fibers: 

𝑉𝑓 = 0.6 

𝐸𝑓𝐿 = 345 𝐺𝑃𝑎  

𝐸𝑓𝑇 = 9.66 𝐺𝑃𝑎 

𝐺𝑓𝑇 = 2.07 𝐺𝑃𝑎 

𝑣𝑓𝐿 = 0.2 

Epoxy fibers: 

𝑉𝑚 = 0.4 

𝐸𝑚 = 3.45 𝐺𝑃𝑎  

𝐺𝑚 = 1.28 𝐺𝑃𝑎 

𝑣𝑚 = 0.35 

Solution: 

𝑣𝑓𝑇 = 0.0056 

𝐺𝑓𝑇𝑇 = 4.80 𝐺𝑃𝑎 

Mechanics of Materials method: 

𝐸1 = 208.38 𝐺𝑃𝑎  

𝐸2 = 5.6163 𝐺𝑃𝑎 

𝐺12 = 1.6602 𝐺𝑃𝑎 

𝑣12 = 0.26000 

Halpin-Tsai method: 

𝐸2 = 6.4988 𝐺𝑃𝑎  

𝜌 = 2.2419 

𝑛 = 0.35701 

𝐺12 = 1.7070 𝐺𝑃𝑎  

𝜌 = 1.2419 

𝑛 = 0.21587 

Elasticity method: 

𝐸1 = 208.42 𝐺𝑃𝑎 

𝑣12 = 0.25103 

𝐺12 = 1.7019 𝐺𝑃𝑎  

𝐴 = −38.7795 

𝐵 = 22.3345 

𝐶 = 69.2433 

𝐺23 = 2.59971 𝐺𝑃𝑎 

𝑣23 = 0.275602 



𝐸2 = 6.6324 𝐺𝑃𝑎 

3.4 Ultimate Strength of a Unidirectional Lamina 

It’s observed that, 

1) Fibers behave like ductile materials, but matrix behaves like brittle material 

2) Both are not linearly elastic 

 

Within the section, it’s assumed that 𝜎 − 𝜀 plots for both fiber and matrix are linear up to failure (by 

breakage or by fracture) 

 

What we need before determining ultimate strengths. 

Fibers: 𝑉𝑓  or 𝑉𝑓
′ 

(𝜎𝑓)𝑢𝑙𝑡: strength of fibers in tension and compression 

(𝜏𝑓)𝑢𝑙𝑡: ultimate shear strength of fibers 

Matrix: 𝑉𝑚  or 𝑉𝑚
′   

(𝜎𝑚)𝑢𝑙𝑡 or (𝜎𝑚
𝑇 )𝑢𝑙𝑡: ultimate strength of matrix in tension 

(𝜎𝑚
𝐶 )𝑢𝑙𝑡: ultimate strength of matrix under compression 

(𝜏𝑚)𝑢𝑙𝑡: ultimate shear strength of matrix 

Composite: 𝐸1, 𝐸2, 𝑣12, 𝐺12 

What we determine: 

(𝜎1
𝑇)𝑢𝑙𝑡: Ultimate longitudinal tensile strength 

(𝜎1
𝐶)
𝑢𝑙𝑡
: Ultimate longitudinal compressive strength 

(𝜏12)𝑢𝑙𝑡: Ultimate shear strength  



5 sub-sections to determine such ultimate strength  

3.4.1 Longitudinal Tensile Strength (𝝈𝟏
𝑻)
𝒖𝒍𝒕

 

There are 2 scenarios: 

Fibers fail first; or matrix fails first 

Fibers-fail-first: 

Typically takes place for: 

• MMCs 

• Thermoplastic polymer composites 

 
(𝜀𝑓)𝑢𝑙𝑡 <

(𝜀𝑚)𝑢𝑙𝑡  indicates that fibers fail first. 

Matrix-fail-first (not in the textbook): 

Typically takes place if: 

• 𝑉𝑓  is low 

• PMC 

 
(𝜀𝑚)𝑢𝑙𝑡 < (𝜀𝑓)𝑢𝑙𝑡  indicates that matrix fail first. 

∵ fibers and matrix taking the load together 

∴ 𝜎1 follows ROM, similar to ROM on 𝐸1 

∴ 𝜎1 = 𝑉𝑓𝜎𝑓 + 𝑉𝑚𝜎𝑚 

= 𝑉𝑓𝐸𝑓𝜀 + 𝑉𝑚𝐸𝑚𝜀     (𝐸𝑞. 𝐴) 



∵ matrix-fails-first (𝜀𝑚)𝑢𝑙𝑡 < (𝜀𝑓)𝑢𝑙𝑡  

∴ 𝜀 = (𝜀𝑚)𝑢𝑙𝑡 =
(𝜎𝑚)𝑢𝑙𝑡

𝐸𝑚
 

∴ 𝜎1 = (𝜎𝑚)𝑢𝑙𝑡 (𝑉𝑚 +
𝑉𝑓𝐸𝑓

𝐸𝑚
)     (𝐸𝑞. 𝐴1) 

The full load transfers to the fibers, but due to low 𝑉𝑓, fibers see a large jump in stress and fails 

immediately. 

∴ (𝜎1
𝑇)𝑢𝑙𝑡 = (𝜎𝑚)𝑢𝑙𝑡 (𝑉𝑚 +

𝑉𝑓𝐸𝑓

𝐸𝑚
)     (𝐸𝑞. 𝐵) 

 
 

Fibers-fail-first 

Fibers and matrix taking the load together 

∴ 𝜎1 = 𝑉𝑓𝐸𝑓𝜀 + 𝑉𝑚𝐸𝑚𝜀     (𝐸𝑞. 𝐴) 

Load reaches the level that will break the fibers; 

∵ (𝜀𝑓)𝑢𝑙𝑡 <
(𝜀𝑚)𝑢𝑙𝑡  

∴ 𝜀 = (𝜀𝑓)𝑢𝑙𝑡 =
(𝜎𝑓)𝑢𝑙𝑡
𝐸𝑓

 

∴ 𝜎1 = (𝜎𝑓)𝑢𝑙𝑡 (𝑉𝑓 +
𝑉𝑚𝐸𝑚
𝐸𝑓

)     (𝐸𝑞. 𝐴2) 

Load transfers to the matrix, causing increase in stress in the matrix, and fracture in matrix, leading to 

failure of composite. 

∴ (𝜎1
𝑇)𝑢𝑙𝑡 = (𝜎𝑓)𝑢𝑙𝑡 (𝑉𝑓 +

𝑉𝑚𝐸𝑚
𝐸𝑓

)     (𝐸𝑞. 𝐶) 

Loads can be further increased if there is sufficient matrix to take the load. 

Once fibers break, the volume originally occupied by the fibers is regarded as void content. (Eq. A) 

becomes: 

𝜎1 = 𝑉𝑚𝜎𝑚 
(𝜎1

𝑇) = 𝑉𝑚(𝜎𝑚)𝑢𝑙𝑡     (𝐸𝑞. 𝐷)  

Now the question is which (𝜎1
𝑇)𝑢𝑙𝑡  to use, (Eq. C) or (Eq. D)? 

 



  

(𝑉𝑓)𝑚𝑖𝑛𝑖𝑚𝑢𝑚 =

(𝜎𝑚)𝑢𝑙𝑡 − 𝐸𝑚 ∙
𝜎𝑓
𝐸𝑓

(𝜎𝑓)𝑢𝑙𝑡
(1 −

𝐸𝑚
𝐸𝑓
) + (𝜎𝑚)𝑢𝑙𝑡  

 

If 𝑉𝑓 < (𝑉𝑓)𝑚𝑖𝑛𝑖𝑚𝑢𝑚  use (𝐸𝑞. 𝐷) 

If 𝑉𝑓 ≥ (𝑉𝑓)𝑚𝑖𝑛𝑖𝑚𝑢𝑚  use (𝐸𝑞. 𝐶) 

However it is practically impossible if (𝜎1
𝑇)𝑢𝑙𝑡  by (𝐸𝑞. 𝐶) or (𝐸𝑞. 𝐷) is less than (𝜎𝑚)𝑢𝑙𝑡   

(𝑉𝑓)𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =

(𝜎𝑚)𝑢𝑙𝑡 − 𝐸𝑚 ∙
(𝜎𝑓)𝑢𝑙𝑡
𝐸𝑓

(𝜎𝑓)𝑢𝑙𝑡 −
(𝜎𝑓)𝑢𝑙𝑡

𝐸𝑚
𝐸𝑓
 

 

If 𝑉𝑓 < (𝑉𝑓)𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 
(𝜎1

𝑇)𝑢𝑙𝑡 = (𝜎𝑚)𝑢𝑙𝑡 

If 𝑉𝑓 ≥ (𝑉𝑓)𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 use (𝐸𝑞. 𝐶) 

3.4.2 Longitudinal Compressive Strength ( 𝝈𝟏
𝑪)
𝒖𝒍𝒕

 

1. Modes of failure (3 or 4) 

1) Tensile Failure: 

• Excessive tensile strain in the matrix 

o Matrix fractures or fiber-matrix bonding fractures 

• Common with thermoset 

2) Microbuckling: refers to fibers buckling “inside” the matrix 

• Common with Kevlar 

• Two possible microbucklng modes 

o In-phase or shear mode 

o Out-of-phase or extensional mode 

 



3) Kinging/Shearing: refers to direct shear failure of fibers, or kinking of fibers if not sheared. 

 

2. Tensile failure  

 

3. Microbuckling  

Extensional mode: 

 

Shear mode: 

 

4. Shearing/kinking: 

 

5. Conclusion: 

4 values of (𝜎1
𝐶)
𝑢𝑙𝑡

 by (𝐸𝑞. 3.169), (𝐸𝑞. 3.173𝑎), (𝐸𝑞. 3.173𝑏), and (𝐸𝑞. 3.175) 

Choose the smallest value. 

Example 3.14 for detail. 



 

3.4.3 Transverse Tensile Strength (𝝈𝟐
𝑻)
𝒖𝒍𝒕

 

 
Example 3.15 for detail. 

3.4.4 Transverse Compressive Strength (𝝈𝟐
𝑪)
𝒖𝒍𝒕

 

 
Example 3.17 for detail. 

 

 

 

 



3.4.5 In-Plane Shear Strength (𝝉𝟏𝟐)𝒖𝒍𝒕  

 
Example 3.17 for detail. 

A few notes regarding equation in subsections 3.4.2 ~ 3.4.4: 

1) 𝑆1
𝐶  and 𝑆2

𝐶  are by buckling analysis (or eigenvalue analysis) 

2) All other equations are mostly results of doing simple mechanics of materials analyses; the RVEs are 

similar or identical to those used in 3.3.1 

3) Where (𝜀2
𝑇)𝑢𝑙𝑡  is needed, it should be the lesser of 

• Empirical formula, (𝐸𝑞. 3.170) 

• Mechanics of materials approach (𝐸𝑞. 3.171) 

4) ROM is applied a few times. 

(𝜀2
𝑇)𝑢𝑙𝑡: mechanics of materials formula: 

 

 

 

 

 

 

 

 

 

 

 

 

Transverse-direction deformations 

Fiber: 𝛿𝑓 = 𝜀𝑓 ∙ 𝑑 

Matrix: 𝛿𝑚 = 𝜀𝑚 ∙ (𝑠 − 𝑑) 

Composite: 𝛿𝑐 = 𝜀𝑐 ∙ 𝑠 

 

But, 𝛿𝑐 = 𝛿𝑓 + 𝛿𝑚 



∴  𝜀𝑐 ∙ 𝑠 = 𝜀𝑓 ∙ 𝑑 + 𝜀𝑚 ∙ (𝑠 − 𝑑) 

𝜀𝑐 =
𝑑

𝑠
𝜀𝑓 + (1 −

𝑑

𝑠
) 𝜀𝑚  

𝐸𝑓𝜀𝑓 = 𝐸𝑚𝜀𝑚 (𝑠𝑎𝑚𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 𝑖𝑛 𝑓𝑖𝑏𝑒𝑟𝑠 𝑎𝑛𝑑 𝑖𝑛 𝑚𝑎𝑡𝑟𝑖𝑥) 

∴ 𝜀𝑐 = 𝜀𝑚 [
𝑑

𝑠

𝐸𝑚
𝐸𝑓

+ (1 −
𝑑

𝑠
)] 

If 𝜀𝑚  reaches (𝜀𝑚
𝑇 )𝑢𝑙𝑡 , 𝜀𝑐  reaches its ultimate value (𝜀2

𝑇)𝑢𝑙𝑡; that is: 

(𝜀2
𝑇)𝑢𝑙𝑡 = [

𝑑

𝑠

𝐸𝑚
𝐸𝑓

+ (1 −
𝑑

𝑠
)] (𝜀𝑚

𝑇 )𝑢𝑙𝑡 

Where, 
(𝜀𝑚)𝑢𝑙𝑡 = ultimate tensile strain of the matrix 

𝑑 = diameter of the fibers 

𝑠 = center-to-center spacing between fibers 
𝑑

𝑠
 depends on packing and 𝑉𝑓  

And, (𝜀2
𝑇)𝑢𝑙𝑡  the empirical formula 

 
State-of-the-art in terms of predicting or evaluating ultimate strengths 

a) With the availability of new (and newer) materials, there are composites with combinations of 

brittle fibers and brittle matrix, brittle fibers and ductile matrix, in addition to ductile fibers plus 

brittle matrix as discussed in class. 

b) In terms of the combination of ductile fibers plus brittle matrix, the trend seems to be moving away 

from assuming linear 𝜎 − 𝜀 up to failure for matrix; Various approaches are seen to deal with the 

non-linearity, and to various degree of success. 

c) It is known that predicting elastic moduli remains a challenge. It is an even bigger challenge for 

predicting ultimate strengths. 

 

Chapter 2: Macromechanical Analysis of a Lamina 

2.1 

2.2 

2.3 – done before chapter 3 (previously covered) 

2.4 

2.5 

2.6 

2.7 – stiffness matrix, compliance matrix, and their applications 

2.8 – failure theories of a lamina  

2.9 – hydrothermal situation (not covered) 

 

Basics 

Contacted notation, [𝐶] and [𝑆] 



Stress vector 

{𝜎} =

{
 
 

 
 
𝜎1
𝜎2
𝜎3
𝜏23
𝜏31
𝜏12}
 
 

 
 

=

{
 
 

 
 
𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6}
 
 

 
 

 

Strain vector 

{𝜀} =

{
 
 

 
 
𝜀1
𝜀2
𝜀3
𝛾23
𝛾31
𝛾12}
 
 

 
 

=

{
 
 

 
 
𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6}
 
 

 
 

 

Stiffness matrix  [𝐶]: 

{𝜎} = [𝐶]{𝜀} 

Compliance matrix [𝑆]: 

{𝜀} = [𝑆]{𝜎} 

And: 

[𝑆] = [𝐶]−1 
[𝐶] = [𝑆]−1 

Shear strains are the so-called engineering shear strains instead of torsional shear strains 

  



Example 1: 

A fiber-reinforced lamina of unidirectional continuous fibers consists of the high-strength graphite fiber 

and epoxy. The lamina has 𝑉𝑓 = 0.45 and zero void content. Find (𝜎1
𝑇)𝑢𝑙𝑡  of the lamina, given the 

following: 

𝐸𝑓 = 280 𝐺𝑃𝑎  

(𝜎𝑓)𝑢𝑙𝑡 = 5700 𝑀𝑃𝑎  

𝐸𝑚 = 3.45 𝐺𝑃𝑎  
(𝜎𝑚)𝑢𝑙𝑡 = 60 𝑀𝑝𝑎  

(𝜀𝑓)𝑢𝑙𝑡 =
(𝜎𝑓)𝑢𝑙𝑡
𝐸𝑓

= 0.020 

(𝜀𝑚)𝑢𝑙𝑡 =
(𝜎𝑚)𝑢𝑙𝑡
𝐸𝑚

= 0.017 

Therefore, matrix fails first, and Eq. (B) is used to determine (𝜎1
𝑇)𝑢𝑙𝑡: 

(𝜎1
𝑇)𝑢𝑙𝑡 = (𝜎𝑚)𝑢𝑙𝑡 (𝑉𝑚 + 𝑉𝑓

𝐸𝑓

𝐸𝑚
) = 2,224 𝑀𝑃𝑎  

Example 2: 

A fiber-reinforced lamina of unidirectional continuous fibers consists of the high-modulus graphite fiber 

and epoxy. The lamina has 𝑉𝑓 = 0.45 and zero void content. Find (𝜎1
𝑇)𝑢𝑙𝑡  of the lamina, given the 

following: 

𝐸𝑓 = 530 𝐺𝑃𝑎  

(𝜎𝑓)𝑢𝑙𝑡 = 1900 𝑀𝑃𝑎  

𝐸𝑚 = 3.45 𝐺𝑃𝑎  
(𝜎𝑚)𝑢𝑙𝑡 = 60 𝑀𝑝𝑎  

(𝜀𝑓)𝑢𝑙𝑡 =
(𝜎𝑓)𝑢𝑙𝑡
𝐸𝑓

= 0.0036 

(𝜀𝑚)𝑢𝑙𝑡 =
(𝜎𝑚)𝑢𝑙𝑡
𝐸𝑚

= 0.017 

Therefore, fiber fails first, and we need to decide what equation to use. 

(𝐸𝑞. 3.165): 𝑉𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = 0.0244 = 2.44% 

(𝐸𝑞. 3.166): 𝑉𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 0.0252 = 2.52% 

So, use Eq. (C) or (𝐸𝑞. 3.164) 

(𝜎1
𝑇)𝑢𝑙𝑡 = (𝜎𝑓)𝑢𝑙𝑡 (𝑉𝑓 + 𝑉𝑚

𝐸𝑚
𝐸𝑓
) = 861.8 𝑀𝑃𝑎  

 

 



Example 3: 

For the lamina in Example 2, evaluate (𝜎1
𝑇)𝑢𝑙𝑡 , (𝜎1

𝐶)
𝑢𝑙𝑡

, (𝜎2
𝑇)𝑢𝑙𝑡 , (𝜎2

𝐶)
𝑢𝑙𝑡

 and (𝜏12
 )𝑢𝑙𝑡, given the 

following: 

𝐸𝑓 = 530 𝐺𝑃𝑎  

𝑣𝑓 = 0.23 

𝐺𝑓 = 215 𝐺𝑃𝑎 

(𝜎𝑓)𝑢𝑙𝑡 = 1900 𝑀𝑃𝑎  

(𝜏𝑓)𝑢𝑙𝑡 = 36 𝑀𝑃𝑎  

𝐸𝑚 = 3.45 𝐺𝑃𝑎  

𝑣𝑚 = 0.30 

𝐺𝑚 = 1.33 𝐺𝑃𝑎 
(𝜎𝑚)𝑢𝑙𝑡 = 72 𝑀𝑃𝑎  
(𝜏𝑚)𝑢𝑙𝑡 = 34 𝑀𝑃𝑎  

𝐸1 = 240.4 𝐺𝑃𝑎  

𝐸2 = 11.66 𝐺𝑃𝑎  

𝑣12 = 0.2685 

𝐺12 = 3.472 𝐺𝑃𝑎 

𝐻𝑒𝑥𝑎𝑔𝑜𝑛𝑎𝑙 𝑝𝑎𝑐𝑘𝑖𝑛𝑔 

Solution: 

(𝜎1
𝑇)𝑢𝑙𝑡 = 861.8 𝑀𝑃𝑎   

(𝜎1
𝐶)
𝑢𝑙𝑡
= 69.80 𝑀𝑃𝑎   

(𝜎2
𝑇)𝑢𝑙𝑡 = 56.87 𝑀𝑃𝑎  

(𝜎2
𝐶)
𝑢𝑙𝑡
= 103.5 𝑀𝑃𝑎 

(𝜏12
 )𝑢𝑙𝑡 = 26.63 𝑀𝑃𝑎 

 

 

 

 

 

 

 

 

 



 

  



Textbook changes (errors in equations): 

 

 

 
Bottom line should be -16.00° 



 
Bottom line should be 𝑤𝑚 = 𝜌𝑚𝑣𝑚  

 
Bottom line should be 𝑣12 = 𝑣𝑓𝐿𝑉𝑓 + 𝑣𝑚𝑉𝑚  



 
Highlighted areas should be zero.  



Midterm Review 

Chapter 1 

Definition of composite materials: 

Reinforcing phase: purpose, shapes, types of fibers 

matrix: purpose, materials choices for matrix 

Manufacture of Fibers 

Applications 

Chapter 2 

2.3: Independent mechanical properties vs. Types of materials 

(and why we use those constants as well) 

e.g. orthotropic materials, 9 transversely isotropic materials (what do we need to determine 9 

transversely isotropic materials, what is the plane of symmetry),  resulting 5… 

Chapter 3 

3.2: 𝑉𝑓 , 𝑉𝑚 ,𝑊𝑓 ,𝑊𝑚 , void content  

a few fibers + a few matrices + voids 

𝑉𝑓
′, 𝑉𝑚

′ ; 𝑉𝑓𝑚𝑎𝑥 , 𝑅𝑉𝐸 

When an equation in the text is only valid for zero void content 

3.3: Isotropic fibers + isotropic matrix 

transversely isotropic fibers + isotropic matrix 

mech. of mat’ls 

Halpin-Tsai 

elasticity (𝐸1, 𝐸2, 𝑣12 won’t appear on midterm, too long – but 𝐺12 could) 

 


