
To determine constants A and B, two types of boundary conditions need to be considered.  

1st : displacement-type of essential B.C.’s 

2nd : stress or force-type or natural B.C.’s 

With the first type of B.C.’s, (Eq. 3.78) or (Eq. 3) can be applied directly. 

With the second type of B.C.’s, 

𝑢 → 𝜀𝑟  𝜀𝜃  𝜀𝑧  (strain-displacement relation) 

𝜀𝑠
′ → 𝜎𝑟 𝜎𝑧 (stress-strain relation) 

𝑢 = 𝐴𝑟 + 𝐵/𝑟 

𝜀𝑟 = 𝜕𝑢/𝜕𝑟 = 𝑑𝑢/𝑑𝑟 = 𝐴 − 𝐵/𝑟2 

𝜀𝜃 = 𝑢/𝑟 = 𝐴 + 𝐵/𝑟2 

𝜀𝑧 = 𝜀1 

If material is homogeneous, isotropic and linearly elastic: 

{

𝜎𝑟

𝜎𝜃

𝜎𝑧

} = [𝐶] {
𝐴 − 𝐵/𝑟2

𝐴 + 𝐵/𝑟2

𝜀1

} 

[𝐶] is a constant matrix, in terms of 𝐸 and 𝑣. Details are given in (Eq. 3.70) or (Eq. 3.71) 

∴  𝜎𝑟 = (𝐶11 + 𝐶12)𝐴 +
𝐶12 − 𝐶11

𝑟2
𝐵 + 𝐶12𝜀1     (𝐸𝑞. 4) 

𝜎𝑧 = 2𝐶12𝐴 + 𝐶11𝜀1     (𝐸𝑞. 5) 

𝐶11 , 𝐶12 are given by (Eq. 3.72) 

3.3.3 Elasticity Approach 

3.3.3.1 Longitudinal Young’s Modulus 𝑬𝟏 

1) RVE: two concentric cylinders (this RVE is also used with 𝑣12) such RVE is known as CCA or CAM  

CCA: composite cylinder assembly 

CAM: cylindrical assembly model 

  

 



Fibers: 0 ≤ 𝑟 ≤ 𝑎 

Matrix: 𝑎 ≤ 𝑟 ≤ 𝑏 

∴ 𝑉𝑓 =
𝑎2

𝑏2
    (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.63) 

or 𝑎/𝑏 = √𝑉𝑓  

2) A homogenous cylinder representing composite 

 

Assuming that 𝜀1 is the longitudinal/axial strain developed, after application of 𝑃. 

∴  𝜎1 =
𝑃

𝜋𝑏2
     (𝐸𝑞. 3.64) 

meanwhile, 𝜎1 = 𝐸1𝜀1    (𝐸𝑞. 3.65) 

∴ 𝐸1 =
𝜎1

𝜀1
=

𝑃

𝜋𝑏2𝜀1
     (𝐸𝑞. 3.66) 

objective is to write 𝑃 in terms of 𝜀1 such that 𝐸1 is independent of P. 

3) The “fibers” cylinder 

(Eq. 3) becomes: 

𝑢𝑓 = 𝐴𝑓𝑟 +
𝐵𝑓

𝑟
     (0 ≤ 𝑟 ≤ 𝑎) 

𝐵𝑓  must be zero 

∴ 𝑢𝑓 = 𝐴𝑓 ∙ 𝑟     (0 ≤ 𝑟 ≤ 𝑎)    (𝐸𝑞. 3.81) 

(𝐸𝑞. 4) and (𝐸𝑞. 5) become: 

{
𝜎𝑟

𝑓 = (𝐶11
𝑓 + 𝐶12

𝑓 )𝐴𝑓 + 𝐶12
𝑓 𝜀1

𝜎𝑧
𝑓 = 2𝐶12

𝑓 + 𝐶11
𝑓 𝜀1

 }  (𝐸𝑞. 3.84) 

Where 0 ≤ 𝑟 ≤ 𝑎 

4) The “matrix” cylinder 
(𝐸𝑞. 3)~(𝐸𝑞. 5) become: 

𝑢𝑚 = 𝐴𝑚𝑟 +
𝐵𝑚

𝑟
 

{
𝜎𝑟

𝑚 = (𝐶11
𝑚 + 𝐶12

𝑚)𝐴𝑚 +
𝐶12

𝑚 − 𝐶11
𝑚

𝑟
𝐵𝑚 + 𝐶12

𝑚𝜀1

𝜎𝑧
𝑚 = 2𝐶12

𝑚𝐴𝑚 + 𝐶11
𝑚𝜀1

} (𝐸𝑞. 3.86) 

Where 0 ≤ 𝑟 ≤ 𝑎 



So far, unknown constants are: 

𝐴𝑓  𝐴𝑚  𝐵𝑚  and 𝜀1 

And 𝜀1 is related to 𝑃. 

5) Boundary conditions 

5.1) At interface between fibers and matrix cylinders where 𝑟 = 𝑎 

𝑢𝑓 = 𝑢𝑚      (𝐸𝑞. 3.88)~(𝐸𝑞. 3.89) 

𝜎𝑟
𝑓

= 𝜎𝑟
𝑚      (𝐸𝑞. 3.90 )~(𝐸𝑞. 3.91) 

5.2) At the outer surface of the matrix cylinder 

𝑤ℎ𝑒𝑟𝑒 𝑟 = 𝑏 

𝜎𝑟
𝑚 = 0     (𝐸𝑞. 3.92)~(𝐸𝑞. 3.93) 

The above three boundary conditions are involved with 𝐴𝑓𝐴𝑚  𝐵𝑚  and 𝜀1; 

𝐴𝑓  𝐴𝑚  𝐵𝑚  are then solved in terms of 𝜀1; 

5.3) On any cross-section of CCA or CAM, static equilibrium requires: 

∫ ∫ 𝜎𝑧 𝑑𝐴
 

𝐴

= 𝑃
 

 

 

or ∫ ∫ 𝜎𝑧
𝑓  𝑑𝐴

 

𝐴𝑓
+  ∫ ∫ 𝜎𝑧

𝑚  𝑑𝐴
 

𝐴𝑚

 

 
= 𝑃

 

 
     (𝐸𝑞. 3.94)~(𝐸𝑞. 3.97) 

Which results in a relation between 𝑃 and 𝜀1. 

6) Grand finale 

back to (Eq. 3.66) 

𝐸1 =
𝑃

𝜋𝑏2𝜀1
 

After lengthy simplification: 

𝐸1 =

 
3.3.3.2 Major Poisson’s Ratio 𝒗𝟏𝟐 

(
𝑢𝑚

𝑟
)

𝑟=𝑏
 is the lateral strain 

and:  

(
𝑢𝑚

𝑟
)

𝑟=𝑏

=
𝐴𝑚𝑏 +

𝐵𝑚

𝑏
𝑏

= 𝐴𝑚 +
𝐵𝑚

𝑏2
 

∴ 𝑣12 = −
𝐴𝑚 +

𝐵𝑚

𝑏2

𝜀1
 

After lengthy simplification: 



𝑣12 = 𝑣𝑓𝑉𝑓 + 𝑣𝑚𝑉𝑚  

𝑣12 =

 
See example 3.10 for numerical application 

 

3.3.3.3 Transverse Young’s Modulus 𝑬𝟐 

• CCA model gives lower and upper bounders of 𝐸2 

• 3-phase model gives an exact solution for 𝐺23 which will lead to 𝐸2 = 2(1 + 𝑣23)𝐺23 

• Example 3.11 for detailed steps 

 

a) (missed note) 

 

b) CCA model was used, together with energy method (which is different from the classical method of 

solving PDEs/ODEs) 

 

c) Upper bound: maximum potential energy principle  
actual strain energy  strain energy by trial

(which is completely unknown ≤ functions meeting certain
due to complexity of problem)  conditions 

  

 

d) Lower bound: minimum complementary energy principle 
actual complementary  complementary energy by

strain energy ≤ trial functions meeting
(unknown)   certain conditions 

 

 

 
Strain energy: in terms of strains and elastic moduli 

Complementary strain energy: in terms of stresses and compliances (compliances are the inverse of elastic 

moduli) 

 

f) the Principle of Minimum Potential Energy: 

Of all displacement fields satisfying the prescribed displacement boundary conditions, the field which 

satisfied stress equilibrium minimizes the stored elastic energy of the system. 

 



g) the Principle of Minimum Complementary Energy: 

Among those stress distributions that satisfy the stress equilibrium condition at each point, and that are 

in equilibrium with the external loads acting on the body, the true stress distribution minimizes the strain 

energy. 

 

B) 3-phase model (Fig 3.20) 

Exact solution for 𝐺23: work by R.M. Christensen and K.H. Lo, “Solutions for Effective Shear Properties in 

Three Phase Sphere and Cylinder Models”, J. Mech. And Phys. of Solids, 1979. 

 

Then: 𝐸2 = 2(1 + 𝑣23)𝐺23 

 

 
 

C) Example 3.11 

 

3.3.3.4 Axial Shear Modulus G12 (or In-Plane Shear Modulus) 

1) RVE:  

CCA or CAM, see Fig. 3.19 

But it’s no longer an axisymmetric case 

 

2) Coordinates 

Rectangular coordinates: 𝑥1, 𝑥2, 𝑥3 

Displacements: 𝑢1 – axial displacement 

𝑢2, 𝑢3 − displacement along 2- and 3- axis. 

Cylindrical coordinates:  𝑟, 𝜃, 𝑧 

 

3) Solution method: 

Simi-inverse method 

A certain form of displacement solution is assumed, typically with parameters to be determined so that 

equilibrium and/or boundary conditions can be met. 

{ Composite 

A B 



4) Assumed displacements 

 
 

Where,  F(𝑥2, 𝑥3) is a unknown function to be determined; 

𝛾12
0  is imposed shear strain, similar to the 𝜀1 that is assumed in 3.3.3.1 and 3.3.3.2 in order to evaluate 

𝐸1 and 𝑣12. Here, 𝛾12
0  is imposed so as to evaluate 𝐺12. 

 

5) Roadmap to 𝐺12 

- Condition 𝐹(𝑥2, 𝑥3) must meet: (Eq. 3.117) 

- Transformation F(𝑥2, 𝑥3) to 𝐹(𝑟, 𝜃): (Eq. 3.118 ~ Eq. 3.126) 

- Solution of 𝐹(𝑟, 𝜃): (Eq. 126), 𝐹(𝑟, 𝜃) = (𝐴𝑟 +
𝐵

𝑟
) 𝑐𝑜𝑠𝜃 

- 𝑢1(𝑟, 𝜃), 𝜏1𝑟(𝑟, 𝜃) 

- 𝑢1, 𝜏1𝑟  for fiber cylinder (𝐴1, 𝛾12
0 )  

- 𝑢1, 𝜏1𝑟  for matrix cylinder (𝐴2 , 𝐵2, 𝛾12
0 )  

- 4 boundary conditions 

𝑟 = 𝑎, 2 conditions 
𝑟 = 𝑏, 2 conditions 

𝐴1, 𝐴2, 𝐵2 in terms of 𝛾12
0  

∴  𝜏12
𝑚  in terms of 𝛾12

0  

𝐺12 =
𝜏12

𝑚 |𝑟=𝑏,   𝜃=0

𝛾12
0  

Final expression: 

 
 

6) Example 3.12 for numerical applications of (3.160).  



 
 

(a) The mechanics of materials approach 

 
 

(b) The semi-empirical approach 

- from previous notes 

 

(c) The theory of elasticity approach 

- from MATLAB 

 

Summary of results: 

Graphite/Epoxy 

 𝑀𝑒𝑐ℎ 𝑜𝑓 𝑀𝑎𝑡’𝑙𝑠 𝐻 − 𝑇 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 
𝐸1, 𝑀𝑝𝑠𝑖 32.13 32.13 32.13 
𝐸𝑓/𝐸𝑚 100 100 100 

𝐸2, 𝑀𝑝𝑠𝑖 1.29 2.79 2.01 
𝑣12  0.262 0.262 0.255 

𝐺𝑓/𝐺𝑚 108 108 108 

𝐺12, 𝑀𝑝𝑠𝑖 0.489 0.803 0.759 
 

Kevlar Epoxy 

 𝑀𝑒𝑐ℎ 𝑜𝑓 𝑀𝑎𝑡’𝑙𝑠 𝐻 − 𝑇 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 
𝐸1, 𝑀𝑝𝑠𝑖 11.25 11.25 11.25 
𝐸𝑓/𝐸𝑚 34.5 34.5 34.5 

𝐸2, 𝑀𝑝𝑠𝑖 1.26 2.52 1.88 
𝑣12  0.337 0.337 0.340 

𝐺𝑓/𝐺𝑚 33.8 33.8 33.8 

𝐺12, 𝑀𝑝𝑠𝑖 0.477 0.747 0.711 
 

Revised: 0.477 



Summary re: Elasticity approach 

1) CCA or CAM, and 3-phase model 

2) “Exact” solutions: 𝐸1 𝑣12 𝐺12, 𝐺23 → 𝐸2 

3) Values typically fall between those by mech of materials , and by H-T. 

Fig 3.21 comparing 𝐸2 by 3 approaches 

Fig 3.22 comparing 𝐺12 by 3 approaches 

4) Derivations seem lengthy, so do some final expressions 

5) It introduced artificial voids. 


