
Experimental as well as analytical work leading to the H-T formulas was conducted at US Wright 

Patterson Air Force Base (Dayton, Ohio) during the 1970s. 

Halpin and Tsai then published an internal technical report [Environmental Factors in Composite 

Materials Design, J.C. Halpin and S.W. Tsai, AFML TR-423] summarizing the work, hence Halpin-Tsai 

formulas or equations.  

In the text, Halphin and Haphin are incorrect spelling. 

C. State-of-the-art in terms of predicting elastic moduli 

Predicting 𝐸2, 𝐺12, and 𝐺23 (𝐺23 is required when dealing with transversely isotropic fibers) remains a 

challenge, especially when new fibers and matrix are considered.  

Chamis model, also a semi-empirical model, seems robust. 

Bridging model, which is an analytical model, proves to be reliable, albeit not straightforward. 

FE models, however detailed, have not proven themselves more accurate than analytical models or 

semi-empirical models. 

A composite’s elastic modulus 𝑃𝑐 is found by: 

𝑃𝑐 =
𝑃𝑚(1 + 𝜁𝜂𝑉𝑓)

1 − 𝜂𝑉𝑓
 

Where: 

𝑃𝑐 can be either 𝐸1, 𝐸2, or 𝐺12 for example; 

𝑉𝑓  is the volume fraction of fibers; 

𝜁 is a factor that is used to describe the influence of geometry of the fibers; 

𝜁 depends on 𝑉𝑓, and has different values for different moduli of the composite; 

𝜂 =
𝑃𝑓/𝑃𝑚 − 1

𝑃𝑓/𝑃𝑚 + 𝜁
 

𝑃𝑚 , 𝑃𝑓  are the corresponding moduli of the matrix, and the fibers, respectively. 

Fibers should be interpreted as reinforcing phases, within the context of the H-T formulas. 

Factor 𝜁 and Recommendation 

Unidirectional continuous fibers 

𝐸1 ROM 

𝐸2 𝜁 = 2 + 40𝑉𝑓
10 

𝐺12 𝜁 = 1 + 40𝑉𝑓
10 

𝑣12 ROM 

 

Particulate 

𝐸1 𝜁 = 2 + 40𝑉𝑓
10 

𝐸2 𝜁 = 2 + 40𝑉𝑓
10 

𝐺12 𝜁 = 1 + 40𝑉𝑓
10 

𝑣12 ROM 



Example: Two fiber-reinforced laminas of unidirectional continuous fibers consistent of pitch-based 

graphite fibers and epoxy, and Kevlar 49 and epoxy respectively. The laminas have the same corrected 

volume fractions: 𝑉𝑓
′ = 58% and 𝑉𝑚

′ = 42%. The Young’s moduli of the fibers can be found in Tables 

1.8, 1.9, and 1.10 of the text. Poisson’s ratios are, 0.22 for graphite, 0.35 for Kevlar 49, and 0.32 for 

epoxy, respectively.  

For each of the laminas, determine the four elastic moduli by: 

(a) The mechanics of materials approach; 

(b) The semi-empirical approach; and 

(c) The theory of elasticity approach. 

From the Tables: 𝐸𝑓𝐺 = 55 𝑀𝑝𝑠𝑖, 𝐸𝑓𝐾 = 19 𝑀𝑝𝑠𝑖, and 𝐸𝑚 = 0.55 𝑀𝑝𝑠𝑖 

Shear moduli of the fibers and epoxy are evaluated: 𝐺𝑓𝐺 = 22.5 𝑀𝑝𝑠𝑖, 𝐺𝑓𝐾 = 7.04 𝑀𝑝𝑠𝑖m 𝐺𝑚 =

0.208 𝑀𝑝𝑠𝑖. 

(b) H-T Formulas (for Kevlar/Epoxy only) 

𝐸1 = 11.25 (from ROM approach) 

𝑣12 = 0.337 (from ROM approach) 

𝐸2: 

𝜁 = 2 + 40𝑉𝑓
10 

= 2.172 

𝜂 =
𝑃𝑓/𝑃𝑚 − 1

𝑃𝑓/𝑃𝑚 + 𝜁
 

𝜂 =
(34.5) − 1

(34.5) + 2.172
= 0.9135 

𝑃𝑐 =
𝑃𝑚(1 + 𝜁𝜂𝑉𝑓)

1 − 𝜂𝑉𝑓
 

𝐸2 =
𝐸𝑚(1 + 𝜁𝜂𝑉𝑓)

1 − 𝜂𝑉𝑓
= 2.516 𝑀𝑝𝑠𝑖 

(should be higher than number obtained from mechanics of materials approach.) 

𝐺12: 

𝜁 = 1 + 40𝑉𝑓
10 

= 1.172 

𝜂 =
(33.8) − 1

(33.8) + 1.172
= 0.9379 

𝐺12 = 0.7469 𝑀𝑝𝑠𝑖 

 Graphite/Epoxy Kevlar/Epoxy 

𝐸1,𝑀𝑝𝑠𝑖 32.13 11.25 
𝐸𝑓/𝐸𝑚 100 34.5 

𝐸2,𝑀𝑝𝑠𝑖 2.79 2.52 

𝑣12 0.262 0.337 
𝐺𝑓/𝐺𝑚 108 33.8 

𝐺12, 𝑀𝑝𝑠𝑖 0.803 0.747 



 Graphite/Epoxy Kevlar/Epoxy 
𝐸𝑓/𝐸𝑚 100 34.5 

𝐸2(𝐼𝑅𝑂𝑀)/𝐸2(𝐻−𝑇) 46% 50% 

𝐺𝑓/𝐺𝑚 108 33.8 

𝐺12(𝐼𝑅𝑂𝑀)/𝐺12(𝐻−𝑇) 61% 56% 

 

 



 

Theory of Elasticity Using the Cylindrical Coordinates 

The following elasticity theory is for homogeneous, isotropic and linearly elastic materials. Therefore, it 

is applicable to isotropic fiber as a cylinder, and matrix as a cylinder. 

As a reminder, composites reinforced with unidirectional continuous fibers are not isotropic. Carbon or 

graphite fibers, and aramid fibers are transversely isotropic. 

 

 

 



1. Cylindrical Coordinates (r, 𝜽, 𝒛) 

 

Typically, z represents direction 1; r and 𝜃 form the 2-3 plane. 

2. Unknowns 

The 15 unknowns are: 

Displacements 𝑢𝑟 𝑢𝜃  𝑢𝑧  

Stresses 𝜎𝑟 𝜎𝜃  𝜎𝑧 𝜏𝑟𝜃  𝜏𝜃𝑧 𝜏𝑧𝑟  

Strains 𝜀𝑟  𝜀𝜃  𝜀𝑧 𝛾𝑟𝜃  𝛾𝜃𝑧  𝛾𝑧𝑟  

3. Relations Governing the 15 Unknowns 

There are 3 sets of relations. 

(A) The strain displacement relations: 

𝜀𝑟 =
𝜕𝑢𝑟

𝜕𝑟
 

𝜀𝜃 =
𝑢𝑟

𝑟
+

1

𝑟

𝜕𝑢𝜃

𝜕𝜃
  

𝜀𝑧 =
𝜕𝑢𝑧

𝜕𝑧
 

𝛾𝑟𝜃 =
𝜕𝑢𝜃

𝜕𝑟
+

1

𝑟

𝜕𝑢𝑟

𝜕𝜃
−

𝑢𝜃

𝑟
 

𝛾𝜃𝑧 =
1

𝑟

𝜕𝑢𝑧

𝜕𝜃
+ 

𝜕𝑢𝜃

𝜕𝑧
 

𝛾𝑧𝑟 =
𝜕𝑢𝑟

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑟
 

Where 𝑢𝑟  𝑢𝜃  and 𝑢𝑧  are displacements in the 𝑟, 𝜃, and 𝑧 directions, respectively. 

 



(B) The stress-strain relations (or the Hooke’s law, or the consecutive relations) 

{𝜎} = [𝜎𝑟 𝜎𝜃  𝜎𝑧 𝜏𝑟𝜃  𝜏𝜃𝑧  𝜏𝑧𝑟]
𝑇 

{𝜀} = [𝜀𝑟  𝜀𝜃  𝜀𝑧 𝛾𝑟𝜃  𝛾𝜃𝑧 𝛾𝑧𝑟]
𝑇 

{𝜎} = [𝐶]{𝜀} 

Where [𝐶} is the 6x6 matrix: 

[𝐶] =

[
 
 
 
 
 
𝐶1 𝐶2 𝐶2 0 0 0
𝐶2 𝐶1 𝐶2 0 0 0
𝐶2 𝐶2 𝐶1 0 0 0
0 0 0 𝐺 0 0
0 0 0 0 𝐺 0
0 0 0 0 0 𝐺]

 
 
 
 
 

 

Where 𝐶1 and 𝐶2 are constants in terms of 𝐸 and 𝑣 

(C) The equilibrium equations: 

𝜕𝜎𝑟

𝜕𝑟
+

1

𝑟

𝜕𝜏𝑟𝜃

𝜕𝜃
+

𝜎𝑟 − 𝜎𝜃

𝑟
+

𝜕𝜏𝑧𝑟

𝜕𝑧
+ 𝑅̅ = 0 

1

𝑟
 
𝜕𝜎𝜃

𝜕𝜃
+

𝜕𝜏𝑟𝜃

𝜕𝑟
+

2𝜏𝑟𝜃

𝑟
+

𝜕𝜏𝜃𝑧

𝜕𝑧
+ 𝜃̅ = 0 

𝜕𝜎𝑧

𝜕𝑧
+

1

𝑟

𝜕𝜏𝜃𝑧

𝜕𝜃
+

𝜕𝜏𝑧𝑟

𝜕𝑟
+

𝜏𝑧𝑟

𝑟
+ 𝑍̅ = 0 

Where terms with over-bar are body forces in the 𝑟, 𝜃, and 𝑧 directions, respectively. Body forces are 

forces per unit volume.  

For example, if the cylinder is heavy and 𝑧 takes the vertical direction, then 𝑍̅ = −𝜌𝑔with 𝜌 being the 

mass density per unit volume and 𝑔 being the gravitational acceleration. 

Centrifugal force is another example of body force: 𝑅̅ = 𝜌𝑟𝜔2. Again, 𝜌 is the mass density per unit 

volume. 

Note that sets (A) and (C) are differential. Set (B) is linear. 

4. Axisymmetric Problems 

It means symmetry about the z-axis, as a result, (a) the unknowns are now functions of 𝑟 and 𝑧 only; 

and (b) 𝑢𝜃 = 0. 

𝜀𝑟 =
𝜕𝑢𝑟

𝜕𝑟
 

𝜀𝜃 =
𝑢𝑟

𝑟
+

1

𝑟

𝜕𝑢𝜃

𝜕𝜃
  

𝜀𝑧 =
𝜕𝑢𝑧

𝜕𝑧
 

𝛾𝑟𝜃 =
𝜕𝑢𝜃

𝜕𝑟
+

1

𝑟

𝜕𝑢𝑟

𝜕𝜃
−

𝑢𝜃

𝑟
= 0 



𝛾𝜃𝑧 =
1

𝑟

𝜕𝑢𝑧

𝜕𝜃
+ 

𝜕𝑢𝜃

𝜕𝑧
= 0 

𝛾𝑧𝑟 =
𝜕𝑢𝑟

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑟
 

As a result, 𝛾𝑟𝜃  and 𝛾𝜃𝑧 = 0. Because of homogenous, isotropic, and linearly elastic material 

assumption, 𝜏𝑟𝜃 = 𝜏𝜃𝑧 = 0. Vectors {𝜎} and {𝜀} are reduced to 4x1; [C] is a 4x4 matrix. 

5. Additional simplifications 

5.1 All body forces are zero. 

- Second equilibrium equation is satisfied, automatically: 

1

𝑟
 
𝜕𝜎𝜃

𝜕𝜃
+

𝜕𝜏𝑟𝜃

𝜕𝑟
+

2𝜏𝑟𝜃

𝑟
+

𝜕𝜏𝜃𝑧

𝜕𝑧
+ 𝜃̅ = 0 

5.2 𝜏𝑧𝑟 = 0, or no shear deformation on any 𝑧 − 𝑟 plane. 

- The third equilibrium equation becomes: 

𝜕𝜎𝑧

𝜕𝑧
+

1

𝑟

𝜕𝜏𝜃𝑧

𝜕𝜃
+

𝜕𝜏𝑧𝑟

𝜕𝑟
+

𝜏𝑧𝑟

𝑟
+ 𝑍̅ = 0 

That is: 

𝜕𝜎𝑧

𝜕𝑧
= 0 

Which means 𝜎𝑧 is either a constant, or a function of 𝑟 only. The option 𝜎𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 is chosen. 

- The first equilibrium equation simplified to: 

𝜕𝜎𝑟

𝜕𝑟
+

1

𝑟

𝜕𝜏𝑟𝜃

𝜕𝜃
+

𝜎𝑟 − 𝜎𝜃

𝑟
+

𝜕𝜏𝑧𝑟

𝜕𝑧
+ 𝑅̅ = 0 

Or: 

𝜕𝜎𝑟

𝜕𝑟
+

𝜎𝑟 − 𝜎𝜃

𝑟
= 0     (𝐸𝑞. 1) 

- 𝛾𝑧𝑟 = 0 due to homogeneous, isotropic, and linearly elastic material assumption. ** 

 

6. PDE to ODE 

Making use of strain-stress relations (the inverse of stress-strain relations) such that equation (𝐸𝑞. 1) is 

in terms of strains 𝜀𝑟 , 𝜀𝜃 , and 𝜀𝑧. 

From strain-displacement relations, 

𝜀𝑟 =
𝜕𝑢𝑟

𝜕𝑟
 

𝜀𝜃 =
𝑢𝑟

𝑟
+

1

𝑟

𝜕𝑢𝜃

𝜕𝜃
  

𝜀𝑧 =
𝜕𝑢𝑧

𝜕𝑧
 



𝛾𝑟𝜃 =
𝜕𝑢𝜃

𝜕𝑟
+

1

𝑟

𝜕𝑢𝑟

𝜕𝜃
−

𝑢𝜃

𝑟
= 0 

𝛾𝜃𝑧 =
1

𝑟

𝜕𝑢𝑧

𝜕𝜃
+ 

𝜕𝑢𝜃

𝜕𝑧
= 0 

𝛾𝑧𝑟 =
𝜕𝑢𝑟

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑟
= 0 

Making use of the following in particular 

𝜀𝑟 =
𝜕𝑢𝑟

𝜕𝑟
 

𝜀𝜃 =
𝑢𝑟

𝑟
 

𝜀𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝜎𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Then the final form of (𝐸𝑞. 1) is in terms of displacements. 

By now, there is only one displacement, 𝑢𝑟 , that is involved. Also, 𝑢𝑟  is no longer a function of 𝑧. 

Therefore, the subscript 𝑟 in 𝑢𝑟  can be dropped (i.e., 𝑢 now denotes the radial displacement), and the 

partial derivatives become ordinary derivatives. The final form of (𝐸𝑞 1) is: 

𝑑2𝑢

𝑑𝑟2
+

1

𝑟

𝑑𝑢

𝑑𝑟
−

𝑢

𝑟2
= 0     (𝐸𝑞. 2) 

The solution to (𝐸𝑞. 2) is: 

𝑢 = 𝐴𝑟 +
𝐵

𝑟
     (𝐸𝑞. 3) 

Where A and B are constants to be determined by boundary conditions. 

(𝐸𝑞. 2) and (𝐸𝑞. 3) are numbered as (𝐸𝑞. 3.73) and (𝐸𝑞. 3.78), respectively, in the text. 

 


