Experimental as well as analytical work leading to the H-T formulas was conducted at US Wright
Patterson Air Force Base (Dayton, Ohio) during the 1970s.

Halpin and Tsai then published an internal technical report [Environmental Factors in Composite
Materials Design, J.C. Halpin and S.W. Tsai, AFML TR-423] summarizing the work, hence Halpin-Tsai
formulas or equations.

In the text, Halphin and Haphin are incorrect spelling.

C. State-of-the-art in terms of predicting elastic moduli
Predicting E5, G12, and G,3 (G5 is required when dealing with transversely isotropic fibers) remains a
challenge, especially when new fibers and matrix are considered.

Chamis model, also a semi-empirical model, seems robust.
Bridging model, which is an analytical model, proves to be reliable, albeit not straightforward.

FE models, however detailed, have not proven themselves more accurate than analytical models or
semi-empirical models.

A composite’s elastic modulus P, is found by:
P14+ V)

Where:

P. can be either E;, E2, or G, for example;

V¢ is the volume fraction of fibers;

¢ is a factor that is used to describe the influence of geometry of the fibers;

¢ depends on V¢, and has different values for different moduli of the composite;
Pr/Pp—1

n"=45"5 <,
Pf/Pm + {

P, Pr are the corresponding moduli of the matrix, and the fibers, respectively.

Fibers should be interpreted as reinforcing phases, within the context of the H-T formulas.

Factor { and Recommendation
Unidirectional continuous fibers

E, ROM
E, { =2+40V/°
Gz { =1+40V/°
V12 ROM
Particulate
Eq {=2+40V/°
E, {=2+40V/°
G1z {=1+40V/°
V1, ROM




Example: Two fiber-reinforced laminas of unidirectional continuous fibers consistent of pitch-based
graphite fibers and epoxy, and Kevlar 49 and epoxy respectively. The laminas have the same corrected
volume fractions: Vf’ = 58% and V,;, = 42%. The Young’s moduli of the fibers can be found in Tables
1.8, 1.9, and 1.10 of the text. Poisson’s ratios are, 0.22 for graphite, 0.35 for Kevlar 49, and 0.32 for
epoxy, respectively.

For each of the laminas, determine the four elastic moduli by:

(a) The mechanics of materials approach;

(b) The semi-empirical approach; and

(c) The theory of elasticity approach.

From the Tables: Er; = 55 Mpsi, Egg = 19 Mpsi, and E;, = 0.55 Mpsi
Shear moduli of the fibers and epoxy are evaluated: Gg; = 22.5 Mpsi, Grx = 7.04 Mpsim G, =
0.208 Mpsi.

(b) H-T Formulas (for Kevlar/Epoxy only)
E; = 11.25 (from ROM approach)
v, = 0.337 (from ROM approach)

E,:
{=2+40V°
=2.172
Ps/Pp—1
T B P+ ¢
. (345)-1
N=Gasy+ 217z - 013
_ Po(1+4nVy)
c— 1— an
) = Em(1+S1Vy) _ 2.516 Mpsi
1—nV;
(should be higher than number obtained from mechanics of materials approach.)
Gqy:
{=1+40V7°
=1.172
(33.8)—1
=G 17z 070
G1, = 0.7469 Mpsi
Graphite/Epoxy Kevlar/Epoxy
E;, Mpsi 32.13 11.25
E¢/En, 100 34.5
E,, Mpsi 2.79 2.52
V1, 0.262 0.337
Gt /Gm 108 33.8
G,,, Mpsi 0.803 0.747




Graphite/Epoxy Kevlar/Epoxy
E;/Em 100 34.5
Eaaromy/E2ea-1) 46% 50%
Gr /G, 108 33.8
Gi2(irom)/ Gr2(1-1) 61% 56%
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FIGURE 3.15

Theoretical values of transverse Young's modulus as a function of fiber volume fraction and
comparison with experimental values for boron/ epoxy unidirectonal lamina (E; = 414 GPa, v,
=02, E, = 414 GPa, v,. = 0.35). Figure (b) zooms figure (a) for fiber volume fraction between
0.45 and 0.75. (Experimental data from Hashin, 2., NASA tech. rep. contract no. NASI-8818,
Movember 1970.)
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FIGURE 3.17

Theoretical values of in-plane shear modulus as a function of fiber volume fraction compared
with experimental values for unidirectional glass/epoxy lamina (G, = 30.1% GPa, G, = 1.83 GIa).
Figure (k) zooms figure (a) for fiber volume fraction between 045 and 0.75. (Experimental data
from Hashin, Z., NASA tech. rep. contract No. WAS1-8818, November 1970.)

Theory of Elasticity Using the Cylindrical Coordinates
The following elasticity theory is for homogeneous, isotropic and linearly elastic materials. Therefore, it
is applicable to isotropic fiber as a cylinder, and matrix as a cylinder.

As a reminder, composites reinforced with unidirectional continuous fibers are not isotropic. Carbon or
graphite fibers, and aramid fibers are transversely isotropic.



1. Cylindrical Coordinates (r, 8, z)

A

Typically, z represents direction 1; r and 8 form the 2-3 plane.

2. Unknowns
The 15 unknowns are:

Displacements u, ug u,
Stresses g;- 0g 0, Tr9 Toz Tar
Strains & €9 €7 Vro Yoz Var

3. Relations Governing the 15 Unknowns
There are 3 sets of relations.

(A) The strain displacement relations:

du,
= r
_ur  10ug
€= r +r a6
_ 0y,
=%,

_Oug  10u, ug

A N TR

_10u, N Jdug
Yoz _5 00 3 0z
__ Ouy Uz

Yor =75, + or

Where u, ug and u, are displacements in the r, 8, and z directions, respectively.



(B) The stress-strain relations (or the Hooke’s law, or the consecutive relations)

{0} = [Gr 0p 0z Trg Tgz Tzr]T
{8} = [Sr €6 €z Vro Yoz Vzr]T

{o} = [Cl{e}
Where [C} is the 6x6 matrix:

¢G C, ¢ 0 0 O

c; ¢ C; 0 0 O

_|G G ¢ 0 0 0

L] 0 0 0 G 0 O

l0 0 0 0 G 0J
0 0 0 0 0 G

Where C; and C, are constants in terms of E and v
(C) The equilibrium equations:

do, 10ty o0r—09 0T, -
- R
or +r a0 r 0z *

1 60'9 aTrg 2Tr9 ang =
r 060 or r + 0z +0
do, 10ty, 0T, Ty

dz r 06 or

Where terms with over-bar are body forces in the r, 8, and z directions, respectively. Body forces are
forces per unit volume.

For example, if the cylinder is heavy and z takes the vertical direction, then Z = —pgwith p being the
mass density per unit volume and g being the gravitational acceleration.

Centrifugal force is another example of body force: R = prw?. Again, p is the mass density per unit
volume.

Note that sets (A) and (C) are differential. Set (B) is linear.

4. Axisymmetric Problems
It means symmetry about the z-axis, as a result, (a) the unknowns are now functions of r and z only;
and (b) ug = 0.

du,

& = ar
_ur+-]:§-H-g
0 = r ¥ 88

du,

2= 32

_uw 10 ws
Y =y Ty a8+




10w, Oug
—_— = = TT 0
Yo =230 o
Ju, du,
Yar =75, + or

As aresult, y,.9 and yg, = 0. Because of homogenous, isotropic, and linearly elastic material
assumption, 7,9 = Ty, = 0. Vectors {c} and {€} are reduced to 4x1; [C] is a 4x4 matrix.

5. Additional simplifications
5.1 All body forces are zero.
- Second equilibrium equation is satisfied, automatically:

" +8=0
r 96 ar ¥ 9z
5.2 7, = 0, or no shear deformation on any z — r plane.
- The third equilibrium equation becomes:
do, 10%g; O%tx Tz  _ 0
dz r 88 ar ¥ -
That is:
do, _ 0
0z

Which means g, is either a constant, or a function of r only. The option g, = constant is chosen.

- The first equilibrium equation simplified to:

6ar¢%§4;¢g+ar—ag 0%z

or r 98 r oz

Or:

do, o0,—o0g
Jor

=0 (Eq.1)
v = 0 due to homogeneous, isotropic, and linearly elastic material assumption. **

6. PDE to ODE

Making use of strain-stress relations (the inverse of stress-strain relations) such that equation (Eq. 1) is
in terms of strains &, g, and &,.

From strain-displacement relations,

_ Ou,
= r
_ur+-]:§-H-g
€= r ¥ 86
du,

&z = %



_up 1w up
Y0 = T8 F
10w, Oug
— _ — =0
Yo: =230 oz
Ju, du,
Yar =5, + or
Making use of the following in particular
_ Oy,
= ar
_ W
&g = -

g, = constant
o, = constant
Then the final form of (Eq. 1) is in terms of displacements.
By now, there is only one displacement, u,, that is involved. Also, u, is no longer a function of z.

Therefore, the subscript r in u,. can be dropped (i.e., u now denotes the radial displacement), and the
partial derivatives become ordinary derivatives. The final form of (Eq 1) is:

The solution to (Eq.2) is:

Where A and B are constants to be determined by boundary conditions.

(Eq.2) and (Eq.3) are numbered as (Eq.3.73) and (Eq.3.78), respectively, in the text.



