
3.3.1 Strengths of Materials Approach 

(*) Simple expression for 𝐸1 𝐸2 𝑣12 and 𝐺12  

(*) Being simple & being accurate 

 

{
𝑅𝑉𝐸 → 𝑀𝑜𝑑𝑒𝑙?

𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝑚𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛?
 

(*) 𝐸1 𝐸2 𝑣12 𝐺12 in terms of: 

𝐸𝑓  𝑣𝑓 𝐺𝑓  𝑉𝑓  

𝐸𝑚  𝑣𝑚  𝐺𝑚  𝑉𝑚 

 

RVE for 3.3.1: 

Rectangular packing of fibers 

𝑑: diameter of fibers 

ℎ, 𝑡𝐶 : diameter of rectangle 

𝐿𝑐 = 𝑙𝑐; length of composite 

Square packing → Rectangular packing: 

Principle is to preserve 𝑉𝑓  

∴ ℎ = 𝑡𝑐 = 𝑠 

𝑠 being spacing, see 3.2 

Hexagonal packing → Rectangular packing: 

Principle remains to preserve 𝑉𝑓  

By section 3.2:  

𝑉𝑓 =
𝜋

2√3

𝑑2

𝑆2
  



Hexagonal packing: 

𝑉𝑓 =
𝜋

2√3

𝑑2

𝑆2
 

Rectangular packing: 

 

(Let 𝑙𝑐 be the depth) 

𝑣𝑓 =
𝜋

4
𝑑2 𝑙𝑐  

𝑣𝑐 = ℎ 𝑡𝑐  𝑙𝑐  

𝑉𝑓 =
𝑣𝑓

𝑣𝑐
=

𝜋
4 𝑑2 𝑙𝑐

ℎ 𝑡𝑐  𝑙𝑐
=

𝜋𝑑2

4 ℎ 𝑡𝑐
 

 

Equating rectangular packing to hexagonal packing:  

∴
𝜋𝑑2

4 ℎ 𝑡𝑐
=

𝜋

2√3

𝑑2

𝑆2
  

ℎ 𝑡𝑐 =  √3 𝑆2 (and further, 𝑡𝑐 = 𝛼ℎ) 

3.3.1.1 Longitudinal Young’s Modulus 𝑬𝟏 

RVE: Fig 3.3 of text, top and middle diagrams in particular. 

Determining 𝐸1: 

𝑙𝑐: length of RVE 

𝐴𝑐: cross-section of RVE 

∴ 𝑣𝑐 = 𝐴𝑐𝑙𝑐 

∴ 𝑣𝑓 = 𝑉𝑓𝑣𝑐  

= (𝑉𝑓𝐴𝑐)𝑙𝑐 

𝑉𝑓𝐴𝑐: cross-section of fibers 

𝑣𝑚 = 𝑉𝑚𝑣𝑐 

= (𝑉𝑚𝐴𝑐)𝑙𝑐 

𝑉𝑚𝐴𝑐: cross-section of matrix 

Under 𝐹: 

Axial loading, statically indeterminate 



𝛿 =
𝑃𝐿

𝐸𝐴
 

𝑘 =
𝐸𝐴

𝐿
 

𝑘𝑓 =
𝐸𝑓𝑉𝑓𝐴𝑐

𝑙𝑐
 

𝑘𝑚 =
𝐸𝑚𝑉𝑚𝐴𝑐

𝑙𝑐
 

𝑘𝑐 =
𝐸1𝐴𝑐

𝑙𝑐
 

∴ 𝑘𝑐 = 𝑘𝑓 + 𝑘𝑚  

∴
𝐸1𝐴𝑐

𝑙𝑐
=

𝐸𝑓𝑉𝑓𝐴𝑐

𝑙𝑐
+

𝐸𝑚𝑉𝑚𝐴𝑐

𝑙𝑐
 

∴ 𝐸1 = 𝐸𝑓𝑉𝑓 + 𝐸𝑚𝑉𝑚 (Rule of mixture) 

Rule of Mixture 

It refers to the method of estimating composite’s property by volume-weighted average of like 

properties of the constituents. 

𝐸1: 

𝑅𝑉𝐸: Fig 3.3, middle diagram 

Statically indeterminate problem 

Calculation: Example 3.3 

Comparing with experimental results: Fig 3.6 

𝐸1 is by rule-of-mixture 

𝐸1 is accurate 

 
Figure 3.6 



3.3.1.2 Transverse Young’s Modulus, 𝑬𝟐 

This time, RVE is loaded in the 2-direction. 

 

 



𝐸2: 

Axial loading 

𝑘 =
𝐸𝐴

𝐿
 

𝑘𝑓 =
𝐸𝑓(ℎ 𝑙𝑐)

𝑡𝑓
 

𝑘𝑚 =
𝐸𝑚(ℎ 𝑙𝑐)

𝑡𝑚
 

𝑘𝑐 =
𝐸2(ℎ 𝑙𝑐)

𝑡𝑐
 

∴
1

𝑘𝑐
=

1

𝑘𝑓
+

1

𝑘𝑚
 

∴
𝑡𝑐

𝐸2(ℎ 𝑙𝑐)
=

𝑡𝑓

𝐸𝑓(ℎ 𝑙𝑐)
+

𝑡𝑚

𝐸𝑚(ℎ 𝑙𝑐)
 

∴
1

𝐸2
=

𝑡𝑓

𝐸𝑓  𝑡𝐶
+

𝑡𝑚

𝐸𝑚  𝑡𝑐
 

∴
1

𝐸2
=

𝑉𝑓

𝐸𝑓
+

𝑉𝑚

𝐸𝑚
  (Inverse rule of mixture) 

𝐸2: 

RVE: Figure 3.7 

Calculation: Example 3.4 

Comparing with experimental results: Fig 3.10 inverse ROM results in lower-bound solution. 

Solutions may be as low as 40%~50% of where values should be, depending on the difference between 

𝐸𝑓 and 𝐸𝑚 (or 𝐸𝑓/𝐸𝑚) and 𝑉𝑓  

Typically, the higher the ratio 𝐸𝑓/𝐸𝑚, and/or the higher the 𝑉𝑓  value, the higher the deduction. 

Inverse rule of mixture is simple, but not accurate, because it’s not true axial attention. 

Midterm: October 31st (Thursday) during class time. 

3.3.1.3 Major Poisson’s Ratio 𝒗𝟏𝟐 

 



 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛’𝑠 𝑟𝑎𝑡𝑖𝑜: 

𝑣 = −
𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛
= −

𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑠𝑡𝑟𝑎𝑖𝑛

𝜀1
  

𝑁𝑜𝑟𝑚𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛 𝜀 =
∆𝑙

𝑙𝑜
=

𝑙′ − 𝑙𝑜

𝑙𝑜
  

∴ 𝐹𝑖𝑏𝑒𝑟𝑠: 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛 

=
𝑡𝑓

′ − 𝑡𝑓

𝑡𝑓
 

𝑣𝑓 = −
𝑡𝑓

′ − 𝑡𝑓

𝑡𝑓  𝜀
  

𝑡𝑓
′ = 𝑡𝑓 − 𝑣𝑓𝑡𝑓𝜀1 (𝑬𝒒. 𝟏) 

𝑀𝑎𝑡𝑟𝑖𝑥: 

𝑡𝑚
′ = 𝑡𝑚 − 𝑣𝑚𝑡𝑚𝜀1 (𝑬𝒒. 𝟐) 

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒: 

𝑡𝑐
′ = 𝑡𝑐 − 𝑣12𝑡𝑐𝜀1 (𝑬𝒒. 𝟑) 

(𝑬𝒒. 𝟏) + (𝑬𝒒. 𝟐): 𝑡𝑓
′ + 𝑡𝑚

′ = 𝑡𝑓 + 𝑡𝑚 − (𝑣𝑓𝑡𝑓)𝜀1 = (𝑣𝑚𝑡𝑚)𝜀1 (𝑬𝒒. 𝟒) 

(𝑬𝒒. 𝟑) + (𝑬𝒒. 𝟒): ∴ −𝑣12𝑡𝑐𝜀1 = −𝑣𝑓𝑡𝑓𝜀1 − 𝑣𝑚𝑡𝑚𝜀1 

∴ 𝑣12 = 𝑣𝑓𝑉𝑓 + 𝑣𝑚𝑉𝑚  (𝑟𝑢𝑙𝑒 𝑜𝑓 𝑚𝑖𝑥𝑡𝑢𝑟𝑒) 

𝑣12: 

RVE: Fig. 3.11 

Calculation: Example 3.5 

𝑣12 by rule-of-mixture is accurate 

 

 

 



3.3.1.4 In-plane Shear Modulus 𝑮𝟏𝟐 

 

 

𝐺12: 

𝑀𝑎𝑡𝑟𝑖𝑥: 𝑣𝑚 = tan−1
𝛿𝑚

𝑡𝑚
≈

𝛿𝑚

𝑡𝑚
 

(tan−1 𝑥 ≈ 𝑥  𝑓𝑜𝑟 𝑣𝑒𝑟𝑦 𝑠𝑚𝑎𝑙𝑙 𝑎𝑛𝑔𝑙𝑒𝑠) 

But,  



𝛾𝑚 =
𝜏

𝐺𝑚
 

∴
𝛿𝑚

𝑡𝑚
=

𝜏

𝐺𝑚
 

∴ 𝛿𝑚 =
𝜏 𝑡𝑚

𝐺𝑚
 

𝐹𝑖𝑏𝑒𝑟𝑠: 𝛿𝑓 =
𝜏 𝑡𝑓

𝐺𝑓
 

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝛿𝑐 =  
𝜏 𝑡𝑐

𝐺12
 

And: 
𝜏 𝑡𝑐

𝐺12
=

𝜏 𝑡𝑚

𝐺𝑚
+

𝜏 𝑡𝑓

𝐺𝑓
 

∴
1

𝐺12
=

𝑉𝑓

𝐺𝑓
+

𝑉𝑚

𝐺𝑚
 (𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑟𝑢𝑙𝑒 𝑜𝑓 𝑚𝑖𝑥𝑡𝑢𝑟𝑒) 

𝐺12: 

RVE: Fig. 3.12 

Calculation: Example 3.6 

Comparing with experimental results: Fig. 3.13 

𝐺12 is by inverse rule-of-mixture expression which gives lower bound solution. 

Discussions pertaining 𝐸2 are mostly applicable with the exceptions of smaller deduction (25~40%), and 

the ratio 𝐺𝑓/𝐺𝑚 instead of 𝐸𝑓/𝐸𝑚 

4 sub-sections 

3.3.1 Strength of Materials Approach (Mechanics of Materials) 

3.3.2 Sem-Empirical Approach 

3.3.3 Theory of Elasticity Approach 

3.3.4 Transversely Isotropic Fibers (c- and k- fibers are transversely isotropic) 

3.3.2 Semi-Empirical Models 

A. Some historical notes 

• Mechanics of Materials approach yields simple expressions, rule of mixture (ROM) or inverse ROM; 

General observation is, ROM-based expressions give good accuracy, but the inverse ROM-based 

ones are far from satisfactory. 

• A series of formal approaches (As they are known as) took place after realizing shortcomings of the 

inverse ROM. Such approaches were based on theory of elasticity, in one form or the others. The 

differences lie in the methodologies of solving the PDEs involved. 

• Basic assumptions behind the formal approaches are, noting that some of the basic assumptions 

have been used in 3.3.1 

o Fibers and matrix are homogeneous and isotropic; 

o The resulting composite is homogeneous and orthotropic; 

o Void content is zero; 



o There is perfect bonding between constituents; 

o Constituents and resulting composite are linearly elastic; 

o Composite is initially stress-free; 

o Fibers are regularly spaced and aligned. 

• The formal approaches include the following methods, to list just a few 

o Classical or exact method (See 3.3.3) 

o Variation methods or energy methods that are either analytical or numerical. The former 

gives rise to bounds on elastic moduli; and the latter typically leads to finite difference 

method and finite element method. 

o Mori-Tanaka models (or inclusion models). The key aspect is to assume that the average 

strain of the inclusion (i.e., the fibers) is related to the average strain of the matrix by a to-

be-determined fourth-order tensor. 

o Self-consistent models (suitable for composites having particulate or short fibers as 

reinforcing phase) ….. 

• To meet the desire of engineers to have simple yet accurate formulas, efforts were taken, in the 

1960’ to 1970’, to interpolate existing theoretical as well as experimental results. 

o Experimental data to best-fit ROM- or inverse ROM-based formulas with modifying factors 

(wasn’t successful); 

o Experimental data to best-fit re-arranged formulas from self-consistent models, and 

simplified by introducing factors (was successful); 

o Halpin-Tsai formulas/equations are the best-known outcome of such effort; self-consistent 

models with factors. 

Example: Two fiber-reinforced laminas of unidirectional continuous fibers consistent of pitch-based 

graphite fibers and epoxy, and Kevlar 49 and epoxy respectively. The laminas have the same corrected 

volume fractions: 𝑉𝑓
′ = 58% and 𝑉𝑚

′ = 42%. The Young’s moduli of the fibers can be found in Tables 

1.8, 1.9, and 1.10 of the text. Poisson’s ratios are, 0.22 for graphite, 0.35 for Kevlar 49, and 0.32 for 

epoxy, respectively.  

For each of the laminas, determine the four elastic moduli by: 

(a) The mechanics of materials approach; 

(b) The semi-empirical approach; and 

(c) The theory of elasticity approach. 

From the Tables: 𝐸𝑓𝐺 = 55 𝑀𝑝𝑠𝑖, 𝐸𝑓𝐾 = 19 𝑀𝑝𝑠𝑖, and 𝐸𝑚 = 0.55 𝑀𝑝𝑠𝑖 

Shear moduli of the fibers and epoxy are evaluated: 𝐺𝑓𝐺 = 22.5 𝑀𝑝𝑠𝑖, 𝐺𝑓𝐾 = 7.04 𝑀𝑝𝑠𝑖m 𝐺𝑚 =

0.208 𝑀𝑝𝑠𝑖. 

(a) The mechanics of materials approach: 

 Graphite/Epoxy Kevlar/Epoxy 

𝐸1, 𝑀𝑝𝑠𝑖 32.13 11.25 
𝐸𝑓/𝐸𝑚 100 34.5 

𝐸2, 𝑀𝑝𝑠𝑖 1.29 1.26 

𝑣12 0.262 0.337 
𝐺𝑓/𝐺𝑚 108 33.8 

𝐺12, 𝑀𝑝𝑠𝑖 0.489 0.420 



   

 

(b)  

 


