
Chapter 2 – Macro-Mechanical Analysis of a Lamina 
2.1 Introduction 

A lamina is typically in the order of 0.127 𝑚𝑚 or 0.005" thick and not isotropic 

2.2 Review 

1. Stress 

2. Strain 

- Normal 

- Shear 

3. Elastic moduli 

4. Strain energy 

 

2.3 Hooke’s Law for Different Types of Materials 

1. Homogeneous vs. heterogeneous materials 

FGM – functionally graded materials (properties at different locations are different) 

2. Anisotropic vs. isotropic materials 

Isotropic materials are those whose properties are orientation independent. 

For example, steel, aluminum. 

They require 2 independent mechanical property constants. (Young’s modulus, poisons ratio or Young’s 

modulus, shear modulus) 

Anisotropic materials are those whose properties are orientation dependent. 

For example, natural wood. 

They require 21 independent constants, see (Eq. 2.25 – only looking at triangular matrix, it’s symmetric) 

 

3.Special Cases of Anisotropic Materials 

3.1 Orthotropic Materials 

They possess 3 mutually perpendicular principal planes, or 3 principal directions mutually perpendicular 

to each other. 

For example, unidirectional continuous fiber-reinforced composite blocks are considered orthotropic. 

Orthotropic materials require 9 independent constants. 



 

(3 axes and planes – first plane in direction of fiber) 

1 – direction of fibers 

2, 3 – perpendicular to fibers 

𝐸1 𝐸2 𝐸3: Young’s moduli 

𝐺12 𝐺23 𝐺13: Shear moduli 

Note: 

𝐺𝑖𝑗 = 𝐺𝑗𝑖 

But: 

𝑣𝑖𝑗 ≠ 𝑣𝑗𝑖 (but they are related) 

Since: 
𝑣𝑖𝑗

𝐸𝑖
=

𝑣𝑗𝑖

𝐸𝑗
 

3.2 Transversely isotropic materials 

An orthotropic material is called transversely isotropic if one of its principal planes is a plane of isotropy 

that is, material properties are symmetric about one of its principal axes. 

For example, 

• Carbon/graphite and aramid fibers are transversely isotropic. 

• Unidirectional continuous fiber-reinforced composites, when fibers are packed in a hexagonal 

way or very close to it, can be considered transversely isotropic. 

 



Transversely isotropic materials require 5 independent constants.  

Axis 1 being the axis of symmetry 

Axis 2, 3 being the plane of isotropy 

𝐸1        𝐸2 = 𝐸3   : Young’s moduli 

𝐺12 = 𝐺31    𝐺23 : Shear moduli 

𝑣12 = 𝑣13     𝑣23 : Poisson’s ratio 

Also, 𝐸2 𝐺23 𝑣23 are related. 

3. Plane stress vs. Plane Strain 

Thin unidirectional continuous fiber-reinforced composite layers become a plane stress case. 

4 independent mechanical properties are required.  

 
𝐸1 𝐸2 𝐺12 𝑣12  

Chapter 3 Micromechanical Analysis of a Lamina 

7 Sections in total (pp. 203-314) 

3.1 Introduction 

3.2 Volume and Mass Fractions, Density, and Void Content 

3.3 Evaluation of Elastic Moduli (pp. 215-270) 

3.4 Ultimate Strengths (pp. 271-295) 

3.5 CTE 

3.6 CME 

3.7 Accuracy 

3.1 Introduction 

1. Determination of the 4 elastic moduli (3.3), 5 ultimate strengths (3.4), and 4 transport properties (3.5, 

3.6) by experimental means is costly; experimental results are also limited or restricted. 

2. Transport properties include, CTE in 1- and 3- directions, and CME in 1- and 2- directions, respectively. 

3. Unidirectional lamina is NOT homogenous. However, it’s customary to assume homogeneity once 

micro-analysis is completed. 

4. Lamina is the building block of composites. This is true from analysis as well as physical perspectives. 

3.2 Volume and Mass Fractions, Density, and Void Content 

- to quantify how much fibers and matrix there are; 

- by volume fractions, or by mass (or weight) fractions;  



- volume fractions and mass/weight fractions are related; 

- void content can’t be avoided in reality, but complicates analysis; 

1. Volume Fractions 

Consider the case of composite having one type of fibers, one type of matrix, and some voids. 

𝑣𝑐,𝑓,𝑚,𝑣: Volumes of composite, fibers, matrix and voids respectively (eg. 𝑖𝑛3). 

Then volume fraction of fibers is: 

𝑉𝑓 = 𝑣𝑓/𝑣𝑐 

Then volume fraction of matrix is: 

𝑉𝑚 = 𝑣𝑚/𝑣𝑐  

Volume fraction of voids is: 

𝑉𝑣 = 𝑣𝑣/𝑣𝑐  

∴ 𝑉𝑓 + 𝑉𝑚 + 𝑉𝑣 = 1 

(Thus, 𝑉𝑓 + 𝑉𝑚 = 1 implies zero void content.) 

2. Limits on 𝑽𝒇 

𝑉𝑓  has some upper limit, from the theoretical as well as the practical perspectives. 

2.1 Theoretical Limit on 𝒗𝑭 or 𝒗𝒇𝒎𝒂𝒙 to be examined by RVE 

RVE = Representative Volume Element 

Used in determining 𝑣𝑓𝑚𝑎𝑥 as well as elastic moduli and so on (see 3.3) 

RVE is the smallest portion of material that is representative of the composite as a whole. 

Here, “smallest” means smallest for analysis; it may or may not fit the strict mathematical definition. 

 



For (a), smallest is 1/8 (half of 1/4 

For (b), smallest is 1/12 (half of 1/6) 

 

𝑆 

𝑑 

𝑙 = 𝑙𝑒𝑛𝑔𝑡ℎ/𝑑𝑒𝑝𝑡ℎ  𝑜𝑓 𝑅𝑉𝐸 

𝑣𝑐 = 𝑆2𝑙 

𝑣𝑓 =
𝜋𝑑2

4
𝑙 

𝑣𝑓 =
𝑣𝑓

𝑣𝑐
=

𝜋𝑑2

4
𝑙

𝑆2𝑙
=

𝜋𝑑2

4𝑆2
 

∴ 𝑣𝑓𝑚𝑎𝑥 = 𝑣𝑓|𝑠=𝑑 =
𝜋

4
= 0.785 

 

 

 

 

 

 

For hexagonal packed: 

𝑣𝑓 =
𝜋𝑑3

2√3𝑆2
 

𝑣𝑓𝑚𝑎𝑥 = 0.907  

 

2.2 Practical Limit 

For fiber-reinforced lamina with long and unidirectional fibers, 𝑣𝑓𝑚𝑎𝑥 = 60% 

Elementary Materials Science, W.F. Hosford, ASM International, 2013 (Ch. 10, p. 117) 



3. Density of the Composite 

𝜌𝑐  𝑓 𝑚: mass densitites (per unit volume) of composite, fibers, and matrix, respectively 

𝑤𝑐  𝑓 𝑚: masses of composite, fibers, and matrix, respectively 

∴ 𝑤𝑐 = 𝜌𝑐𝑣𝑐      𝑤𝑓 = 𝜌𝑓𝑣𝑓     𝑤𝑚 = 𝜌𝑚𝑣𝑚 

And 𝜌𝑐𝑣𝑐 = 𝜌𝑓𝑣𝑓 + 𝜌𝑚𝑣𝑚 

∴  𝜌𝑐 = 𝜌𝑓𝑉𝑓 + 𝜌𝑚𝑉𝑚: works if there is void content 

𝑉𝑓 + 𝑉𝑚 = 1: works if there is ZERO void content 

4. Mass Fractions 

mass fraction of fibers is 𝑊𝑓 = 𝑤𝑓/𝑤𝑐  

mass fraction of matrix is 𝑊𝑚 = 𝑤𝑚/𝑤𝑐  

∴ 𝑊𝑓 + 𝑊𝑚 = 1 

5. Volume Fractions and Mass Fractions 

These fractions are related 

∴ 𝑤𝑐 = 𝜌𝑐𝑣𝑐      𝑤𝑓 = 𝜌𝑓𝑣𝑓     𝑤𝑚 = 𝜌𝑚𝑣𝑚 

∴ 𝑊𝑓 =
𝑤𝑓

𝑤𝑐
=

𝜌𝑓𝑣𝑓

𝜌𝑐𝑣𝑐
=

𝜌𝑓

𝜌𝑐
𝑉𝑓 

=
𝜌𝑓𝑉𝑓

𝜌𝑓𝑉𝑓 + 𝜌𝑚𝑉𝑚
      (𝐸𝑞. 1) 

And: 

𝑊𝑚 =
𝜌𝑚𝑉𝑚

𝜌𝑓𝑉𝑓 + 𝜌𝑚𝑉𝑚
     (𝐸𝑞. 2) 

a) Knowing 𝑉𝑚  𝑉𝑓  𝜌𝑚  𝜌𝑓 

Then 𝑊𝑓  𝑊𝑚 solved by (Eq. 1 and Eq. 2) 

 

b) Knowing 𝑊𝑚  𝑊𝑓  𝜌𝑚 𝜌𝑓 

Then 𝑉𝑚  𝑉𝑓 solved by (Eq. 1 or Eq. 2)  

 

c) How to determine 𝑉𝑣  or 𝑣𝑣? 

mostly by experiments 

1) Some specifications for determining void contents 

For example: 

ASTM D3171-06 

Standard Test Method for Constituent Content of Composite Materials 

ISO-14127:2008 

Composites – Determination of resin, fiber and void content of composites reinforces with carbon fiber. 

2) What the text has in terms of determining void content? 

pp. 212-215 

By means of theoretical density of composite 𝜌𝑐𝑡 and experimental density of composite 𝜌𝑐𝑒 leading to 

(Eq. 3.16) 



 

Example 3.2, which in essence is ASTM-D3171 

d) Equations in 3.2 of the text (pp. 204-215) 

• Some equations are valid only for the case of zero void content 

• Condition under which an equation is valid isn’t spelled out 

• Equations (3.5a), (3.5b), (3.10) 

 

 

e) Corrected volume fractions 

In later sections of chapter 3, 𝑉𝑣  is assumed to be zero. 

When 𝑉𝑣  is NOT zero, corrected volume fractions are to be used 

𝑉𝑓
′ =

𝑣𝑓

𝑣𝑓 + 𝑣𝑚
     ;      𝑉𝑚

′ =
𝑣𝑚

𝑣𝑓 + 𝑣𝑚
 

3.3 Evaluation of Elastic Moduli 

Recalling from 2.3 

Orthotropic materials: 9 independent constants 

𝐸1 𝐸2 𝐸3: Young’s moduli in the 1, 2, and 3 directions, respectively. 

𝐺12 𝐺23 𝐺13: Shear moduli on the 1-2, 2-3, and 3-1 planes respectively. 

𝑣12𝑣23 𝑣31: Poisson’s ratio 

1st subscript: strain in the loading direction 

2nd subscript: lateral strain 

 

 



Note: 

𝐺𝑖𝑗 = 𝐺𝑗𝑖 

But: 

𝑣𝑖𝑗 ≠ 𝑣𝑗𝑖    (but they are related) 

Since: 
𝑣𝑖𝑗

𝐸𝑖
=

𝑣𝑗𝑖

𝐸𝑗
      (but 𝑖 ≠ 𝑗) 

Lamina: 4 independent constants 

𝐸1 𝐸2 𝐺12 𝑣12 

𝑣12: major Poisson’s ratio 

𝑣21: minor Poisson’s ratio 

Major assumptions 

1. Fibers are isotropic 

(this assumption is okay with G-fibers; C- and K- fibers are transversely isotropic) 

2. Matrix is isotropic 

3. Void content is zero 

𝑉𝑓 + 𝑉𝑚 = 1 

or use 𝑉𝑓
′ and 𝑉𝑚

′  

4. Perfect bonding exists between fibers and matrix 

Need to know (i.e., need to determine beforehand) 

fibers: 𝐸𝑓 𝑣𝑓  𝐺𝑓  𝑉𝑓  (or 𝑉𝑓
′) 

matrix: 𝐸𝑚 𝑣𝑚  𝐺𝑚  𝑉𝑚  (or 𝑉𝑚
′ ) 

 (only two are independent) 

4 Subsections 

3.3.1 Strength of Materials Approach (Mechanics of Materials) 

3.3.2 Semi-Empirical Approach 

3.3.3 Theory of Elasticity Approach 

3.3.4 Transversely Isotropic Fibers (C- and K- fibers are transversely isotropic) 

 

  



Example 1 

A unidirectional fiber-reinforced composite consists of one type of fibers and one type of matrix. The 

weight fraction of matrix is 0.45. The specific gravity of the fibers and matrix is 2.5 and 1.3, respectively. 

a) Find the specific gravity of the composite. Assume zero void content. 

b) Find the specific gravity of the composite if 𝑉𝑣 = 5% 

Solution 

a) Given:  

𝜌𝑓 = 2.5 

𝜌𝑚 = 1.3 

𝑊𝑚 = 45% = 0.45 

𝑊𝑓 + 𝑊𝑚 = 1 

∴ 𝑊𝑓 = 0.55 

(𝐸𝑞. 1): 𝑊𝑓 =
𝜌𝑓𝑉𝑓

𝜌𝑓𝑉𝑓 + 𝜌𝑚𝑉𝑚
 

∴ 0.715𝑉𝑚 = 1.125𝑉𝑓  

(𝐸𝑞. 2): 𝑊𝑚 =
𝜌𝑚𝑉𝑚

𝜌𝑓𝑉𝑚 + 𝜌𝑚𝑉𝑚
 

∴ 0.715𝑉𝑚 = 1.125𝑉𝑓  

But we also know that: 
(𝐸𝑞. 3): 𝑉𝑓 + 𝑉𝑚 = 1 

Solving: 

𝑉𝑓 = 0.3886 

𝑉𝑚 = 0.6114 

Thus: 

𝜌𝑐 =  𝜌𝑓𝑉𝑚 + 𝜌𝑚𝑉𝑚 = 1.766 

 

b) 𝑊𝑓 = 0.55 

0.715𝑉𝑚 = 1.125𝑉𝑓  (still holds true) 

𝑉𝑓 + 𝑉𝑚 = 1 − 𝑉𝑣 = 0.95 

Solving: 

𝑉𝑓 = 0.3692 

𝑉𝑚 = 0.5808 

𝜌𝑐 = 1.678 

 

  



Example 2 (similar to midterm question – last year) 

A unidirectional fiber-reinforced composite consists of two types of fibers (fiber 1 and fiber 2) and one 

type of matrix. The total volume is 𝑣𝑐. Void content is assumed zero. The volume fractions of the fibers 

and the matrix are 𝑉𝑓1 and 𝑉𝑓2 and 𝑉𝑚  respectively. The weight densities (per unit volume) of the fibers 

and matrix are 𝜌𝑓1 𝜌𝑓2 and 𝜌𝑚  respectively. Gravitational acceleration is 𝑔. 

a) Express the total mass of the composite in terms of 𝜌𝑓1, 𝜌𝑓1, 𝜌𝑚, 𝑉𝑓1, 𝑉𝑓2, 𝑉𝑚, 𝑣𝑐, and 𝑔; and 

b) Express the mass fraction of fiber 2, in terms of 𝜌𝑓1, 𝜌𝑓2, 𝜌𝑚, 𝑉𝑓1, 𝑉𝑓2, and 𝑉𝑚  

Solution 

a) 𝑤𝑐 = 𝑤𝑓1 + 𝑤𝑓2 + 𝑤𝑚  

𝑤𝑐 =
𝜌𝑓1𝑣𝑓1 + 𝜌𝑓2𝑣𝑓2 + 𝜌𝑚𝑣𝑚

𝑔
∙

𝑣𝑐

𝑣𝑐
 

𝑤𝑐 =
𝜌𝑓1𝑉𝑓1 + 𝜌𝑓2𝑉𝑓2 + 𝜌𝑚𝑉𝑚

𝑔
∙ 𝑣𝑐  

b) 𝑤𝑐 = 𝑤𝑓1 + 𝑤𝑓2 + 𝑤𝑚  

Then: 

𝑤𝑓2 =
𝜌𝑓2𝑣𝑓2

𝑔
𝑣𝑐  

∴ 𝑊𝑓2 =
𝑤𝑓2

𝑤𝑐
=

𝜌𝑓2𝑉𝑓2

𝜌𝑓1𝑉𝑓1 + 𝜌𝑓2𝑉𝑓2 + 𝜌𝑚𝑉𝑚
 

 


