Emerging Composites

- 1. Carbon-carbon composites
- 2. Bio-composites
- 3. Nano-composites
- 4. Functionally graded materials (FGMs)

1. Carbon-carbon composites

- 1) Carbon fibers in a carbon matrix, hence an ultra-high temperature (up to 3300 °C) composite
- 2) Abrasion resistant
- 3) Self-lubricating
- 4) Aircraft brakes, steam and gas turbine engines, heat shields, rocket nozzles, nose cones, etc.
- 5) Can be machines, drilled, sawed
- 6) Lightweight

2. Bio-composites

- 1) By definition, a bio-product is one that is derived from renewable resources, stable in its intended lifetime, and bio-degradable after disposal in composting condition.
- 2) A bio-composite consists of biofibers and biomatrix, and is expected to be bio-degradable.
- 3) Biofibers
 - Wood "fibers": short fibers typically, or wood flour
 - Non-wood fibers: kenaf, flax, jute, hemp coir, and sisal (and straw and grass)

Ranking of non-wood fibers in terms of tensile modulus and tensile strength:

Flax (about 33% of E-glass's)

Kenaf

Hemp

Sisal

Jute

Coir (about 5% of E-glass's)

4) Bio-polymers (Bio-resins)

Bio-polyester (microbial polyester)

Soy-based plastics

Starch plastics

3. Nano-composites

- 1) Composite filled with nano-sized $(10^{-9} m)$ particles
- 2) Platelets and nanotubes
- 3) Carbon nanotubes (CNTs):

Young's modulus $\sim 1000~GPa$

Tensile strength > 30 GPa

Compared with PAN-based Carbon fibers:

Young's modulus 250~550 GPa

Tensile strength 1.9~6 GPa

- 4) Small amount of nano-particles will provide significant improvement in a variety of properties.
- 5) Applications:

Structural components of electronic portable devices Auto accessories, both interior and exterior

4. Functionally Graded Materials

- First conceptualized in mid-1980 when a thermal barrier capable of withstanding a surface temperature of 2000 K (\sim 1727 $^{\circ}C$) and a surface temperature gradient of 1000 K (\sim 727 $^{\circ}C$) across a section of less than 10 mm was needed.
- Achieved by varying volume (or weight) fractions gradually over the volume of material.
- FGMs are not homogeneous, nor are they isotropic; in other words, E_x depends on location (x, y, z) and angle θ , for instance.
- Almost ready for commercialization.
- Applications:

Aerospace: high thermal gradient

Final Exam Review

Chapter 1

Same as midterm (even though the course outline says it's not on the final exam...)

Chapter 2

2.3 Independent mechanical properties vs. Types of materials e.g. Orthotropic materials, 9 constants

transversely isotropic materials, 5 constants

Chapter 3

3.2 $V_f V_m W_f W_m$ void content

a few fibers + a few matrices + voids

$$V'_f V'_m V_{fmax} RVE$$

When an equation in the text is only valid for zero void content

3.3 Isotropic fibers + isotropic matrix

Transversely isotropic fibers + isotropic matrix

Mechanics of materials approach

Halpin-Tsai

Elasticity

3.4 $(\sigma_1^T)_{ult}$: fibers-fail-first

matrix-fails-first

equations to use, the if's

 $(\sigma_1^c)_{ult}$: failure modes

$$(\sigma_2^T)_{ult} (\sigma_2^C)_{ult} (\tau_{12})_{ult}$$

Chapter 2 (again)

2.4 [*Q*], [*S*]

2.5
$$[T]$$
, $[\bar{Q}]$, $[\bar{S}]$

2.6
$$E_x$$
 E_y G_{xy} v_{xy} m_x m_y

Evaluation

Application

e.g. Given any one, find one of the remaining

Global stresses

Global strains

Local stresses

Local strains

Physical meanings of engineering constants (probably m_χ and m_y)

2.8 Strength/Failure Theories of a Lamina

Based on local stresses
$$(\varepsilon_1, \ \varepsilon_2, \ \gamma_{12})$$
 or local strains $(\sigma_1, \sigma_2, \ \tau_{12})$

Max stress – don't' compare well with experimental data, but indicate mode of failure

Max strain - same as above

Tsai-Hill:

- Original
- Modified

Tsai-Wu:

- 3 forms on H_{12}
- Tsai-Hill, Hoffman, von Mises-Hencky (we probably get to pick what we want to use)

Tsai-Hill and Tsai-Wu:

• Compare well with experimental data but don't indicate mode of failure

Chapter 4

4.2 laminate code – shortest possible notation description of a laminate

4.3 [*ABD*]

membrane and bending coupled

membrane and bending uncoupled

Given
$$[ABD]^{-1}$$
 and ${N \choose M}$

$$\rightarrow \{\varepsilon^0\} \ \{\kappa\}$$

$$\rightarrow \{\varepsilon\}_{global}$$
 at certain location (i.e. ζ)

$$\rightarrow \{\sigma\}_{alobal} \rightarrow \text{plots of stresses across the thickness direction}$$

$$\rightarrow \{\sigma\}_{global} \rightarrow SR$$

4.4 Given
$$[ABD]^{-1}$$

$$\to E_x \ E_y \ \dots \ E_x^f \ E_y^f \dots$$

(Engineering constants of a laminate)

given [ABD]

$$\rightarrow r_N \ r_M \ r_B$$

Chapter 5

5.2 [ABD] matrix when laminate is, for example

- 1) symmetric
- 2) quasi-isotropic
- 3) specially orthotropic
- 5.3 Progressive failure

FPF, UPF, LPF

Termination criteria

Discount on failed ply (plies)

Chapter 6

6.2 narrow vs. wide beams

Bending moment *M* (units, signs)

Moment resultant M_x

 $E_{\chi}^{wide}I$ (to replaced EI [for isotropic beams] for deflection, and slope evaluations) $E_{\chi}^{narrow}I$

Plates: differential elements for $\sum F_{\nu} = 0$

differential elements for $\sum M_\chi = 0$; $\sum M_Z = 0$

(g) (h)

essential boundary conditions (satisfied?) natural boundary conditions (satisfied?) Given $w_o(x,y) \to M_x \ M_y \ M_{xy}$ $[ABD]^{-1}$: given if needed Beam deflection table given from Shigley's

Emerging Composites

Material from class notes (shouldn't be anything too crazy)