
2) Coordinate setup 

𝑥 − 𝑦 − 𝑧: global coordinates 

𝑥 − 𝑦 plan coincides with the mid-plane of the laminate; 

 

ℎ: thickness of laminate 

ℎ0 = −ℎ/2 

ℎ1 = ℎ0 + 𝑡1 

ℎ2 = ℎ1 + 𝑡2 

… 

ℎ𝑁 = ℎ/2  

3) Mid-plane Displacements (unknowns to be solved) 

𝑢𝑜(𝑥, 𝑦): membrane stretches 

𝑣𝑜(𝑥, 𝑦): membrane stretches 

𝑤𝑜(𝑥, 𝑦): lateral deflection 

4) “Slopes” and Curvatures 

𝜙𝑦(𝑥, 𝑦) =
𝛿𝑤𝑜

𝛿𝑥
:  rotation about 𝑥 

𝜙𝑥(𝑥, 𝑦) =
𝛿𝑤𝑜

𝛿𝑦
:  rotation about 𝑦 

𝜅𝑥(𝑥, 𝑦) = −
𝛿2𝑤𝑜

𝛿𝑥2
: curvature 

𝜅𝑦(𝑥, 𝑦) = −
𝛿2𝑤𝑜

𝛿𝑦2
: curvature 

𝜅𝑥𝑦(𝑥, 𝑦) = −2
𝛿2𝑤𝑜

𝛿𝑥𝛿𝑦
: twisting curvature 

 

 

 



5) Membrane strain vector and curvature vector 

{𝜀0} =  

 

{𝜅} = 

 

Note: Both 𝜀0 and 𝜅 are based on the midplane. 

6 Global displacements and strains at points off the midplane  

On midplane where 𝑧 = 0: 

𝑢0(𝑥, 𝑦),   𝑣0(𝑥, 𝑦),   𝑤𝑜(𝑥, 𝑦)  

Off the midplane (𝑧 ≠ 0): 

 

 
𝑤(𝑥, 𝑦, 𝑧) = 𝑤0                              

 

 

 

 

 



And: 

 

 

7) Resultant Forces and Moments 

Sign conventions: Figure 4.3 

 

Definitions: 

Membrane forces (per unit length) 



 

Which can be simplified as: 

 

(∗) Unit: 𝑁/𝑚, 𝑙𝑏/𝑖𝑛, … (𝑓𝑜𝑟𝑐𝑒/𝑙𝑒𝑛𝑔𝑡ℎ) 

(∗) Integral is broken into sum over layers due to “jumps” at lamina interfaces, as per Figure 4.5. 

 



𝑁𝑥, 𝑁𝑦: Normal forces per unit length 

𝑁𝑥𝑦: shear force per unit length 

Moments (per unit length) 

 

Which can be simplified as:  

 

(∗) Unit: 𝑁 ∙ 𝑚/𝑚, 𝑙𝑏 ∙ 𝑖𝑛/𝑖𝑛, … (𝑚𝑜𝑚𝑒𝑛𝑡/𝑙𝑒𝑛𝑔𝑡ℎ) 

(∗) 𝑀𝑥, 𝑀𝑦 : bending moments per unit length 

𝑀𝑥𝑦 : twisting moment per unit length 

8) Stiffness and compliance of a laminated plate 

 



[𝐴]: membrane (extensional) stiffness matrix 

𝑃𝑎 ∙ 𝑚, or 𝑝𝑠𝑖 − 𝑖𝑛 (𝑠𝑡𝑟𝑒𝑠𝑠 − 𝑙𝑒𝑛𝑔𝑡ℎ) 

symmetric 

[𝐵]: membrane-bending coupling stiffness matrix 

𝑃𝑎 ∙ 𝑚2, or 𝑝𝑠𝑖 ∙ 𝑖𝑛2 (𝑠𝑡𝑟𝑒𝑠𝑠 − 𝑙𝑒𝑛𝑔𝑡ℎ2) 

symmetric 

[𝐷]: bending stiffness matrix 

𝑃𝑎 ∙ 𝑚3, or 𝑝𝑠𝑖 ∙ 𝑖𝑛3 (𝑠𝑡𝑟𝑒𝑠𝑠 − 𝑙𝑒𝑛𝑔𝑡ℎ3) 

symmetric 

Derivation: 𝑝𝑝. 328~331 

 

[𝐴𝐵𝐷]: “stiffness matrix” of the laminate plate 

[𝐴𝐵𝐷]−1: “compliance matrix” of the laminate plate obtained numerically (by inversion) 

both are symmetric 

As long as [𝐵] ≠ 0, membrane and bending are kinetically coupled. 

(Eqn. 4-29) is typically written in the compact form: 

{
𝑁
𝑀
} = [𝐴𝐵𝐷] {𝜀

0

𝜅
} 

9) Applications 

10-step procedure on p. 332 

the main steps are: 

a. evaluate [ABD] matrix 

𝑘 = 1,… ,𝑁 
[𝑄]𝑘 ,   [𝑄̅]𝑘 

ℎ𝑘−1,   ℎ𝑘 

(Eq. 4.28a,b,c) 



b. determine {𝜀
0

𝜅
} 

find 𝑁𝑥, 𝑁𝑦 , … ,𝑀𝑦 , 𝑀𝑥𝑦  

inverse [𝐴𝐵𝐷] 

[𝐴𝐵𝐷]−1 {
𝑁
𝑀
} 

c. evaluate global strains {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

} via (Eqn. 4.16) 

for a given 𝑧, then evaluate global stresses → local stresses (and local strains is necessary)→ 𝑆𝑅 

Examples 4.2 

Examples 4.3 (the above procedure) 

Example: A laminate has the layup sequence of [30 / 45]. The top and bottom layers are 0.4 𝑚𝑚 and 

0.5 𝑚𝑚 thick. Both layers have: 𝐸1 = 170 𝐺𝑃𝑎, 𝐸2 = 20 𝐺𝑃𝑎, 𝐺12 = 5.5 𝐺𝑃𝑎 and 𝑣!2 = 0.26. 

Determine global stresses 𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦  at the top and bottom surfaces of the layers for the following 

loading: 

𝑁𝑥 = 𝑁𝑦 = 1000 𝑁/𝑚; and 

Plot stress distributions of 𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦  across the thickness. 

Solution: 

(1) Need [ABD] matrix, [𝐴𝐵𝐷]−1 matrix: 

 

ℎ0 = −0.00045 𝑚 

ℎ1 = −0.00005 𝑚 

ℎ2 = 0.00045 𝑚 

Then, 

[𝑄] → [𝑄̅]1   (𝜃 = 30°) 
[𝑄] → [𝑄̅]2   (𝜃 = 45°) 

Applying (Eq. 4.28) 

[𝐴] = [
6.950 3.653 3.888
 3.926 2.511

𝑠𝑦𝑚  3.676
] ∙ (107)                      (𝑃𝑎 ∙ 𝑚) 

[𝐵] = [
−4.774 0.9940 −1.215

 2.786 2.228
𝑠𝑦𝑚  0.9940

] ∙ (103)            (𝑃𝑎 ∙ 𝑚2) 



[𝐷] = [
4.850 2.432 2.665
 2.557 1.621

𝑠𝑦𝑚  2.448
]                                  (𝑃𝑎 ∙ 𝑚3) 

And [𝐴𝐵𝐷]−1 = [
𝐴∗ 𝐵∗

𝐵∗ 𝐷∗
] 

[𝐴∗] = [
5.164 −2. .786 −3.426
 6.251 −1.260

𝑠𝑦𝑚  7.731
] ∙ (10−8)                (

1

𝑃𝑎 ∙ 𝑚
) 

[𝐵∗] = [
3.687 −1. .832 3.689
 0.01186 −4.574

𝑠𝑦𝑚  −4.680
] ∙ (10−5)                (

1

𝑃𝑎 ∙ 𝑚2
) 

[𝐷∗] = [
7.468 −4.037 −5.257
 9.260 −1.641

𝑠𝑦𝑚  11.68
] ∙ (10−1)                 (

1

𝑃𝑎 ∙ 𝑚3
) 

 (2) Loading is 𝑁𝑥 = 𝑁𝑦 = 1000 𝑁/𝑚 

{
𝜀0

𝜅
} = [𝐴𝐵𝐷]−1

{
 
 

 
 
1000
1000
0
0
0
0 }
 
 

 
 

=

{
  
 

  
 
23.78 ∙ 10−6 𝑚/𝑚

34.65 ∙ 10−6 𝑚/𝑚

−46.86 ∙ 10−6 𝑚/𝑚

18.55 ∙ 10−3 1/𝑚

−18.20 ∙ 10−3 1/𝑚

−8.855 ∙ 10−3 1/𝑚}
  
 

  
 

 

Normal forces can cause shear deformation, bending and twisting. 

Top layer: [𝑄̅] = [𝑄̅] ↑ 

Top surface 𝜁 = ℎ0 = −0.00045 𝑚 

{𝜀} = {𝜀0} + 𝜁[𝜅] = {
15.43
42.83
−42.88

} ∙ 10−6 

{𝜎] = [𝑄̅]{𝜀} = {
960.6
1081
−78.91

}  𝑘𝑃𝑎 

Bottom surface 𝜁 = ℎ1 = −0.00005 𝑚 

{𝜀} = {
22.85
35.56
−46.42

} ∙ 10−6 

{𝜎] = {
1298
1265
53.70

}  𝑘𝑃𝑎 

Bottom layer: [𝑄̅] = [𝑄̅] ↓ 

Top surface 𝜁 = ℎ1 = −0.00005 𝑚 



{𝜀} = {
22.85
35.56
−46.42

} ∙ 10−6 

{𝜎] = {
1125
1265
106.9

}  𝑘𝑃𝑎 

Bottom surface 𝜁 = ℎ2 = 0.00045 𝑚 

{𝜀} = {
31.13
26.46
−50.84

} ∙ 10−6 

{𝜎] = {
1068
1005
−86.76

}  𝑘𝑃𝑎 

 
 

4.4 In-Plane and Flexural Modulus of a Laminate  

[𝐴𝐵𝐷] = [
𝐴 𝐵
𝐵 𝐷

] 

Which is a symmetric matrix. ([A], [B] and [D] are inverse as well) 

[𝐴𝐵𝐷]−1 = [
𝐴 𝐵
𝐵 𝐷

]
−1

= [
𝐴∗ 𝐵∗

𝐶∗ 𝐷∗
] 



Where [𝐴∗], [𝐷∗] are symmetric 

and [𝐵∗] may not be symmetric 

and [𝐶∗] = [𝐵∗]𝑇  

In-plane constants: 

𝐸𝑥 =
1

ℎ𝐴11
∗ ;      𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑛 − 𝑝𝑙𝑎𝑛𝑒 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 

𝐸𝑦 =
1

ℎ𝐴22
∗ ;      𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑛 − 𝑝𝑙𝑎𝑛𝑒 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑚𝑜𝑑𝑙𝑢𝑠 

𝐺𝑥𝑦 =
1

ℎ𝐴66
∗ ;      𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑛 − 𝑝𝑙𝑎𝑛𝑒 𝑠ℎ𝑒𝑎𝑟 𝑚𝑜𝑑𝑢𝑙𝑢𝑠  

𝑣𝑥𝑦 = −
𝐴12
∗

𝐴11
∗ ;      𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑛 − 𝑝𝑙𝑎𝑛𝑒 𝑃𝑜𝑖𝑠𝑠𝑜𝑛′𝑠 𝑟𝑎𝑡𝑖𝑜  

𝑣𝑦𝑥 = −
𝐴12
∗

𝐴22
∗ ;      𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑛 − 𝑝𝑙𝑎𝑛𝑒 𝑃𝑜𝑖𝑠𝑠𝑜𝑛′𝑠 𝑟𝑎𝑡𝑖𝑜  

Note: 

The larger Poisson’s ratio is the major, and the other one is the minor 
𝑣𝑥𝑦

𝐸𝑥
=
𝑣𝑦𝑥

𝐸𝑦
 

Flexural constants: 

𝐸𝑥
𝑓 =

12

ℎ3𝐷11
∗ ;      𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 

𝐸𝑦
𝑓
=

12

ℎ3𝐷22
∗  
;      𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 

𝐺𝑥𝑦
𝑓
=

12

ℎ3𝐷66
∗ ;      𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙 𝑠ℎ𝑒𝑎𝑟 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 

𝑣𝑥𝑦
𝑓 = −

𝐷12
∗

𝐷11
∗ ;      𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙 𝑃𝑜𝑖𝑠𝑠𝑜𝑛

′𝑠 𝑟𝑎𝑡𝑖𝑜 

𝑣𝑦𝑥
𝑓 = −

𝐷12
∗

𝐷22
∗ ;      𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙 𝑃𝑜𝑖𝑠𝑠𝑜𝑛

′𝑠 𝑟𝑎𝑡𝑖𝑜 

Note: 

The larger Poisson’s ratio is the major, and the other one is the minor 

𝑣𝑥𝑦
𝑓

𝐸𝑥
=
𝑣𝑦𝑥
𝑓

𝐸𝑦
 

- Example 4.4 goes through the steps above 

Consider that you were given a completed [ABD] matrix, then you can use the following tools to analyze 

it further. 

Measures used to gauge how close a laminate is to an equivalent orthotropic material: 

In terms of membrane action: 

𝑟𝑁 = √(
𝐴26
𝐴11

)
2

+ (
𝐴26
𝐴22

)
2

 



In terms of bending action: 

𝑟𝑀 = √(
𝐷16
𝐷11

)
2

+ (
𝐷26
𝐷22

)
2

 

It is desired that 𝑟𝑁 → 0, 𝑟𝑀 → 0 

Measures used to gauge symmetry of a laminate: 

𝑟𝐵 =
3

(𝐴11 + 𝐴22 + 𝐴66)ℎ
√∑ 

𝑖

∑ (𝐵𝑖𝑗)
2

𝑗

 

The closer 𝑟𝐵 is to zero, the more symmetry there is 

Summary: 

𝑟𝑁 ,   𝑟𝑀 ,   𝑟𝐵: the closer they are to zero, the more accurate it is to use 𝐸𝑥, 𝐸𝑦, …, 𝐺𝑥𝑦
𝑓

 and 𝑣𝑥𝑦
𝑓

 to 

represent the entire laminate, and to treat the laminate as an orthotropic material.  



Chapter 5: Failure, Analysis and Design of Laminates 
5.1: Introduction 

 

5.2: Special Cases of Laminates 

In 4.2, laminate codes were introduced. From mainly the perspective of layer orientations, cross-ply 

laminates, angle-ply laminates, balanced laminates, symmetric laminates, and anti-symmetric laminates 

were defined. 

In this section, the above laminates will be defined from the perspectives of constituents and mixtures, 

and thicknesses, in addition to layer orientations. The effect on the [𝐴𝐵𝐷] matrix will be dealt with as 

well. 

1. Symmetric Laminates 

These are laminates in which fiber orientations, constituents and mixtures, and thicknesses of the top 

half of the laminate are mirror image of the bottom half. 

A symmetric laminate can have even or odd number of layers. 

→ [𝐵] = [0]; as a result, membrane and bending actions are uncoupled, kinetically. 

2. Cross-Ply Laminates 

They are laminates in which the layers take angles of 0° and 90° only. 

→ 𝐴16 = 𝐴26 = 𝐵16 = 𝐵26 = 𝐷16 = 𝐷26 = 0 

For example, a symmetric cross-ply has, [𝐵] = [0]  

and 𝐴16 = 𝐴26 = 𝐷16 = 𝐷26 = 0; 



3. Angle-Ply Laminates 

They are laminates that consist of pairs of layers of the same constituents and mixture, and thickness, 

but oriented at +𝜃 and −𝜃. 

→ 𝐴16 = 𝐴26 = 0 

4. Anti-Symmetric Laminates 

In 4.2, anti-symmetric laminates are defined as those in which fiber orientations of the top half of the 

laminate are opposite those of the bottom half. 

In terms of constituents and mixtures, and thicknesses, the top half and bottom half are mirror images 

of each other. 

An anti-symmetric laminate always has even number of layers. 

→ 𝐴16 = 𝐴26 = 𝐷16 + 𝐷26 = 0 

5. Balanced Laminates 

In 4.2, balanced laminates are defined as having pairs of “+𝜃” and “−𝜃” layers (𝜃 cannot be 0° or 90°). 

Further, the pair of “+𝜃” and “−𝜃” layers must have the same constituents and mixture and thickness 

for a laminate to be balanced 

→ 𝐴16 = 𝐴26 = 0 

 

  

6. Quasi-Isotropic Laminates 

Quasi-isotropic means behaving like an isotropic material, or independent of orientation. However, being 

quasi-isotropic does not mean being isotropic. 

• Quasi-isotropic in terms of membrane action: 

(a) [𝐵] = [0]; and 

(b) 𝐴11 = 𝐴22 ; 𝐴16 = 𝐴26 = 0 ; 𝐴66 = (𝐴11 − 𝐴12)/2 

• Quasi-isotropic in terms of bending action: 

(a) [𝐵] = 0; and 

(b) 𝐷11 = 𝐷22; 𝐷16 = 𝐷26 = 0;𝐷66 = (𝐷11 −𝐷12)/2 

 

 



• Quasi-isotropic in terms of both membrane and bending actions: 

(a) [B]=[0]; and 

(b) 𝐴11 = 𝐴22 ; 𝐴16 = 𝐴26 = 0 ; 𝐴66 = (𝐴11 − 𝐴12)/2 ; and 

(c) 𝐷11 = 𝐷22; 𝐷16 = 𝐷26 = 0;𝐷66 = (𝐷11 −𝐷12)/2; or  

[𝐷] = (
ℎ2

12
) ∗ [𝐴] 

See Example 5.1 for a laminate that is quasi-isotropic in terms of membrane action. 

How to make a quasi-isotropic laminate: 

(1) Number of layers 𝑁 ≥ 3 

(2) Orientations of two adjacent layers differ by 180°/𝑁. 

For example, if 𝑁 = 3, layups may be [ 60 / 0 / −80 ] and [ 45 / −15 / −75 ] 

5.3 Failure Criterion of a Laminate 

1. Basic concepts and terminologies 

Under the combined action of membrane and bending loads, layers will have different levels of stress, 

not to mention different constituents and mixtures, and giver orientations. That is, layers will have 

different SR’s and different modes of failure. 

Failure of a single layer does not lead to failure of the laminate. This is a huge advantage of lamiantes 

over isotropic materials. 

First-ply failure (FPF) and first-ply failure load: 

FPF refers to the phenomenon that one layer (or some layers) fails (or fail) before others. 

FPF Load refers to the load level that causes FPF. This load equals the applied load times the SR of the 

laminate at FPF. 

In general, the laminate will be able to continue to take on increased load, and more layers will fail, in a 

sequence (hence second-ply failure, …, and so on), unit the laminate fails, based on some pre-selected 

failure criteria.  

Ultimate-ply failure (UPF) and ultimate-ply failure load: 

UPF refers to when the load on the laminate is at such level that the laminate is considered failed, based 

on the pre-selected failure criterion. The load level that causes UPF is known as the UPF Load. 

The process of layers in a laminate fail in some sequence as the load is increased is known as 

progressive failure. 

Last-ply failure (LPF) and last-ply failure load: 

If the progressive failure continues until the last ply (or plied) fails (or fail), the phenomenon is known as 

LPF and the corresponding load level is the LPF Load. 

2. What determines “a laminate fails” 

Termination criterion is used to determine if a laminate fails. A termination criterion can be, 

• If fibers fail in tension (1T); 



• If fibers fail (in tension or under compression 1T or 1C); or 

• If a certain number of layers fail. Typical choice is 50% of layers, but it can be of a higher value, say 

100%. Setting the value to 100% in fact gives rise to LPF. 

3. What to do with a failed lamina? 

• Originally occupied space by a failed lamina remains occupied by it; that is, the z coordinates of 

layers are unchanged during the progressive failure analysis. 

• The failed lamina’s stiffness and strengths will be discounted; the discount can be a total discount 

(e.g., 𝐸2 = 0) or partial discount (e.g., 𝐸2 = 10% of before-failure value). 

It should be noted that answers to, (1) what termination criterion to use; and (2) how to discount a 

failed lamina, are not entirely technical, and far from definitive. 

 

 

 

 


