2) Coordinate setup
x —y — z: global coordinates
x — y plan coincides with the mid-plane of the laminate;

+ 1 5
h, 2
h] 3 h/2
h.
2
h3
-
hk-l k-1
hl-: t, : k
k+1 hi2 ¥ z
hn—l
h v m 1
FIGURE 4.6

Coordinate locations of plies in a laminate.

h: thickness of laminate

hy = —h/2
h1=h0+tl
h2=h1+t2
hy =h/2

3) Mid-plane Displacements (unknowns to be solved)
u, (x, y): membrane stretches

v, (x, y): membrane stretches

w, (x, y): lateral deflection

4) “Slopes” and Curvatures
Swy

Py (x,y) = <, rotation about x
8 .

b (x,y) = ;;": rotation about y

82w,
Ky (x,y) = — ox2 : curvature

52
ky(x,y) = — 5:/2”: curvature

82w, ..

Ky (X, y) = =2 : twisting curvature

Sx8y

Mid-plane



5) Membrane strain vector and curvature vector

(%) = )
9y
e o
Ei; 4 E}UD
! dy
v
R N TP [
+
_ dy  ox

() =

Y

§ B *w,
¥ ayl

xy

2
B L{Ju

d*w,

=2
vy |

Note: Both £° and k are based on the midplane.

6 Global displacements and strains at points off the midplane

On midplane where z = 0:

Off the midplane (z # 0):

(4.14)

(4.15)

Up (X, Y)r UO(xr Y)r Wo (x' y)

dw,
X
i

D=Ty— — g
Iy

w(x,y,z) = wy

(4.10)

(4.11)



And:

oty 9*w,
‘. dx ixz
1€, r=1 9 b+ Z 4 _8_3{;[} . (4.13)

-2
ay al' axay
e El‘.l
1€ (=9 Efj +Z9K, o (4.16)
0
_'YJE_I,I' ] _YJC_I,I' ] _K.ljf ]

7) Resultant Forces and Moments
Sign conventions: Figure 4.3

- 4 0
- ! M g
Z e NIL Xy NIX
N, ‘//‘1'\ yx
> “ M
LA N Ny y Y
N, >

(a) (b)

FIGURE 4.3
Resultant forces and moments on a laminate.

Definitions:
Membrane forces (per unit length)



hi2

N, = ‘[ o.dz,
h/2
hf2

hi2

/2

N.r_u = I T.'r_udz.r ]

hez

Which can be simplified as:

N.‘r n M| Oy
N, |= j G, dz,
k=1 he

(*) Unit: N/m, lb/in, ... (force/length)

(4.21a)

(4.21b)

(4.21¢)

(4.24a)

(%) Integral is broken into sum over layers due to “jumps” at lamina interfaces, as per Figure 4.5.

Mid-Plane

Laminate

FIGURE 4.5

Strain variation

Stress variation

Strain and stress variation through the thickness of the laminate.



Ny, Ny,: Normal forces per unit length
Nyy: shear force per unit length

Moments (per unit length)
hi2

M, = j c,zdz, (4.22a)
hi2
2
M,= | oz, (4.22b)
hi2
/2
M,, = J T,,2dz, (4.22¢)
2
Which can be simplified as:
Mx n | O,
M, =Y J o, | 2. (4.24b)
k=1
| My | " B | Ty

(*) Unit: N-m/m, lb - in/in, ... (moment/length)

(*) My, M,: bending moments per unit length
M,y : twisting moment per unit length

8) Stiffness and compliance of a laminated plate

Ny PAH Ap A By By, By ] EE
Nl" An Ay Ay By B,, By Eﬂ
Nu |_[As  Aw  Aw By By By [V
M, By, B, By Dy, D, D4 K,
My B, B, Bza Dy, D, D, Ky
hMTF_ [ Bl By Be Die Dy De | K,y




[A]: membrane (extensional) stiffness matrix
Pa-m,or psi — in (stress — length)
symmetric

[B]: membrane-bending coupling stiffness matrix
Pa-m?, or psi - in? (stress — length?)
symmetric

[D]: bending stiffness matrix

Pa-m3,or psi - in? (stress — length?)
symmetric

Derivation: pp.328~331

A=Y [Q(h —hy), i=1,2,6; j=1,2,6,
k=1
1 n B , - 1
:Ez[(Qf.l)]k{hﬁ_hE])# 121:296; j:1;2;6;
k=1

,1 n - r r
=3 D IQINE -1, i=1,2,6; j=1,2,6
k=1

[ABD]: “stiffness matrix” of the laminate plate

(4.28a)

(4.28b)

(4.28¢)

[ABD]™1: “compliance matrix” of the laminate plate obtained numerically (by inversion)

both are symmetric

As long as [B] # 0, membrane and bending are kinetically coupled.

(Egn. 4-29) is typically written in the compact form:

(8- oo

9) Applications
10-step procedure on p. 332

the main steps are:

a. evaluate [ABD] matrix
k=1,..,N

[Qlk, [Qlk

hk—lt hk

(Eqg. 4.28a,b,c)



. 80
b. determme{ }
K

find Ny, Ny, ..., M,,, My,

) y!
inverse [ABD]
_1(N
oy [}
gx
c. evaluate global strains { Ey } via (Eqn. 4.16)
Vxy

for a given z, then evaluate global stresses — local stresses (and local strains is necessary)— SR

Examples 4.2
Examples 4.3 (the above procedure)

Example: A laminate has the layup sequence of [30 / 45]. The top and bottom layers are 0.4 mm and
0.5 mm thick. Both layers have: E; = 170 GPa, E, = 20 GPa, G;, = 5.5 GPa and v, = 0.26.
Determine global stresses ay, 0, Ty, at the top and bottom surfaces of the layers for the following
loading:

N, = N,, = 1000 N/m; and

Plot stress distributions of gy, 0y, Ty, across the thickness.

Solution:
(1) Need [ABD] matrix, [ABD]~! matrix:

30" hiy 104 mm tho
45° ) 10.5‘ mm lhz

ho = —0.00045 m
h, = —0.00005 m
h, = 0.00045 m

Then,
[] - [@): (6 =30°)
[Q] = [Q]z (6 =45°)

Applying (Eq. 4.28)

6.950 3.653 3.888

[4] = 3.926 2.511]-(107) (Pa-m)
sym 3.676
—4.774 09940 -1.215

[B]=[ 2.786 2.228]-(103) (Pa-m?)
sym 0.9940



4.850 2.432 2.665
[D] = 2.557 1.621]
sym 2.448
-1 _[A" B”
And [ABD]™* = [ . D*]
5.164 —2..786 —3.426
[4*] = 6.251 —1.260] - (1078)
| sym 7.731
3.687 —1..832 3.689
[B*] = 0.01186 —4.574] - (1075)
| sym —4.680
[7.468 —4.037 —5.257
[D*] = 9.260 —1.641] -(1071)
| sym 11.68

(2) Loading is Ny = Ny, = 1000 N/m

.10-6
1000 ( 23.78-10"° m/m
1000 34.65-107° m/m
g0 0 —46.86-10"°m/m
— bt —T14BD11 = : >
{K} [4BD] 0 < 18.55-1073 1/m
0 —18.20-1073 1/m
0 | —8.855-1073 1/m J

Normal forces can cause shear deformation, bending and twisting.

Top layer: [Q] = [Q] T
Top surface { = hy = —0.00045m

15.43
{e} = ("} + k] = { 42.83 } 1076
—42.88

960.6
{o] = [Ql{e} = { 1081 } kPa
—78.91

Bottom surface { = h; = —0.00005 m

22.85
{e} = 3556 ¢-107°
—46.42

1298
{o] =411265¢ kPa
53.70

Bottom layer: [0] = [Q] !
Top surface { = h; = —0.00005 m

(Pa-m3)




22.85
{e} =1 35.56 (-107°
—46.42

1125
{o] = 1265} kPa

106.9
Bottom surface { = h, = 0.00045 m
31.13
{e} =1 26.46 ;-107°
—50.84

1068
{o] =4 1005 { kPa
—86.76

- 86,76

4.4 In-Plane and Flexural Modulus of a Laminate

[ABD] = ‘; g]

Which is a symmetric matrix. ([A], [B] and [D] are inverse as well)

wor =[5 87 =[5 )



Where [A*],[D*] are symmetric
and [B*] may not be symmetric
and [C*] = [B*]T

In-plane constants:

1
E, = ok Effective in — plane longitudinal modulus
11
E, = PR Effective in — plane transverse modlus
22
1
Xy —; Effective in — plane shear modulus
hAg,
A1, o L
Vyy = ———; Effective in — plane Poisson’s ratio
Ay
A1, L . , .
Vyx = TR Effective in — plane Poisson’s ratio
22
Note:
The larger Poisson’s ratio is the major, and the other one is the minor
Yy _ Uyx
E, E,
Flexural constants:
12
E,’: =3 ef fective flexural longitudinal modulus
11
f 12 .
E, = PEIRE ef fective flexural transverse modulus
22
f 12 ]
Gyy =73 effective flexural shear modulus
h3D¢e
7 Dy, . . , .
vy = ——5; effective flexural Poisson's ratio
D1*1
7 D1, . . , .
Vyx = T ef fective flexural Poisson's ratio
22
Note:
The larger Poisson’s ratio is the major, and the other one is the minor
f f
Vry _ Uyx
E, E,

- Example 4.4 goes through the steps above

Consider that you were given a completed [ABD] matrix, then you can use the following tools to analyze
it further.

Measures used to gauge how close a laminate is to an equivalent orthotropic material:
In terms of membrane action:

. (@)Z(@)Z
N Agy Ay,




In terms of bending action:
- 66
M \Di/ T \Dyy

Itis desired thatry = 0,1y = 0

Measures used to gauge symmetry of a laminate:

g = ° Z Z (By)’
(A11 + Azz + Age)h ~ &

The closer 15 is to zero, the more symmetry there is

Summary:
Ty, Tm, 7g:the closer they are to zero, the more accurate it is to use Ey, Ey, ..., G,{y and v,{y to
represent the entire laminate, and to treat the laminate as an orthotropic material.



Chapter 5: Failure, Analysis and Design of Laminates
5.1: Introduction

’Zﬁlclfo- 'ﬂor al{bycrs
dlni X w&h‘*%ﬂi haysis ch.3: Eu Ez, an, U2
madenals || (OT, -, (Gadult

Mmaero —

4 MLHSFS
A4

ch.4: Lominate code
ch& Wil lamhate [ABD], CABD]

fil andindlet 1= [} {4},
' e}, {o}atz

Aor all lngrs
th2: lwl < globaL ms{amaﬁbns

Aailure theories

5.2: Special Cases of Laminates

In 4.2, laminate codes were introduced. From mainly the perspective of layer orientations, cross-ply
laminates, angle-ply laminates, balanced laminates, symmetric laminates, and anti-symmetric laminates
were defined.

In this section, the above laminates will be defined from the perspectives of constituents and mixtures,
and thicknesses, in addition to layer orientations. The effect on the [ABD] matrix will be dealt with as
well.

1. Symmetric Laminates
These are laminates in which fiber orientations, constituents and mixtures, and thicknesses of the top
half of the laminate are mirror image of the bottom half.

A symmetric laminate can have even or odd number of layers.
— [B] = [0]; as a result, membrane and bending actions are uncoupled, kinetically.

2. Cross-Ply Laminates
They are laminates in which the layers take angles of 0° and 90° only.
— A16 = Az = B1g = B2g = D16 = D26 =0

For example, a symmetric cross-ply has, [B] = [0]
and Ayjg = Aze = D1s = D26 = 0;



3. Angle-Ply Laminates

They are laminates that consist of pairs of layers of the same constituents and mixture, and thickness,
but oriented at +60 and —6.

= Ajg = A6 =0

4. Anti-Symmetric Laminates
In 4.2, anti-symmetric laminates are defined as those in which fiber orientations of the top half of the
laminate are opposite those of the bottom half.

In terms of constituents and mixtures, and thicknesses, the top half and bottom half are mirror images
of each other.

An anti-symmetric laminate always has even number of layers.
— A1 = Az6 = D16 + D26 =0

5. Balanced Laminates
In 4.2, balanced laminates are defined as having pairs of “4+6” and “—68” layers (8 cannot be 0° or 90°).

Further, the pair of “+6” and “—8” layers must have the same constituents and mixture and thickness
for a laminate to be balanced
= Ajg = A6 =0

6. Quasi-Isotropic Laminates
Quasi-isotropic means behaving like an isotropic material, or independent of orientation. However, being
guasi-isotropic does not mean being isotropic.
e Quasi-isotropic in terms of membrane action:
(a) [B] =[0];and
(b) A11 = Azz;A16 = Aze = 05466 = (A11 — A12)/2
e Quasi-isotropic in terms of bending action:
(a) [B] = 0; and
(b) D11 = Dy3; D16 = D6 = 0; Dgg = (D11 — D12)/2



e Quasi-isotropic in terms of both membrane and bending actions:
(a) [B]=[0]; and
(b) A1q = Azz;A16 = Aze = 0466 = (A11 — A12)/2; and
(¢) D11 = D33; D16 = D36 = 0; Dgg = (D11 — D12)/2; or

h2
D]l =|-—= A
[D] (12> « (4]
See Example 5.1 for a laminate that is quasi-isotropic in terms of membrane action.

How to make a quasi-isotropic laminate:

(1) Number of layers N > 3
(2) Orientations of two adjacent layers differ by 180°/N.

For example, if N = 3, layups may be [60 /0 / —80 ] and [45 / —15/ —=75]

5.3 Failure Criterion of a Laminate

1. Basic concepts and terminologies

Under the combined action of membrane and bending loads, layers will have different levels of stress,
not to mention different constituents and mixtures, and giver orientations. That is, layers will have
different SR’s and different modes of failure.

Failure of a single layer does not lead to failure of the laminate. This is a huge advantage of lamiantes
over isotropic materials.

First-ply failure (FPF) and first-ply failure load:
FPF refers to the phenomenon that one layer (or some layers) fails (or fail) before others.

FPF Load refers to the load level that causes FPF. This load equals the applied load times the SR of the
laminate at FPF.

In general, the laminate will be able to continue to take on increased load, and more layers will fail, in a
sequence (hence second-ply failure, ..., and so on), unit the laminate fails, based on some pre-selected
failure criteria.

Ultimate-ply failure (UPF) and ultimate-ply failure load:
UPF refers to when the load on the laminate is at such level that the laminate is considered failed, based
on the pre-selected failure criterion. The load level that causes UPF is known as the UPF Load.

The process of layers in a laminate fail in some sequence as the load is increased is known as
progressive failure.

Last-ply failure (LPF) and last-ply failure load:
If the progressive failure continues until the last ply (or plied) fails (or fail), the phenomenon is known as
LPF and the corresponding load level is the LPF Load.

2. What determines “a laminate fails”
Termination criterion is used to determine if a laminate fails. A termination criterion can be,
e If fibers fail in tension (1T);



If fibers fail (in tension or under compression 1T or 1C); or
If a certain number of layers fail. Typical choice is 50% of layers, but it can be of a higher value, say
100%. Setting the value to 100% in fact gives rise to LPF.

3. What to do with a failed lamina?

e Originally occupied space by a failed lamina remains occupied by it; that is, the z coordinates of
layers are unchanged during the progressive failure analysis.

The failed lamina’s stiffness and strengths will be discounted; the discount can be a total discount
(e.g., E; = 0) or partial discount (e.g., E, = 10% of before-failure value).

It should be noted that answers to, (1) what termination criterion to use; and (2) how to discount a
failed lamina, are not entirely technical, and far from definitive.



