
Chapter 1 – Introduction to Composite Materials 
1.1 Introduction 

1.2 Classification 

1.3 Recycling (reading only) 

1.4 Mechanics Terminology (review only) 

1.1 Introduction 

1) Four main categories of engineering materials 

2) What’s a composite? 

3) Qualitive comparison of engineering materials 

4) Quantitative comparison of engineering materials 

5) Markets of composites 

 

1) Four main categories of engineering materials 

• Metals 

• Plastics (or Engineering Polymers) 

• Ceramics 

• Composites 

 

2) What’s a composite? (p. 2) 

A composite is a material that consists of 2 or more distinct constituent materials. 

• Constituent materials have to be significantly different such that the properties of the composite are 

noticeably different from those of its constituents. 

• Typically, one constituent is stiff and provides strength; the other is softer, and is to embed or 

support the stiff constituent. 

• The stiff constituent is known as the reinforcing phase while the soft supporting constituent is 

known as the matrix. 

• Reinforcing phase may take different forms: particles, flakes, fibers, etc. 

 

3)  Qualitative comparison of engineering 

Metals: 

• Dominate structural applications; 

• Have the longest design & processing history; 

• Have good stiffness, strength , thermal stability, temperature resistance, and high thermal and 

electrical conductivity; 

• Are heavy compared with plastics and composites; 

• Require several machining operations to obtain the final product; 

Plastics: 

• Became very common in the 1990’s; 

• Are light-weight, easy to process, and resistant to corrosion; 

• Are not suitable for high-temperature (> 100 °C) applications. 

 



Ceramics: 

• Provide great thermal stability and very high hardness; 

• Are best suited for high-temperature and high-wear applications; 

• Are resistant to most forms of chemical attacks; 

• Are very brittle; 

• Are difficult to machine. 

Composites: 

• Natural composites have been utilized for a long time; 

• Industrial applications started in the 1960’s with the introduction of polymer-based composites; 

• Applications include, to list just a few, auto parts, sporting goods, aerospace parts, consumer goods, 

marine and oil industries; 

• They enable part integration; 

• They enable in-service monitoring by embedding sensors; 

• They enable DFM (design for manufacture) and DFA (design for assembly); 

• Properties can be tailor-made (by selecting constituent materials and lay-up sequence, by 

optimization, for example); 

• They have better impact properties; 

• They have better NVH (noise-vibration-harshness) characteristics; 

• There is a lack of design database, handbooks and history 

• Resistance to temperature, solvents and chemicals varies; 

• They absorb moisture, compromising or affecting composite’s properties and dimensional stability; 

• Composites may not be repaired or recycled, depending on the matrix. 

 

4) Quantitative comparison of engineering materials 

• In general, the specific strength (strength-to-density ratio) of composites is, approximately, 3 to 5 

times that of steel and aluminum; 

• Specific stiffness (stiffness-to-density ratio) of composites is ~5 times that of steel, and ~2 times that 

of aluminum; 

• For example, carbon-fiber-reinforced polymers (CFRP’s) and Titanium alloys have similar modulus 

(~130 GPA) and strength (~1000 MPa) but their densities are ~1400 𝑘𝑔/𝑚3 and ~4400 𝑘𝑔/𝑚3 

respectively. 

• Relative cost is defined as: 

𝐶𝑅 =
$ 𝑝𝑒𝑟 𝑘𝑔 𝑜𝑓 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

$ 𝑝𝑒𝑟 𝑘𝑔 𝑜𝑓 𝑚𝑖𝑙𝑑 𝑠𝑡𝑒𝑒𝑙 𝑟𝑜𝑑
 

• For example, relative costs are, ~20 for CFRPs and ~70 for Ti-alloys. 

• Sec. 5.4 of text has 4 examples of laminated design, showing that the savings in mass or weight over 

metals range 50% to 75% 

 

5) Markets of composites (pp. 16-17) 

• The text has stats 1990-1995; 

• 2004’s market was as follows (U.S. stats): 

o Transport, 32% 

o Construction, 20% 



o Corrosion-resistant apps, 12% 

o Marine, 10% 

o Electrical, 10% 

o Consumer, 7% 

o Appliance, 5% 

o Aircraft, 1% 

o Others, 3% 

• Total consumption (in 2004) was 4.0 billion lbs. 

• R. MacNeil, U.S. Composites Market Outlook for 2005 and Beyond, Composites Manufacturing, Jan. 

16-29, 2005. 

1.2 Classification 

The sections covers classification as well as manufacture of gibers, and applications of composites (pp. 

16—50). 

Manufacture of composites can be subject or course in itself. 

1. Wood as a natural composite 

2. Classification 

3. Modern/Advanced/Man-made composites 

4. Fibers used in advanced composites 

5. Matrix materials 

 

1. Wood 

• Is the most commonly used natural composite; 

• The 2 constituents are 

Fibers: long and stiff 

Cells: soft and to embed the fibers 

• Modern/Advanced/Man-made composites imitate wood: strong reinforcing phase(s) embedded in 

softer supporting material(s). 

  

2. Classification based on the form of reinforcing phase (pp. 16-19 and Fig. 1.8) 

a. Particulate: randomly dispersed particles in a soft matrix. (like cement) 

b. Flake: randomly dispersed flakes or aligned flakes in a soft matrix (like glass) 

 

c. Fiber-reinforced:  

Diameter: 0.0001" ~ 0.005" 

Length: 𝐿 ≤ 100𝐷, short fibers 

Length: 𝐿 > 100𝐷, long fibers 

• Short fibers randomly oriented as in metals; 



• Short fibers aligned in one direction; 

• Long fibers aligned in one direction; 

• Long fibers aligned in a few directions (weave). 

 

d. Fiber-reinforced laminated: 

• Thin layers of long and unidirectional fibers are the building blocks. A thin layer is known as a lamina 

or a ply; 

• Layers of different materials, thicknesses and orientations are bonded together, as per the layer 

sequence. The result is the so-called laminate, or fiber-reinforced laminated composite; 

• Fiber-reinforced laminated composites are commonly used in the design of the so-called high-

performance components and structures. 

 

 



 

3. Modern/Advanced/Man-made composites 

• Imitating wood - strong fibers embedded in softer supporting materials 

• Fibers:  

o Long (continuous) or short (discontinuous); 

o Aligned or random orientations 

o G – glass fibers; 

o C – carbon fibers including graphite fibers; 

o K – aramid fibers (Kevlar fibers; Kevlar is a trademark) 

o (…… etc) 

• Matrix: 

o Polymers (→ PMCs polymer matrix composites); 

o Metals (→ MMCs); 

o Ceramics (→ CMCs); 

o (…… etc) 

 

4. Fibers used in advanced composites  

a. Glass fibers: 

Most commonly used 

High strength but low stiffness 

Low cost 

Insulating 

Low CTE (coefficient of thermal expansion) 

Poor abrasion resistance 

(Manufacture of glass fibers: p. 22, Fig 1.9) 

Types of glass fibers: 

E – electrical (E-glass) 

S – silica (S-glass) 

C – corrosion  

A – appearance 

(…… etc) And their combinations 

E-glass vs. S-glass 

• They are more common than other glass fibers; 

• E-glass is more common than S-glass; 

• Compared with E-glass, S-glass has ~20 to 25% higher strength and stiffness, ~10% higher CTE, and is 

~7 to 8 times as expensive; 

• Table 1.6 (p. 21) 



 

b. Carbon and graphite fibers: 

They are the so-called high-performance fibers (mainly for aerospace apps; lately used in auto-industry, 

civil infrastructures, offshore oil industry, etc.) 

Carbon fibers are classified as, based on the precursors: 

• PAN (poly-acrylo-nitrile, being most common) 

• Pitch (bitumen) 

• Rayon 

• (……etc) 

Manufacture of carbon fibers: p. 25, Fig. 1.11 (PAN-based carbon) 

Table 1.8 (p. 25) compares PAN-based bs. Pitch-based carbon fibers. 

CTE (coefficient of thermal expansion) is negative in longitudinal (axial) as well as radial directions. 

Carbon fibers typically have a carbon content of 93-95%. If the carbon content gets to 99%, then carbon 

fibers become graphite fibers. 

Graphite fibers vs. Carbon fibers; 

• Graphite fibers have higher stiffness and strength, but higher cost as well. 

• Processing temperature is 1900 °𝐶 (3400 °𝐹) compared with 1300 °𝐶 (2400 °𝐹) for carbon fibers. 

• Graphite fibers are typically used in aircraft and aerospace applications. 

 

c. Aramid fibers (Kevlar® fibers): 

Kevlar® is the registered trademark of DuPont; 

• Standard K-fibers include: K-29, K-49, K-129, and K-149 (or K29, K49, K129 and K149); 

• Kevlar® 29 AP and Kevlar® 49 AP have higher performance than their respective standard 

counterparts; 

• Kevlar® XP is the light weight version of the K-fibers, used for helmets and armors, for example. 



Manufacture of Kevlar® fibers: ??? 

Table 1.9 (p. 26) compares K29 and K49 

 

CTE is negative in longitudinal (axial) direction and positive in radial direction.  

d. Other fibers: 

Boron fibers: 

• Strength and stiffness are at the same level as carbon; 

• Fiber diameters (About 140 𝜇𝑚 or 0.0055") are ~10 times those of carbon fibers; 

• They are 300 times as expensive as E-glass; 

• They can take higher buckling load. 

 

5. Matrix materials  

Functions of a matrix: 

• Hold/embed fibers; 

• Transmit forces between fibers; 

• Protect fibers from the environment 

 

a. Polymers  

They are the common choice of a resin/matrix material. 

When is a polymer a resin or a matrix?  

• PMC’s (Polymer-matrix-composites) 

• Resin refers to polymer before and during processing 

• Matrix refers to polymer after it is cured or solidified  

Typical resins: 



• Thermoset (e.g. epoxy, polyester, etc.); 

• Thermoplastic (e.g. PEEK PPS, etc.). 

Epoxy is the most commonly used resin/matrix. 

 

b. Metals 

Why metal matrix? 

• MMCs (metal matrix composite) 

• MMCs are insensitive to moisture 

• MMCs have better resistance to wear and tear, to fatigue 

Typical metals and fibers used in MCCs: 

• Fibers: carbon, boron, SiC (silicon carbide) 

• Metals: aluminum, magnesium, titanium 

o Boron-aluminum, for example 

 

c. Ceramic  

• CMCs (ceramic matrix composites) 

Typical CMCs: 

• Carbon-ceramic 

• SiC-ceramic 

When ceramic is used as a material matrix to form CMCs fibers are to supplement ceramic, to reduce 

the brittleness of ceramics in particular. 

Micromechanical Analysis (or Micromechanics – Chapter 3) 

An analysis that starts with the properties (elastic moduli, strength, CTE, CME, etc.) of the constituent 

materials, and finds like properties of a unidirectional lamina. 

 



Macromechanical Analysis (or Macromechanics) 

A study of the stress-strain behavior of composites, using properties of unidirectional laminas found 

from micromechanics. 

Level 1: 

laminate level, Ch. 4 

Level 2:  

Structural level 

beams (Ch. 6), plates (file on D2L), shells, etc. 

 

 



Chapter 2 – Macro-Mechanical Analysis of a Lamina 
2.1 Introduction 

A lamina is typically in the order of 0.127 𝑚𝑚 or 0.005" thick and not isotropic 

2.2 Review 

1. Stress 

2. Strain 

- Normal 

- Shear 

3. Elastic moduli 

4. Strain energy 

 

2.3 Hooke’s Law for Different Types of Materials 

1. Homogeneous vs. heterogeneous materials 

FGM – functionally graded materials (properties at different locations are different) 

2. Anisotropic vs. isotropic materials 

Isotropic materials are those whose properties are orientation independent. 

For example, steel, aluminum. 

They require 2 independent mechanical property constants. (Young’s modulus, poisons ratio or Young’s 

modulus, shear modulus) 

Anisotropic materials are those whose properties are orientation dependent. 

For example, natural wood. 

They require 21 independent constants, see (Eq. 2.25 – only looking at triangular matrix, it’s symmetric) 

 

3.Special Cases of Anisotropic Materials 

3.1 Orthotropic Materials 

They possess 3 mutually perpendicular principal planes, or 3 principal directions mutually perpendicular 

to each other. 

For example, unidirectional continuous fiber-reinforced composite blocks are considered orthotropic. 

Orthotropic materials require 9 independent constants. 



 

(3 axes and planes – first plane in direction of fiber) 

1 – direction of fibers 

2, 3 – perpendicular to fibers 

𝐸1 𝐸2 𝐸3: Young’s moduli 

𝐺12 𝐺23 𝐺13: Shear moduli 

Note: 

𝐺𝑖𝑗 = 𝐺𝑗𝑖 

But: 

𝑣𝑖𝑗 ≠ 𝑣𝑗𝑖 (but they are related) 

Since: 
𝑣𝑖𝑗

𝐸𝑖
=

𝑣𝑗𝑖

𝐸𝑗
 

3.2 Transversely isotropic materials 

An orthotropic material is called transversely isotropic if one of its principal planes is a plane of isotropy 

that is, material properties are symmetric about one of its principal axes. 

For example, 

• Carbon/graphite and aramid fibers are transversely isotropic. 

• Unidirectional continuous fiber-reinforced composites, when fibers are packed in a hexagonal 

way or very close to it, can be considered transversely isotropic. 

 



Transversely isotropic materials require 5 independent constants.  

Axis 1 being the axis of symmetry 

Axis 2, 3 being the plane of isotropy 

𝐸1        𝐸2 = 𝐸3   : Young’s moduli 

𝐺12 = 𝐺31    𝐺23 : Shear moduli 

𝑣12 = 𝑣13     𝑣23 : Poisson’s ratio 

Also, 𝐸2 𝐺23 𝑣23 are related. 

3. Plane stress vs. Plane Strain 

Thin unidirectional continuous fiber-reinforced composite layers become a plane stress case. 

4 independent mechanical properties are required.  

 
𝐸1 𝐸2 𝐺12 𝑣12  

Chapter 3 Micromechanical Analysis of a Lamina 

7 Sections in total (pp. 203-314) 

3.1 Introduction 

3.2 Volume and Mass Fractions, Density, and Void Content 

3.3 Evaluation of Elastic Moduli (pp. 215-270) 

3.4 Ultimate Strengths (pp. 271-295) 

3.5 CTE 

3.6 CME 

3.7 Accuracy 

3.1 Introduction 

1. Determination of the 4 elastic moduli (3.3), 5 ultimate strengths (3.4), and 4 transport properties (3.5, 

3.6) by experimental means is costly; experimental results are also limited or restricted. 

2. Transport properties include, CTE in 1- and 3- directions, and CME in 1- and 2- directions, respectively. 

3. Unidirectional lamina is NOT homogenous. However, it’s customary to assume homogeneity once 

micro-analysis is completed. 

4. Lamina is the building block of composites. This is true from analysis as well as physical perspectives. 

3.2 Volume and Mass Fractions, Density, and Void Content 

- to quantify how much fibers and matrix there are; 

- by volume fractions, or by mass (or weight) fractions;  



- volume fractions and mass/weight fractions are related; 

- void content can’t be avoided in reality, but complicates analysis; 

1. Volume Fractions 

Consider the case of composite having one type of fibers, one type of matrix, and some voids. 

𝑣𝑐,𝑓,𝑚,𝑣: Volumes of composite, fibers, matrix and voids respectively (eg. 𝑖𝑛3). 

Then volume fraction of fibers is: 

𝑉𝑓 = 𝑣𝑓/𝑣𝑐 

Then volume fraction of matrix is: 

𝑉𝑚 = 𝑣𝑚/𝑣𝑐  

Volume fraction of voids is: 

𝑉𝑣 = 𝑣𝑣/𝑣𝑐  

∴ 𝑉𝑓 + 𝑉𝑚 + 𝑉𝑣 = 1 

(Thus, 𝑉𝑓 + 𝑉𝑚 = 1 implies zero void content.) 

2. Limits on 𝑽𝒇 

𝑉𝑓  has some upper limit, from the theoretical as well as the practical perspectives. 

2.1 Theoretical Limit on 𝒗𝑭 or 𝒗𝒇𝒎𝒂𝒙 to be examined by RVE 

RVE = Representative Volume Element 

Used in determining 𝑣𝑓𝑚𝑎𝑥 as well as elastic moduli and so on (see 3.3) 

RVE is the smallest portion of material that is representative of the composite as a whole. 

Here, “smallest” means smallest for analysis; it may or may not fit the strict mathematical definition. 

 



For (a), smallest is 1/8 (half of 1/4 

For (b), smallest is 1/12 (half of 1/6) 

 

𝑆 

𝑑 

𝑙 = 𝑙𝑒𝑛𝑔𝑡ℎ/𝑑𝑒𝑝𝑡ℎ  𝑜𝑓 𝑅𝑉𝐸 

𝑣𝑐 = 𝑆2𝑙 

𝑣𝑓 =
𝜋𝑑2

4
𝑙 

𝑣𝑓 =
𝑣𝑓

𝑣𝑐
=

𝜋𝑑2

4
𝑙

𝑆2𝑙
=

𝜋𝑑2

4𝑆2
 

∴ 𝑣𝑓𝑚𝑎𝑥 = 𝑣𝑓|𝑠=𝑑 =
𝜋

4
= 0.785 

 

 

 

 

 

 

For hexagonal packed: 

𝑣𝑓 =
𝜋𝑑3

2√3𝑆2
 

𝑣𝑓𝑚𝑎𝑥 = 0.907  

 

2.2 Practical Limit 

For fiber-reinforced lamina with long and unidirectional fibers, 𝑣𝑓𝑚𝑎𝑥 = 60% 

Elementary Materials Science, W.F. Hosford, ASM International, 2013 (Ch. 10, p. 117) 



3. Density of the Composite 

𝜌𝑐  𝑓 𝑚: mass densitites (per unit volume) of composite, fibers, and matrix, respectively 

𝑤𝑐  𝑓 𝑚: masses of composite, fibers, and matrix, respectively 

∴ 𝑤𝑐 = 𝜌𝑐𝑣𝑐      𝑤𝑓 = 𝜌𝑓𝑣𝑓     𝑤𝑚 = 𝜌𝑚𝑣𝑚 

And 𝜌𝑐𝑣𝑐 = 𝜌𝑓𝑣𝑓 + 𝜌𝑚𝑣𝑚 

∴  𝜌𝑐 = 𝜌𝑓𝑉𝑓 + 𝜌𝑚𝑉𝑚: works if there is void content 

𝑉𝑓 + 𝑉𝑚 = 1: works if there is ZERO void content 

4. Mass Fractions 

mass fraction of fibers is 𝑊𝑓 = 𝑤𝑓/𝑤𝑐  

mass fraction of matrix is 𝑊𝑚 = 𝑤𝑚/𝑤𝑐  

∴ 𝑊𝑓 + 𝑊𝑚 = 1 

5. Volume Fractions and Mass Fractions 

These fractions are related 

∴ 𝑤𝑐 = 𝜌𝑐𝑣𝑐      𝑤𝑓 = 𝜌𝑓𝑣𝑓     𝑤𝑚 = 𝜌𝑚𝑣𝑚 

∴ 𝑊𝑓 =
𝑤𝑓

𝑤𝑐
=

𝜌𝑓𝑣𝑓

𝜌𝑐𝑣𝑐
=

𝜌𝑓

𝜌𝑐
𝑉𝑓 

=
𝜌𝑓𝑉𝑓

𝜌𝑓𝑉𝑓 + 𝜌𝑚𝑉𝑚
      (𝐸𝑞. 1) 

And: 

𝑊𝑚 =
𝜌𝑚𝑉𝑚

𝜌𝑓𝑉𝑓 + 𝜌𝑚𝑉𝑚
     (𝐸𝑞. 2) 

a) Knowing 𝑉𝑚  𝑉𝑓  𝜌𝑚  𝜌𝑓 

Then 𝑊𝑓  𝑊𝑚 solved by (Eq. 1 and Eq. 2) 

 

b) Knowing 𝑊𝑚  𝑊𝑓  𝜌𝑚 𝜌𝑓 

Then 𝑉𝑚  𝑉𝑓 solved by (Eq. 1 or Eq. 2)  

 

c) How to determine 𝑉𝑣  or 𝑣𝑣? 

mostly by experiments 

1) Some specifications for determining void contents 

For example: 

ASTM D3171-06 

Standard Test Method for Constituent Content of Composite Materials 

ISO-14127:2008 

Composites – Determination of resin, fiber and void content of composites reinforces with carbon fiber. 

2) What the text has in terms of determining void content? 

pp. 212-215 

By means of theoretical density of composite 𝜌𝑐𝑡 and experimental density of composite 𝜌𝑐𝑒 leading to 

(Eq. 3.16) 



 

Example 3.2, which in essence is ASTM-D3171 

d) Equations in 3.2 of the text (pp. 204-215) 

• Some equations are valid only for the case of zero void content 

• Condition under which an equation is valid isn’t spelled out 

• Equations (3.5a), (3.5b), (3.10) 

 

 

e) Corrected volume fractions 

In later sections of chapter 3, 𝑉𝑣  is assumed to be zero. 

When 𝑉𝑣  is NOT zero, corrected volume fractions are to be used 

𝑉𝑓
′ =

𝑣𝑓

𝑣𝑓 + 𝑣𝑚
     ;      𝑉𝑚

′ =
𝑣𝑚

𝑣𝑓 + 𝑣𝑚
 

3.3 Evaluation of Elastic Moduli 

Recalling from 2.3 

Orthotropic materials: 9 independent constants 

𝐸1 𝐸2 𝐸3: Young’s moduli in the 1, 2, and 3 directions, respectively. 

𝐺12 𝐺23 𝐺13: Shear moduli on the 1-2, 2-3, and 3-1 planes respectively. 

𝑣12𝑣23 𝑣31: Poisson’s ratio 

1st subscript: strain in the loading direction 

2nd subscript: lateral strain 

 

 



Note: 

𝐺𝑖𝑗 = 𝐺𝑗𝑖 

But: 

𝑣𝑖𝑗 ≠ 𝑣𝑗𝑖    (but they are related) 

Since: 
𝑣𝑖𝑗

𝐸𝑖
=

𝑣𝑗𝑖

𝐸𝑗
      (but 𝑖 ≠ 𝑗) 

Lamina: 4 independent constants 

𝐸1 𝐸2 𝐺12 𝑣12 

𝑣12: major Poisson’s ratio 

𝑣21: minor Poisson’s ratio 

Major assumptions 

1. Fibers are isotropic 

(this assumption is okay with G-fibers; C- and K- fibers are transversely isotropic) 

2. Matrix is isotropic 

3. Void content is zero 

𝑉𝑓 + 𝑉𝑚 = 1 

or use 𝑉𝑓
′ and 𝑉𝑚

′  

4. Perfect bonding exists between fibers and matrix 

Need to know (i.e., need to determine beforehand) 

fibers: 𝐸𝑓 𝑣𝑓  𝐺𝑓  𝑉𝑓  (or 𝑉𝑓
′) 

matrix: 𝐸𝑚 𝑣𝑚  𝐺𝑚  𝑉𝑚  (or 𝑉𝑚
′ ) 

 (only two are independent) 

4 Subsections 

3.3.1 Strength of Materials Approach (Mechanics of Materials) 

3.3.2 Semi-Empirical Approach 

3.3.3 Theory of Elasticity Approach 

3.3.4 Transversely Isotropic Fibers (C- and K- fibers are transversely isotropic) 

 

  



Example 1 

A unidirectional fiber-reinforced composite consists of one type of fibers and one type of matrix. The 

weight fraction of matrix is 0.45. The specific gravity of the fibers and matrix is 2.5 and 1.3, respectively. 

a) Find the specific gravity of the composite. Assume zero void content. 

b) Find the specific gravity of the composite if 𝑉𝑣 = 5% 

Solution 

a) Given:  

𝜌𝑓 = 2.5 

𝜌𝑚 = 1.3 

𝑊𝑚 = 45% = 0.45 

𝑊𝑓 + 𝑊𝑚 = 1 

∴ 𝑊𝑓 = 0.55 

(𝐸𝑞. 1): 𝑊𝑓 =
𝜌𝑓𝑉𝑓

𝜌𝑓𝑉𝑓 + 𝜌𝑚𝑉𝑚
 

∴ 0.715𝑉𝑚 = 1.125𝑉𝑓  

(𝐸𝑞. 2): 𝑊𝑚 =
𝜌𝑚𝑉𝑚

𝜌𝑓𝑉𝑚 + 𝜌𝑚𝑉𝑚
 

∴ 0.715𝑉𝑚 = 1.125𝑉𝑓  

But we also know that: 
(𝐸𝑞. 3): 𝑉𝑓 + 𝑉𝑚 = 1 

Solving: 

𝑉𝑓 = 0.3886 

𝑉𝑚 = 0.6114 

Thus: 

𝜌𝑐 =  𝜌𝑓𝑉𝑚 + 𝜌𝑚𝑉𝑚 = 1.766 

 

b) 𝑊𝑓 = 0.55 

0.715𝑉𝑚 = 1.125𝑉𝑓  (still holds true) 

𝑉𝑓 + 𝑉𝑚 = 1 − 𝑉𝑣 = 0.95 

Solving: 

𝑉𝑓 = 0.3692 

𝑉𝑚 = 0.5808 

𝜌𝑐 = 1.678 

 

  



Example 2 (similar to midterm question – last year) 

A unidirectional fiber-reinforced composite consists of two types of fibers (fiber 1 and fiber 2) and one 

type of matrix. The total volume is 𝑣𝑐. Void content is assumed zero. The volume fractions of the fibers 

and the matrix are 𝑉𝑓1 and 𝑉𝑓2 and 𝑉𝑚  respectively. The weight densities (per unit volume) of the fibers 

and matrix are 𝜌𝑓1 𝜌𝑓2 and 𝜌𝑚  respectively. Gravitational acceleration is 𝑔. 

a) Express the total mass of the composite in terms of 𝜌𝑓1, 𝜌𝑓1, 𝜌𝑚, 𝑉𝑓1, 𝑉𝑓2, 𝑉𝑚, 𝑣𝑐, and 𝑔; and 

b) Express the mass fraction of fiber 2, in terms of 𝜌𝑓1, 𝜌𝑓2, 𝜌𝑚, 𝑉𝑓1, 𝑉𝑓2, and 𝑉𝑚  

Solution 

a) 𝑤𝑐 = 𝑤𝑓1 + 𝑤𝑓2 + 𝑤𝑚  

𝑤𝑐 =
𝜌𝑓1𝑣𝑓1 + 𝜌𝑓2𝑣𝑓2 + 𝜌𝑚𝑣𝑚

𝑔
∙

𝑣𝑐

𝑣𝑐
 

𝑤𝑐 =
𝜌𝑓1𝑉𝑓1 + 𝜌𝑓2𝑉𝑓2 + 𝜌𝑚𝑉𝑚

𝑔
∙ 𝑣𝑐  

b) 𝑤𝑐 = 𝑤𝑓1 + 𝑤𝑓2 + 𝑤𝑚  

Then: 

𝑤𝑓2 =
𝜌𝑓2𝑣𝑓2

𝑔
𝑣𝑐  

∴ 𝑊𝑓2 =
𝑤𝑓2

𝑤𝑐
=

𝜌𝑓2𝑉𝑓2

𝜌𝑓1𝑉𝑓1 + 𝜌𝑓2𝑉𝑓2 + 𝜌𝑚𝑉𝑚
 

 



3.3.1 Strengths of Materials Approach 

(*) Simple expression for 𝐸1 𝐸2 𝑣12 and 𝐺12  

(*) Being simple & being accurate 

 

{
𝑅𝑉𝐸 → 𝑀𝑜𝑑𝑒𝑙?

𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝑚𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛?
 

(*) 𝐸1 𝐸2 𝑣12 𝐺12 in terms of: 

𝐸𝑓  𝑣𝑓 𝐺𝑓  𝑉𝑓  

𝐸𝑚  𝑣𝑚  𝐺𝑚  𝑉𝑚 

 

RVE for 3.3.1: 

Rectangular packing of fibers 

𝑑: diameter of fibers 

ℎ, 𝑡𝐶 : diameter of rectangle 

𝐿𝑐 = 𝑙𝑐; length of composite 

Square packing → Rectangular packing: 

Principle is to preserve 𝑉𝑓  

∴ ℎ = 𝑡𝑐 = 𝑠 

𝑠 being spacing, see 3.2 

Hexagonal packing → Rectangular packing: 

Principle remains to preserve 𝑉𝑓  

By section 3.2:  

𝑉𝑓 =
𝜋

2√3

𝑑2

𝑆2
  



Hexagonal packing: 

𝑉𝑓 =
𝜋

2√3

𝑑2

𝑆2
 

Rectangular packing: 

 

(Let 𝑙𝑐 be the depth) 

𝑣𝑓 =
𝜋

4
𝑑2 𝑙𝑐  

𝑣𝑐 = ℎ 𝑡𝑐  𝑙𝑐  

𝑉𝑓 =
𝑣𝑓

𝑣𝑐
=

𝜋
4 𝑑2 𝑙𝑐

ℎ 𝑡𝑐  𝑙𝑐
=

𝜋𝑑2

4 ℎ 𝑡𝑐
 

 

Equating rectangular packing to hexagonal packing:  

∴
𝜋𝑑2

4 ℎ 𝑡𝑐
=

𝜋

2√3

𝑑2

𝑆2
  

ℎ 𝑡𝑐 =  √3 𝑆2 (and further, 𝑡𝑐 = 𝛼ℎ) 

3.3.1.1 Longitudinal Young’s Modulus 𝑬𝟏 

RVE: Fig 3.3 of text, top and middle diagrams in particular. 

Determining 𝐸1: 

𝑙𝑐: length of RVE 

𝐴𝑐: cross-section of RVE 

∴ 𝑣𝑐 = 𝐴𝑐𝑙𝑐 

∴ 𝑣𝑓 = 𝑉𝑓𝑣𝑐  

= (𝑉𝑓𝐴𝑐)𝑙𝑐 

𝑉𝑓𝐴𝑐: cross-section of fibers 

𝑣𝑚 = 𝑉𝑚𝑣𝑐 

= (𝑉𝑚𝐴𝑐)𝑙𝑐 

𝑉𝑚𝐴𝑐: cross-section of matrix 

Under 𝐹: 

Axial loading, statically indeterminate 



𝛿 =
𝑃𝐿

𝐸𝐴
 

𝑘 =
𝐸𝐴

𝐿
 

𝑘𝑓 =
𝐸𝑓𝑉𝑓𝐴𝑐

𝑙𝑐
 

𝑘𝑚 =
𝐸𝑚𝑉𝑚𝐴𝑐

𝑙𝑐
 

𝑘𝑐 =
𝐸1𝐴𝑐

𝑙𝑐
 

∴ 𝑘𝑐 = 𝑘𝑓 + 𝑘𝑚  

∴
𝐸1𝐴𝑐

𝑙𝑐
=

𝐸𝑓𝑉𝑓𝐴𝑐

𝑙𝑐
+

𝐸𝑚𝑉𝑚𝐴𝑐

𝑙𝑐
 

∴ 𝐸1 = 𝐸𝑓𝑉𝑓 + 𝐸𝑚𝑉𝑚 (Rule of mixture) 

Rule of Mixture 

It refers to the method of estimating composite’s property by volume-weighted average of like 

properties of the constituents. 

𝐸1: 

𝑅𝑉𝐸: Fig 3.3, middle diagram 

Statically indeterminate problem 

Calculation: Example 3.3 

Comparing with experimental results: Fig 3.6 

𝐸1 is by rule-of-mixture 

𝐸1 is accurate 

 
Figure 3.6 



3.3.1.2 Transverse Young’s Modulus, 𝑬𝟐 

This time, RVE is loaded in the 2-direction. 

 

 



𝐸2: 

Axial loading 

𝑘 =
𝐸𝐴

𝐿
 

𝑘𝑓 =
𝐸𝑓(ℎ 𝑙𝑐)

𝑡𝑓
 

𝑘𝑚 =
𝐸𝑚(ℎ 𝑙𝑐)

𝑡𝑚
 

𝑘𝑐 =
𝐸2(ℎ 𝑙𝑐)

𝑡𝑐
 

∴
1

𝑘𝑐
=

1

𝑘𝑓
+

1

𝑘𝑚
 

∴
𝑡𝑐

𝐸2(ℎ 𝑙𝑐)
=

𝑡𝑓

𝐸𝑓(ℎ 𝑙𝑐)
+

𝑡𝑚

𝐸𝑚(ℎ 𝑙𝑐)
 

∴
1

𝐸2
=

𝑡𝑓

𝐸𝑓  𝑡𝐶
+

𝑡𝑚

𝐸𝑚  𝑡𝑐
 

∴
1

𝐸2
=

𝑉𝑓

𝐸𝑓
+

𝑉𝑚

𝐸𝑚
  (Inverse rule of mixture) 

𝐸2: 

RVE: Figure 3.7 

Calculation: Example 3.4 

Comparing with experimental results: Fig 3.10 inverse ROM results in lower-bound solution. 

Solutions may be as low as 40%~50% of where values should be, depending on the difference between 

𝐸𝑓 and 𝐸𝑚 (or 𝐸𝑓/𝐸𝑚) and 𝑉𝑓  

Typically, the higher the ratio 𝐸𝑓/𝐸𝑚, and/or the higher the 𝑉𝑓  value, the higher the deduction. 

Inverse rule of mixture is simple, but not accurate, because it’s not true axial attention. 

Midterm: October 31st (Thursday) during class time. 

3.3.1.3 Major Poisson’s Ratio 𝒗𝟏𝟐 

 



 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛’𝑠 𝑟𝑎𝑡𝑖𝑜: 

𝑣 = −
𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛
= −

𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑠𝑡𝑟𝑎𝑖𝑛

𝜀1
  

𝑁𝑜𝑟𝑚𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛 𝜀 =
∆𝑙

𝑙𝑜
=

𝑙′ − 𝑙𝑜

𝑙𝑜
  

∴ 𝐹𝑖𝑏𝑒𝑟𝑠: 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛 

=
𝑡𝑓

′ − 𝑡𝑓

𝑡𝑓
 

𝑣𝑓 = −
𝑡𝑓

′ − 𝑡𝑓

𝑡𝑓  𝜀
  

𝑡𝑓
′ = 𝑡𝑓 − 𝑣𝑓𝑡𝑓𝜀1 (𝑬𝒒. 𝟏) 

𝑀𝑎𝑡𝑟𝑖𝑥: 

𝑡𝑚
′ = 𝑡𝑚 − 𝑣𝑚𝑡𝑚𝜀1 (𝑬𝒒. 𝟐) 

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒: 

𝑡𝑐
′ = 𝑡𝑐 − 𝑣12𝑡𝑐𝜀1 (𝑬𝒒. 𝟑) 

(𝑬𝒒. 𝟏) + (𝑬𝒒. 𝟐): 𝑡𝑓
′ + 𝑡𝑚

′ = 𝑡𝑓 + 𝑡𝑚 − (𝑣𝑓𝑡𝑓)𝜀1 = (𝑣𝑚𝑡𝑚)𝜀1 (𝑬𝒒. 𝟒) 

(𝑬𝒒. 𝟑) + (𝑬𝒒. 𝟒): ∴ −𝑣12𝑡𝑐𝜀1 = −𝑣𝑓𝑡𝑓𝜀1 − 𝑣𝑚𝑡𝑚𝜀1 

∴ 𝑣12 = 𝑣𝑓𝑉𝑓 + 𝑣𝑚𝑉𝑚  (𝑟𝑢𝑙𝑒 𝑜𝑓 𝑚𝑖𝑥𝑡𝑢𝑟𝑒) 

𝑣12: 

RVE: Fig. 3.11 

Calculation: Example 3.5 

𝑣12 by rule-of-mixture is accurate 

 

 

 



3.3.1.4 In-plane Shear Modulus 𝑮𝟏𝟐 

 

 

𝐺12: 

𝑀𝑎𝑡𝑟𝑖𝑥: 𝑣𝑚 = tan−1
𝛿𝑚

𝑡𝑚
≈

𝛿𝑚

𝑡𝑚
 

(tan−1 𝑥 ≈ 𝑥  𝑓𝑜𝑟 𝑣𝑒𝑟𝑦 𝑠𝑚𝑎𝑙𝑙 𝑎𝑛𝑔𝑙𝑒𝑠) 

But,  



𝛾𝑚 =
𝜏

𝐺𝑚
 

∴
𝛿𝑚

𝑡𝑚
=

𝜏

𝐺𝑚
 

∴ 𝛿𝑚 =
𝜏 𝑡𝑚

𝐺𝑚
 

𝐹𝑖𝑏𝑒𝑟𝑠: 𝛿𝑓 =
𝜏 𝑡𝑓

𝐺𝑓
 

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝛿𝑐 =  
𝜏 𝑡𝑐

𝐺12
 

And: 
𝜏 𝑡𝑐

𝐺12
=

𝜏 𝑡𝑚

𝐺𝑚
+

𝜏 𝑡𝑓

𝐺𝑓
 

∴
1

𝐺12
=

𝑉𝑓

𝐺𝑓
+

𝑉𝑚

𝐺𝑚
 (𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑟𝑢𝑙𝑒 𝑜𝑓 𝑚𝑖𝑥𝑡𝑢𝑟𝑒) 

𝐺12: 

RVE: Fig. 3.12 

Calculation: Example 3.6 

Comparing with experimental results: Fig. 3.13 

𝐺12 is by inverse rule-of-mixture expression which gives lower bound solution. 

Discussions pertaining 𝐸2 are mostly applicable with the exceptions of smaller deduction (25~40%), and 

the ratio 𝐺𝑓/𝐺𝑚 instead of 𝐸𝑓/𝐸𝑚 

4 sub-sections 

3.3.1 Strength of Materials Approach (Mechanics of Materials) 

3.3.2 Sem-Empirical Approach 

3.3.3 Theory of Elasticity Approach 

3.3.4 Transversely Isotropic Fibers (c- and k- fibers are transversely isotropic) 

3.3.2 Semi-Empirical Models 

A. Some historical notes 

• Mechanics of Materials approach yields simple expressions, rule of mixture (ROM) or inverse ROM; 

General observation is, ROM-based expressions give good accuracy, but the inverse ROM-based 

ones are far from satisfactory. 

• A series of formal approaches (As they are known as) took place after realizing shortcomings of the 

inverse ROM. Such approaches were based on theory of elasticity, in one form or the others. The 

differences lie in the methodologies of solving the PDEs involved. 

• Basic assumptions behind the formal approaches are, noting that some of the basic assumptions 

have been used in 3.3.1 

o Fibers and matrix are homogeneous and isotropic; 

o The resulting composite is homogeneous and orthotropic; 

o Void content is zero; 



o There is perfect bonding between constituents; 

o Constituents and resulting composite are linearly elastic; 

o Composite is initially stress-free; 

o Fibers are regularly spaced and aligned. 

• The formal approaches include the following methods, to list just a few 

o Classical or exact method (See 3.3.3) 

o Variation methods or energy methods that are either analytical or numerical. The former 

gives rise to bounds on elastic moduli; and the latter typically leads to finite difference 

method and finite element method. 

o Mori-Tanaka models (or inclusion models). The key aspect is to assume that the average 

strain of the inclusion (i.e., the fibers) is related to the average strain of the matrix by a to-

be-determined fourth-order tensor. 

o Self-consistent models (suitable for composites having particulate or short fibers as 

reinforcing phase) ….. 

• To meet the desire of engineers to have simple yet accurate formulas, efforts were taken, in the 

1960’ to 1970’, to interpolate existing theoretical as well as experimental results. 

o Experimental data to best-fit ROM- or inverse ROM-based formulas with modifying factors 

(wasn’t successful); 

o Experimental data to best-fit re-arranged formulas from self-consistent models, and 

simplified by introducing factors (was successful); 

o Halpin-Tsai formulas/equations are the best-known outcome of such effort; self-consistent 

models with factors. 

Example: Two fiber-reinforced laminas of unidirectional continuous fibers consistent of pitch-based 

graphite fibers and epoxy, and Kevlar 49 and epoxy respectively. The laminas have the same corrected 

volume fractions: 𝑉𝑓
′ = 58% and 𝑉𝑚

′ = 42%. The Young’s moduli of the fibers can be found in Tables 

1.8, 1.9, and 1.10 of the text. Poisson’s ratios are, 0.22 for graphite, 0.35 for Kevlar 49, and 0.32 for 

epoxy, respectively.  

For each of the laminas, determine the four elastic moduli by: 

(a) The mechanics of materials approach; 

(b) The semi-empirical approach; and 

(c) The theory of elasticity approach. 

From the Tables: 𝐸𝑓𝐺 = 55 𝑀𝑝𝑠𝑖, 𝐸𝑓𝐾 = 19 𝑀𝑝𝑠𝑖, and 𝐸𝑚 = 0.55 𝑀𝑝𝑠𝑖 

Shear moduli of the fibers and epoxy are evaluated: 𝐺𝑓𝐺 = 22.5 𝑀𝑝𝑠𝑖, 𝐺𝑓𝐾 = 7.04 𝑀𝑝𝑠𝑖m 𝐺𝑚 =

0.208 𝑀𝑝𝑠𝑖. 

(a) The mechanics of materials approach: 

 Graphite/Epoxy Kevlar/Epoxy 

𝐸1, 𝑀𝑝𝑠𝑖 32.13 11.25 
𝐸𝑓/𝐸𝑚 100 34.5 

𝐸2, 𝑀𝑝𝑠𝑖 1.29 1.26 

𝑣12 0.262 0.337 
𝐺𝑓/𝐺𝑚 108 33.8 

𝐺12, 𝑀𝑝𝑠𝑖 0.489 0.420 



   

 

(b)  

 



Experimental as well as analytical work leading to the H-T formulas was conducted at US Wright 

Patterson Air Force Base (Dayton, Ohio) during the 1970s. 

Halpin and Tsai then published an internal technical report [Environmental Factors in Composite 

Materials Design, J.C. Halpin and S.W. Tsai, AFML TR-423] summarizing the work, hence Halpin-Tsai 

formulas or equations.  

In the text, Halphin and Haphin are incorrect spelling. 

C. State-of-the-art in terms of predicting elastic moduli 

Predicting 𝐸2, 𝐺12, and 𝐺23 (𝐺23 is required when dealing with transversely isotropic fibers) remains a 

challenge, especially when new fibers and matrix are considered.  

Chamis model, also a semi-empirical model, seems robust. 

Bridging model, which is an analytical model, proves to be reliable, albeit not straightforward. 

FE models, however detailed, have not proven themselves more accurate than analytical models or 

semi-empirical models. 

A composite’s elastic modulus 𝑃𝑐 is found by: 

𝑃𝑐 =
𝑃𝑚(1 + 𝜁𝜂𝑉𝑓)

1 − 𝜂𝑉𝑓
 

Where: 

𝑃𝑐 can be either 𝐸1, 𝐸2, or 𝐺12 for example; 

𝑉𝑓  is the volume fraction of fibers; 

𝜁 is a factor that is used to describe the influence of geometry of the fibers; 

𝜁 depends on 𝑉𝑓, and has different values for different moduli of the composite; 

𝜂 =
𝑃𝑓/𝑃𝑚 − 1

𝑃𝑓/𝑃𝑚 + 𝜁
 

𝑃𝑚 , 𝑃𝑓  are the corresponding moduli of the matrix, and the fibers, respectively. 

Fibers should be interpreted as reinforcing phases, within the context of the H-T formulas. 

Factor 𝜁 and Recommendation 

Unidirectional continuous fibers 

𝐸1 ROM 

𝐸2 𝜁 = 2 + 40𝑉𝑓
10 

𝐺12 𝜁 = 1 + 40𝑉𝑓
10 

𝑣12 ROM 

 

Particulate 

𝐸1 𝜁 = 2 + 40𝑉𝑓
10 

𝐸2 𝜁 = 2 + 40𝑉𝑓
10 

𝐺12 𝜁 = 1 + 40𝑉𝑓
10 

𝑣12 ROM 



Example: Two fiber-reinforced laminas of unidirectional continuous fibers consistent of pitch-based 

graphite fibers and epoxy, and Kevlar 49 and epoxy respectively. The laminas have the same corrected 

volume fractions: 𝑉𝑓
′ = 58% and 𝑉𝑚

′ = 42%. The Young’s moduli of the fibers can be found in Tables 

1.8, 1.9, and 1.10 of the text. Poisson’s ratios are, 0.22 for graphite, 0.35 for Kevlar 49, and 0.32 for 

epoxy, respectively.  

For each of the laminas, determine the four elastic moduli by: 

(a) The mechanics of materials approach; 

(b) The semi-empirical approach; and 

(c) The theory of elasticity approach. 

From the Tables: 𝐸𝑓𝐺 = 55 𝑀𝑝𝑠𝑖, 𝐸𝑓𝐾 = 19 𝑀𝑝𝑠𝑖, and 𝐸𝑚 = 0.55 𝑀𝑝𝑠𝑖 

Shear moduli of the fibers and epoxy are evaluated: 𝐺𝑓𝐺 = 22.5 𝑀𝑝𝑠𝑖, 𝐺𝑓𝐾 = 7.04 𝑀𝑝𝑠𝑖m 𝐺𝑚 =

0.208 𝑀𝑝𝑠𝑖. 

(b) H-T Formulas (for Kevlar/Epoxy only) 

𝐸1 = 11.25 (from ROM approach) 

𝑣12 = 0.337 (from ROM approach) 

𝐸2: 

𝜁 = 2 + 40𝑉𝑓
10 

= 2.172 

𝜂 =
𝑃𝑓/𝑃𝑚 − 1

𝑃𝑓/𝑃𝑚 + 𝜁
 

𝜂 =
(34.5) − 1

(34.5) + 2.172
= 0.9135 

𝑃𝑐 =
𝑃𝑚(1 + 𝜁𝜂𝑉𝑓)

1 − 𝜂𝑉𝑓
 

𝐸2 =
𝐸𝑚(1 + 𝜁𝜂𝑉𝑓)

1 − 𝜂𝑉𝑓
= 2.516 𝑀𝑝𝑠𝑖 

(should be higher than number obtained from mechanics of materials approach.) 

𝐺12: 

𝜁 = 1 + 40𝑉𝑓
10 

= 1.172 

𝜂 =
(33.8) − 1

(33.8) + 1.172
= 0.9379 

𝐺12 = 0.7469 𝑀𝑝𝑠𝑖 

 Graphite/Epoxy Kevlar/Epoxy 

𝐸1,𝑀𝑝𝑠𝑖 32.13 11.25 
𝐸𝑓/𝐸𝑚 100 34.5 

𝐸2,𝑀𝑝𝑠𝑖 2.79 2.52 

𝑣12 0.262 0.337 
𝐺𝑓/𝐺𝑚 108 33.8 

𝐺12, 𝑀𝑝𝑠𝑖 0.803 0.747 



 Graphite/Epoxy Kevlar/Epoxy 
𝐸𝑓/𝐸𝑚 100 34.5 

𝐸2(𝐼𝑅𝑂𝑀)/𝐸2(𝐻−𝑇) 46% 50% 

𝐺𝑓/𝐺𝑚 108 33.8 

𝐺12(𝐼𝑅𝑂𝑀)/𝐺12(𝐻−𝑇) 61% 56% 

 

 



 

Theory of Elasticity Using the Cylindrical Coordinates 

The following elasticity theory is for homogeneous, isotropic and linearly elastic materials. Therefore, it 

is applicable to isotropic fiber as a cylinder, and matrix as a cylinder. 

As a reminder, composites reinforced with unidirectional continuous fibers are not isotropic. Carbon or 

graphite fibers, and aramid fibers are transversely isotropic. 

 

 

 



1. Cylindrical Coordinates (r, 𝜽, 𝒛) 

 

Typically, z represents direction 1; r and 𝜃 form the 2-3 plane. 

2. Unknowns 

The 15 unknowns are: 

Displacements 𝑢𝑟 𝑢𝜃  𝑢𝑧  

Stresses 𝜎𝑟 𝜎𝜃  𝜎𝑧 𝜏𝑟𝜃  𝜏𝜃𝑧 𝜏𝑧𝑟  

Strains 𝜀𝑟  𝜀𝜃  𝜀𝑧 𝛾𝑟𝜃  𝛾𝜃𝑧  𝛾𝑧𝑟  

3. Relations Governing the 15 Unknowns 

There are 3 sets of relations. 

(A) The strain displacement relations: 

𝜀𝑟 =
𝜕𝑢𝑟

𝜕𝑟
 

𝜀𝜃 =
𝑢𝑟

𝑟
+

1

𝑟

𝜕𝑢𝜃

𝜕𝜃
  

𝜀𝑧 =
𝜕𝑢𝑧

𝜕𝑧
 

𝛾𝑟𝜃 =
𝜕𝑢𝜃

𝜕𝑟
+

1

𝑟

𝜕𝑢𝑟

𝜕𝜃
−

𝑢𝜃

𝑟
 

𝛾𝜃𝑧 =
1

𝑟

𝜕𝑢𝑧

𝜕𝜃
+ 

𝜕𝑢𝜃

𝜕𝑧
 

𝛾𝑧𝑟 =
𝜕𝑢𝑟

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑟
 

Where 𝑢𝑟  𝑢𝜃  and 𝑢𝑧  are displacements in the 𝑟, 𝜃, and 𝑧 directions, respectively. 

 



(B) The stress-strain relations (or the Hooke’s law, or the consecutive relations) 

{𝜎} = [𝜎𝑟 𝜎𝜃  𝜎𝑧 𝜏𝑟𝜃  𝜏𝜃𝑧  𝜏𝑧𝑟]
𝑇 

{𝜀} = [𝜀𝑟  𝜀𝜃  𝜀𝑧 𝛾𝑟𝜃  𝛾𝜃𝑧 𝛾𝑧𝑟]
𝑇 

{𝜎} = [𝐶]{𝜀} 

Where [𝐶} is the 6x6 matrix: 

[𝐶] =

[
 
 
 
 
 
𝐶1 𝐶2 𝐶2 0 0 0
𝐶2 𝐶1 𝐶2 0 0 0
𝐶2 𝐶2 𝐶1 0 0 0
0 0 0 𝐺 0 0
0 0 0 0 𝐺 0
0 0 0 0 0 𝐺]

 
 
 
 
 

 

Where 𝐶1 and 𝐶2 are constants in terms of 𝐸 and 𝑣 

(C) The equilibrium equations: 

𝜕𝜎𝑟

𝜕𝑟
+

1

𝑟

𝜕𝜏𝑟𝜃

𝜕𝜃
+

𝜎𝑟 − 𝜎𝜃

𝑟
+

𝜕𝜏𝑧𝑟

𝜕𝑧
+ 𝑅̅ = 0 

1

𝑟
 
𝜕𝜎𝜃

𝜕𝜃
+

𝜕𝜏𝑟𝜃

𝜕𝑟
+

2𝜏𝑟𝜃

𝑟
+

𝜕𝜏𝜃𝑧

𝜕𝑧
+ 𝜃̅ = 0 

𝜕𝜎𝑧

𝜕𝑧
+

1

𝑟

𝜕𝜏𝜃𝑧

𝜕𝜃
+

𝜕𝜏𝑧𝑟

𝜕𝑟
+

𝜏𝑧𝑟

𝑟
+ 𝑍̅ = 0 

Where terms with over-bar are body forces in the 𝑟, 𝜃, and 𝑧 directions, respectively. Body forces are 

forces per unit volume.  

For example, if the cylinder is heavy and 𝑧 takes the vertical direction, then 𝑍̅ = −𝜌𝑔with 𝜌 being the 

mass density per unit volume and 𝑔 being the gravitational acceleration. 

Centrifugal force is another example of body force: 𝑅̅ = 𝜌𝑟𝜔2. Again, 𝜌 is the mass density per unit 

volume. 

Note that sets (A) and (C) are differential. Set (B) is linear. 

4. Axisymmetric Problems 

It means symmetry about the z-axis, as a result, (a) the unknowns are now functions of 𝑟 and 𝑧 only; 

and (b) 𝑢𝜃 = 0. 

𝜀𝑟 =
𝜕𝑢𝑟

𝜕𝑟
 

𝜀𝜃 =
𝑢𝑟

𝑟
+

1

𝑟

𝜕𝑢𝜃

𝜕𝜃
  

𝜀𝑧 =
𝜕𝑢𝑧

𝜕𝑧
 

𝛾𝑟𝜃 =
𝜕𝑢𝜃

𝜕𝑟
+

1

𝑟

𝜕𝑢𝑟

𝜕𝜃
−

𝑢𝜃

𝑟
= 0 



𝛾𝜃𝑧 =
1

𝑟

𝜕𝑢𝑧

𝜕𝜃
+ 

𝜕𝑢𝜃

𝜕𝑧
= 0 

𝛾𝑧𝑟 =
𝜕𝑢𝑟

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑟
 

As a result, 𝛾𝑟𝜃  and 𝛾𝜃𝑧 = 0. Because of homogenous, isotropic, and linearly elastic material 

assumption, 𝜏𝑟𝜃 = 𝜏𝜃𝑧 = 0. Vectors {𝜎} and {𝜀} are reduced to 4x1; [C] is a 4x4 matrix. 

5. Additional simplifications 

5.1 All body forces are zero. 

- Second equilibrium equation is satisfied, automatically: 

1

𝑟
 
𝜕𝜎𝜃

𝜕𝜃
+

𝜕𝜏𝑟𝜃

𝜕𝑟
+

2𝜏𝑟𝜃

𝑟
+

𝜕𝜏𝜃𝑧

𝜕𝑧
+ 𝜃̅ = 0 

5.2 𝜏𝑧𝑟 = 0, or no shear deformation on any 𝑧 − 𝑟 plane. 

- The third equilibrium equation becomes: 

𝜕𝜎𝑧

𝜕𝑧
+

1

𝑟

𝜕𝜏𝜃𝑧

𝜕𝜃
+

𝜕𝜏𝑧𝑟

𝜕𝑟
+

𝜏𝑧𝑟

𝑟
+ 𝑍̅ = 0 

That is: 

𝜕𝜎𝑧

𝜕𝑧
= 0 

Which means 𝜎𝑧 is either a constant, or a function of 𝑟 only. The option 𝜎𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 is chosen. 

- The first equilibrium equation simplified to: 

𝜕𝜎𝑟

𝜕𝑟
+

1

𝑟

𝜕𝜏𝑟𝜃

𝜕𝜃
+

𝜎𝑟 − 𝜎𝜃

𝑟
+

𝜕𝜏𝑧𝑟

𝜕𝑧
+ 𝑅̅ = 0 

Or: 

𝜕𝜎𝑟

𝜕𝑟
+

𝜎𝑟 − 𝜎𝜃

𝑟
= 0     (𝐸𝑞. 1) 

- 𝛾𝑧𝑟 = 0 due to homogeneous, isotropic, and linearly elastic material assumption. ** 

 

6. PDE to ODE 

Making use of strain-stress relations (the inverse of stress-strain relations) such that equation (𝐸𝑞. 1) is 

in terms of strains 𝜀𝑟 , 𝜀𝜃 , and 𝜀𝑧. 

From strain-displacement relations, 

𝜀𝑟 =
𝜕𝑢𝑟

𝜕𝑟
 

𝜀𝜃 =
𝑢𝑟

𝑟
+

1

𝑟

𝜕𝑢𝜃

𝜕𝜃
  

𝜀𝑧 =
𝜕𝑢𝑧

𝜕𝑧
 



𝛾𝑟𝜃 =
𝜕𝑢𝜃

𝜕𝑟
+

1

𝑟

𝜕𝑢𝑟

𝜕𝜃
−

𝑢𝜃

𝑟
= 0 

𝛾𝜃𝑧 =
1

𝑟

𝜕𝑢𝑧

𝜕𝜃
+ 

𝜕𝑢𝜃

𝜕𝑧
= 0 

𝛾𝑧𝑟 =
𝜕𝑢𝑟

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑟
= 0 

Making use of the following in particular 

𝜀𝑟 =
𝜕𝑢𝑟

𝜕𝑟
 

𝜀𝜃 =
𝑢𝑟

𝑟
 

𝜀𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝜎𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Then the final form of (𝐸𝑞. 1) is in terms of displacements. 

By now, there is only one displacement, 𝑢𝑟 , that is involved. Also, 𝑢𝑟  is no longer a function of 𝑧. 

Therefore, the subscript 𝑟 in 𝑢𝑟  can be dropped (i.e., 𝑢 now denotes the radial displacement), and the 

partial derivatives become ordinary derivatives. The final form of (𝐸𝑞 1) is: 

𝑑2𝑢

𝑑𝑟2
+

1

𝑟

𝑑𝑢

𝑑𝑟
−

𝑢

𝑟2
= 0     (𝐸𝑞. 2) 

The solution to (𝐸𝑞. 2) is: 

𝑢 = 𝐴𝑟 +
𝐵

𝑟
     (𝐸𝑞. 3) 

Where A and B are constants to be determined by boundary conditions. 

(𝐸𝑞. 2) and (𝐸𝑞. 3) are numbered as (𝐸𝑞. 3.73) and (𝐸𝑞. 3.78), respectively, in the text. 

 



To determine constants A and B, two types of boundary conditions need to be considered.  

1st : displacement-type of essential B.C.’s 

2nd : stress or force-type or natural B.C.’s 

With the first type of B.C.’s, (Eq. 3.78) or (Eq. 3) can be applied directly. 

With the second type of B.C.’s, 

𝑢 → 𝜀𝑟  𝜀𝜃  𝜀𝑧  (strain-displacement relation) 

𝜀𝑠
′ → 𝜎𝑟 𝜎𝑧 (stress-strain relation) 

𝑢 = 𝐴𝑟 + 𝐵/𝑟 

𝜀𝑟 = 𝜕𝑢/𝜕𝑟 = 𝑑𝑢/𝑑𝑟 = 𝐴 − 𝐵/𝑟2 

𝜀𝜃 = 𝑢/𝑟 = 𝐴 + 𝐵/𝑟2 

𝜀𝑧 = 𝜀1 

If material is homogeneous, isotropic and linearly elastic: 

{

𝜎𝑟

𝜎𝜃

𝜎𝑧

} = [𝐶] {
𝐴 − 𝐵/𝑟2

𝐴 + 𝐵/𝑟2

𝜀1

} 

[𝐶] is a constant matrix, in terms of 𝐸 and 𝑣. Details are given in (Eq. 3.70) or (Eq. 3.71) 

∴  𝜎𝑟 = (𝐶11 + 𝐶12)𝐴 +
𝐶12 − 𝐶11

𝑟2
𝐵 + 𝐶12𝜀1     (𝐸𝑞. 4) 

𝜎𝑧 = 2𝐶12𝐴 + 𝐶11𝜀1     (𝐸𝑞. 5) 

𝐶11 , 𝐶12 are given by (Eq. 3.72) 

3.3.3 Elasticity Approach 

3.3.3.1 Longitudinal Young’s Modulus 𝑬𝟏 

1) RVE: two concentric cylinders (this RVE is also used with 𝑣12) such RVE is known as CCA or CAM  

CCA: composite cylinder assembly 

CAM: cylindrical assembly model 

  

 



Fibers: 0 ≤ 𝑟 ≤ 𝑎 

Matrix: 𝑎 ≤ 𝑟 ≤ 𝑏 

∴ 𝑉𝑓 =
𝑎2

𝑏2
    (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.63) 

or 𝑎/𝑏 = √𝑉𝑓  

2) A homogenous cylinder representing composite 

 

Assuming that 𝜀1 is the longitudinal/axial strain developed, after application of 𝑃. 

∴  𝜎1 =
𝑃

𝜋𝑏2
     (𝐸𝑞. 3.64) 

meanwhile, 𝜎1 = 𝐸1𝜀1    (𝐸𝑞. 3.65) 

∴ 𝐸1 =
𝜎1

𝜀1
=

𝑃

𝜋𝑏2𝜀1
     (𝐸𝑞. 3.66) 

objective is to write 𝑃 in terms of 𝜀1 such that 𝐸1 is independent of P. 

3) The “fibers” cylinder 

(Eq. 3) becomes: 

𝑢𝑓 = 𝐴𝑓𝑟 +
𝐵𝑓

𝑟
     (0 ≤ 𝑟 ≤ 𝑎) 

𝐵𝑓  must be zero 

∴ 𝑢𝑓 = 𝐴𝑓 ∙ 𝑟     (0 ≤ 𝑟 ≤ 𝑎)    (𝐸𝑞. 3.81) 

(𝐸𝑞. 4) and (𝐸𝑞. 5) become: 

{
𝜎𝑟

𝑓 = (𝐶11
𝑓 + 𝐶12

𝑓 )𝐴𝑓 + 𝐶12
𝑓 𝜀1

𝜎𝑧
𝑓 = 2𝐶12

𝑓 + 𝐶11
𝑓 𝜀1

 }  (𝐸𝑞. 3.84) 

Where 0 ≤ 𝑟 ≤ 𝑎 

4) The “matrix” cylinder 
(𝐸𝑞. 3)~(𝐸𝑞. 5) become: 

𝑢𝑚 = 𝐴𝑚𝑟 +
𝐵𝑚

𝑟
 

{
𝜎𝑟

𝑚 = (𝐶11
𝑚 + 𝐶12

𝑚)𝐴𝑚 +
𝐶12

𝑚 − 𝐶11
𝑚

𝑟
𝐵𝑚 + 𝐶12

𝑚𝜀1

𝜎𝑧
𝑚 = 2𝐶12

𝑚𝐴𝑚 + 𝐶11
𝑚𝜀1

} (𝐸𝑞. 3.86) 

Where 0 ≤ 𝑟 ≤ 𝑎 



So far, unknown constants are: 

𝐴𝑓  𝐴𝑚  𝐵𝑚  and 𝜀1 

And 𝜀1 is related to 𝑃. 

5) Boundary conditions 

5.1) At interface between fibers and matrix cylinders where 𝑟 = 𝑎 

𝑢𝑓 = 𝑢𝑚      (𝐸𝑞. 3.88)~(𝐸𝑞. 3.89) 

𝜎𝑟
𝑓

= 𝜎𝑟
𝑚      (𝐸𝑞. 3.90 )~(𝐸𝑞. 3.91) 

5.2) At the outer surface of the matrix cylinder 

𝑤ℎ𝑒𝑟𝑒 𝑟 = 𝑏 

𝜎𝑟
𝑚 = 0     (𝐸𝑞. 3.92)~(𝐸𝑞. 3.93) 

The above three boundary conditions are involved with 𝐴𝑓𝐴𝑚  𝐵𝑚  and 𝜀1; 

𝐴𝑓  𝐴𝑚  𝐵𝑚  are then solved in terms of 𝜀1; 

5.3) On any cross-section of CCA or CAM, static equilibrium requires: 

∫ ∫ 𝜎𝑧 𝑑𝐴
 

𝐴

= 𝑃
 

 

 

or ∫ ∫ 𝜎𝑧
𝑓  𝑑𝐴

 

𝐴𝑓
+  ∫ ∫ 𝜎𝑧

𝑚  𝑑𝐴
 

𝐴𝑚

 

 
= 𝑃

 

 
     (𝐸𝑞. 3.94)~(𝐸𝑞. 3.97) 

Which results in a relation between 𝑃 and 𝜀1. 

6) Grand finale 

back to (Eq. 3.66) 

𝐸1 =
𝑃

𝜋𝑏2𝜀1
 

After lengthy simplification: 

𝐸1 =

 
3.3.3.2 Major Poisson’s Ratio 𝒗𝟏𝟐 

(
𝑢𝑚

𝑟
)

𝑟=𝑏
 is the lateral strain 

and:  

(
𝑢𝑚

𝑟
)

𝑟=𝑏

=
𝐴𝑚𝑏 +

𝐵𝑚

𝑏
𝑏

= 𝐴𝑚 +
𝐵𝑚

𝑏2
 

∴ 𝑣12 = −
𝐴𝑚 +

𝐵𝑚

𝑏2

𝜀1
 

After lengthy simplification: 



𝑣12 = 𝑣𝑓𝑉𝑓 + 𝑣𝑚𝑉𝑚  

𝑣12 =

 
See example 3.10 for numerical application 

 

3.3.3.3 Transverse Young’s Modulus 𝑬𝟐 

• CCA model gives lower and upper bounders of 𝐸2 

• 3-phase model gives an exact solution for 𝐺23 which will lead to 𝐸2 = 2(1 + 𝑣23)𝐺23 

• Example 3.11 for detailed steps 

 

a) (missed note) 

 

b) CCA model was used, together with energy method (which is different from the classical method of 

solving PDEs/ODEs) 

 

c) Upper bound: maximum potential energy principle  
actual strain energy  strain energy by trial

(which is completely unknown ≤ functions meeting certain
due to complexity of problem)  conditions 

  

 

d) Lower bound: minimum complementary energy principle 
actual complementary  complementary energy by

strain energy ≤ trial functions meeting
(unknown)   certain conditions 

 

 

 
Strain energy: in terms of strains and elastic moduli 

Complementary strain energy: in terms of stresses and compliances (compliances are the inverse of elastic 

moduli) 

 

f) the Principle of Minimum Potential Energy: 

Of all displacement fields satisfying the prescribed displacement boundary conditions, the field which 

satisfied stress equilibrium minimizes the stored elastic energy of the system. 

 



g) the Principle of Minimum Complementary Energy: 

Among those stress distributions that satisfy the stress equilibrium condition at each point, and that are 

in equilibrium with the external loads acting on the body, the true stress distribution minimizes the strain 

energy. 

 

B) 3-phase model (Fig 3.20) 

Exact solution for 𝐺23: work by R.M. Christensen and K.H. Lo, “Solutions for Effective Shear Properties in 

Three Phase Sphere and Cylinder Models”, J. Mech. And Phys. of Solids, 1979. 

 

Then: 𝐸2 = 2(1 + 𝑣23)𝐺23 

 

 
 

C) Example 3.11 

 

3.3.3.4 Axial Shear Modulus G12 (or In-Plane Shear Modulus) 

1) RVE:  

CCA or CAM, see Fig. 3.19 

But it’s no longer an axisymmetric case 

 

2) Coordinates 

Rectangular coordinates: 𝑥1, 𝑥2, 𝑥3 

Displacements: 𝑢1 – axial displacement 

𝑢2, 𝑢3 − displacement along 2- and 3- axis. 

Cylindrical coordinates:  𝑟, 𝜃, 𝑧 

 

3) Solution method: 

Simi-inverse method 

A certain form of displacement solution is assumed, typically with parameters to be determined so that 

equilibrium and/or boundary conditions can be met. 

{ Composite 

A B 



4) Assumed displacements 

 
 

Where,  F(𝑥2, 𝑥3) is a unknown function to be determined; 

𝛾12
0  is imposed shear strain, similar to the 𝜀1 that is assumed in 3.3.3.1 and 3.3.3.2 in order to evaluate 

𝐸1 and 𝑣12. Here, 𝛾12
0  is imposed so as to evaluate 𝐺12. 

 

5) Roadmap to 𝐺12 

- Condition 𝐹(𝑥2, 𝑥3) must meet: (Eq. 3.117) 

- Transformation F(𝑥2, 𝑥3) to 𝐹(𝑟, 𝜃): (Eq. 3.118 ~ Eq. 3.126) 

- Solution of 𝐹(𝑟, 𝜃): (Eq. 126), 𝐹(𝑟, 𝜃) = (𝐴𝑟 +
𝐵

𝑟
) 𝑐𝑜𝑠𝜃 

- 𝑢1(𝑟, 𝜃), 𝜏1𝑟(𝑟, 𝜃) 

- 𝑢1, 𝜏1𝑟  for fiber cylinder (𝐴1, 𝛾12
0 )  

- 𝑢1, 𝜏1𝑟  for matrix cylinder (𝐴2 , 𝐵2, 𝛾12
0 )  

- 4 boundary conditions 

𝑟 = 𝑎, 2 conditions 
𝑟 = 𝑏, 2 conditions 

𝐴1, 𝐴2, 𝐵2 in terms of 𝛾12
0  

∴  𝜏12
𝑚  in terms of 𝛾12

0  

𝐺12 =
𝜏12

𝑚 |𝑟=𝑏,   𝜃=0

𝛾12
0  

Final expression: 

 
 

6) Example 3.12 for numerical applications of (3.160).  



 
 

(a) The mechanics of materials approach 

 
 

(b) The semi-empirical approach 

- from previous notes 

 

(c) The theory of elasticity approach 

- from MATLAB 

 

Summary of results: 

Graphite/Epoxy 

 𝑀𝑒𝑐ℎ 𝑜𝑓 𝑀𝑎𝑡’𝑙𝑠 𝐻 − 𝑇 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 
𝐸1, 𝑀𝑝𝑠𝑖 32.13 32.13 32.13 
𝐸𝑓/𝐸𝑚 100 100 100 

𝐸2, 𝑀𝑝𝑠𝑖 1.29 2.79 2.01 
𝑣12  0.262 0.262 0.255 

𝐺𝑓/𝐺𝑚 108 108 108 

𝐺12, 𝑀𝑝𝑠𝑖 0.489 0.803 0.759 
 

Kevlar Epoxy 

 𝑀𝑒𝑐ℎ 𝑜𝑓 𝑀𝑎𝑡’𝑙𝑠 𝐻 − 𝑇 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 
𝐸1, 𝑀𝑝𝑠𝑖 11.25 11.25 11.25 
𝐸𝑓/𝐸𝑚 34.5 34.5 34.5 

𝐸2, 𝑀𝑝𝑠𝑖 1.26 2.52 1.88 
𝑣12  0.337 0.337 0.340 

𝐺𝑓/𝐺𝑚 33.8 33.8 33.8 

𝐺12, 𝑀𝑝𝑠𝑖 0.477 0.747 0.711 
 

Revised: 0.477 



Summary re: Elasticity approach 

1) CCA or CAM, and 3-phase model 

2) “Exact” solutions: 𝐸1 𝑣12 𝐺12, 𝐺23 → 𝐸2 

3) Values typically fall between those by mech of materials , and by H-T. 

Fig 3.21 comparing 𝐸2 by 3 approaches 

Fig 3.22 comparing 𝐺12 by 3 approaches 

4) Derivations seem lengthy, so do some final expressions 

5) It introduced artificial voids. 



3.3.4 Transversely Isotropic Fibers 

• Glass fibers are isotropic 

• Carbon/graphite and aramid fibers are transversely isotropic 

 

1) Elastic modulus for the fibers 

𝐸𝑓𝐿: Young’s Modulus in the Longitudinal direction 

𝐸𝑓𝑇: Young’s Modulus in the Transverse direction 

𝑣𝑓𝐿: Major Poisson’s Ratio (that is 𝑣𝑓𝐿𝑇) 

𝑣𝑓𝑇: Minor Poisson’s Ratio (or 𝑣𝑓𝑇𝐿) 

𝐺𝑓𝑇: Shear modulus in the L-T plane 

2) Elastic moduli of the composite (Mechanics of Materials Approach) 

𝐸1 = 𝐸𝑓𝐿𝑉𝑓 + 𝐸𝑚𝑉𝑚 

𝑣12 = 𝑣𝑓𝐿𝑉𝑓 + 𝑣𝑚𝑉𝑚 

1

𝐸2
=
𝑉𝑓

𝐸𝑓𝑇
+
𝑉𝑚
𝐺𝑚

 

1

𝐺12
=
𝑉𝑓

𝐺𝑓1
+
𝑉𝑚
𝐺𝑚

 

3) Elastic moduli of the composite (Halpin-Tsai Method) 

𝐸2: 𝐸𝑓 ← 𝐸𝑓𝑇 

𝐺12: 𝐺𝑓 ← 𝐺𝑓𝑇 

4) Elastic moduli of the composite (Elasticity approach) 

𝐸1: 𝐸𝑓 ← 𝐸𝑓𝐿  ;  𝑣𝑓 ← 𝑣𝑓𝐿 

𝑣12: 𝑣𝑓 ← 𝑣𝑓𝐿  ;  𝐸𝑓 ← 𝐸𝑓𝐿 

𝐺12: 𝐺𝑓 ← 𝐺𝑓𝑇 

𝐸2: 𝑣𝑓 ← 𝑣𝑓𝑇  

       𝐺𝑓 ← 𝐺𝑓𝑇𝑇  

       𝐸𝑓 ← 𝐸𝑓𝑇  



𝐺𝑓𝑇𝑇  fibers shear modulus in the T-T plane 

𝐺𝑓𝑇𝑇 =
𝐸𝑓𝑇

2(1 + 𝑣𝑓𝑇)
 

Example: Find 𝐸1, 𝐸2, 𝐺12, and 𝑣12 by the three approaches. 

Graphite fibers: 

𝑉𝑓 = 0.6 

𝐸𝑓𝐿 = 345 𝐺𝑃𝑎  

𝐸𝑓𝑇 = 9.66 𝐺𝑃𝑎 

𝐺𝑓𝑇 = 2.07 𝐺𝑃𝑎 

𝑣𝑓𝐿 = 0.2 

Epoxy fibers: 

𝑉𝑚 = 0.4 

𝐸𝑚 = 3.45 𝐺𝑃𝑎  

𝐺𝑚 = 1.28 𝐺𝑃𝑎 

𝑣𝑚 = 0.35 

Solution: 

𝑣𝑓𝑇 = 0.0056 

𝐺𝑓𝑇𝑇 = 4.80 𝐺𝑃𝑎 

Mechanics of Materials method: 

𝐸1 = 208.38 𝐺𝑃𝑎  

𝐸2 = 5.6163 𝐺𝑃𝑎 

𝐺12 = 1.6602 𝐺𝑃𝑎 

𝑣12 = 0.26000 

Halpin-Tsai method: 

𝐸2 = 6.4988 𝐺𝑃𝑎  

𝜌 = 2.2419 

𝑛 = 0.35701 

𝐺12 = 1.7070 𝐺𝑃𝑎  

𝜌 = 1.2419 

𝑛 = 0.21587 

Elasticity method: 

𝐸1 = 208.42 𝐺𝑃𝑎 

𝑣12 = 0.25103 

𝐺12 = 1.7019 𝐺𝑃𝑎  

𝐴 = −38.7795 

𝐵 = 22.3345 

𝐶 = 69.2433 

𝐺23 = 2.59971 𝐺𝑃𝑎 

𝑣23 = 0.275602 



𝐸2 = 6.6324 𝐺𝑃𝑎 

3.4 Ultimate Strength of a Unidirectional Lamina 

It’s observed that, 

1) Fibers behave like ductile materials, but matrix behaves like brittle material 

2) Both are not linearly elastic 

 

Within the section, it’s assumed that 𝜎 − 𝜀 plots for both fiber and matrix are linear up to failure (by 

breakage or by fracture) 

 

What we need before determining ultimate strengths. 

Fibers: 𝑉𝑓  or 𝑉𝑓
′ 

(𝜎𝑓)𝑢𝑙𝑡: strength of fibers in tension and compression 

(𝜏𝑓)𝑢𝑙𝑡: ultimate shear strength of fibers 

Matrix: 𝑉𝑚  or 𝑉𝑚
′   

(𝜎𝑚)𝑢𝑙𝑡 or (𝜎𝑚
𝑇 )𝑢𝑙𝑡: ultimate strength of matrix in tension 

(𝜎𝑚
𝐶 )𝑢𝑙𝑡: ultimate strength of matrix under compression 

(𝜏𝑚)𝑢𝑙𝑡: ultimate shear strength of matrix 

Composite: 𝐸1, 𝐸2, 𝑣12, 𝐺12 

What we determine: 

(𝜎1
𝑇)𝑢𝑙𝑡: Ultimate longitudinal tensile strength 

(𝜎1
𝐶)
𝑢𝑙𝑡
: Ultimate longitudinal compressive strength 

(𝜏12)𝑢𝑙𝑡: Ultimate shear strength  



5 sub-sections to determine such ultimate strength  

3.4.1 Longitudinal Tensile Strength (𝝈𝟏
𝑻)
𝒖𝒍𝒕

 

There are 2 scenarios: 

Fibers fail first; or matrix fails first 

Fibers-fail-first: 

Typically takes place for: 

• MMCs 

• Thermoplastic polymer composites 

 
(𝜀𝑓)𝑢𝑙𝑡 <

(𝜀𝑚)𝑢𝑙𝑡  indicates that fibers fail first. 

Matrix-fail-first (not in the textbook): 

Typically takes place if: 

• 𝑉𝑓  is low 

• PMC 

 
(𝜀𝑚)𝑢𝑙𝑡 < (𝜀𝑓)𝑢𝑙𝑡  indicates that matrix fail first. 

∵ fibers and matrix taking the load together 

∴ 𝜎1 follows ROM, similar to ROM on 𝐸1 

∴ 𝜎1 = 𝑉𝑓𝜎𝑓 + 𝑉𝑚𝜎𝑚 

= 𝑉𝑓𝐸𝑓𝜀 + 𝑉𝑚𝐸𝑚𝜀     (𝐸𝑞. 𝐴) 



∵ matrix-fails-first (𝜀𝑚)𝑢𝑙𝑡 < (𝜀𝑓)𝑢𝑙𝑡  

∴ 𝜀 = (𝜀𝑚)𝑢𝑙𝑡 =
(𝜎𝑚)𝑢𝑙𝑡

𝐸𝑚
 

∴ 𝜎1 = (𝜎𝑚)𝑢𝑙𝑡 (𝑉𝑚 +
𝑉𝑓𝐸𝑓

𝐸𝑚
)     (𝐸𝑞. 𝐴1) 

The full load transfers to the fibers, but due to low 𝑉𝑓, fibers see a large jump in stress and fails 

immediately. 

∴ (𝜎1
𝑇)𝑢𝑙𝑡 = (𝜎𝑚)𝑢𝑙𝑡 (𝑉𝑚 +

𝑉𝑓𝐸𝑓

𝐸𝑚
)     (𝐸𝑞. 𝐵) 

 
 

Fibers-fail-first 

Fibers and matrix taking the load together 

∴ 𝜎1 = 𝑉𝑓𝐸𝑓𝜀 + 𝑉𝑚𝐸𝑚𝜀     (𝐸𝑞. 𝐴) 

Load reaches the level that will break the fibers; 

∵ (𝜀𝑓)𝑢𝑙𝑡 <
(𝜀𝑚)𝑢𝑙𝑡  

∴ 𝜀 = (𝜀𝑓)𝑢𝑙𝑡 =
(𝜎𝑓)𝑢𝑙𝑡
𝐸𝑓

 

∴ 𝜎1 = (𝜎𝑓)𝑢𝑙𝑡 (𝑉𝑓 +
𝑉𝑚𝐸𝑚
𝐸𝑓

)     (𝐸𝑞. 𝐴2) 

Load transfers to the matrix, causing increase in stress in the matrix, and fracture in matrix, leading to 

failure of composite. 

∴ (𝜎1
𝑇)𝑢𝑙𝑡 = (𝜎𝑓)𝑢𝑙𝑡 (𝑉𝑓 +

𝑉𝑚𝐸𝑚
𝐸𝑓

)     (𝐸𝑞. 𝐶) 

Loads can be further increased if there is sufficient matrix to take the load. 

Once fibers break, the volume originally occupied by the fibers is regarded as void content. (Eq. A) 

becomes: 

𝜎1 = 𝑉𝑚𝜎𝑚 
(𝜎1

𝑇) = 𝑉𝑚(𝜎𝑚)𝑢𝑙𝑡     (𝐸𝑞. 𝐷)  

Now the question is which (𝜎1
𝑇)𝑢𝑙𝑡  to use, (Eq. C) or (Eq. D)? 

 



  

(𝑉𝑓)𝑚𝑖𝑛𝑖𝑚𝑢𝑚 =

(𝜎𝑚)𝑢𝑙𝑡 − 𝐸𝑚 ∙
𝜎𝑓
𝐸𝑓

(𝜎𝑓)𝑢𝑙𝑡
(1 −

𝐸𝑚
𝐸𝑓
) + (𝜎𝑚)𝑢𝑙𝑡  

 

If 𝑉𝑓 < (𝑉𝑓)𝑚𝑖𝑛𝑖𝑚𝑢𝑚  use (𝐸𝑞. 𝐷) 

If 𝑉𝑓 ≥ (𝑉𝑓)𝑚𝑖𝑛𝑖𝑚𝑢𝑚  use (𝐸𝑞. 𝐶) 

However it is practically impossible if (𝜎1
𝑇)𝑢𝑙𝑡  by (𝐸𝑞. 𝐶) or (𝐸𝑞. 𝐷) is less than (𝜎𝑚)𝑢𝑙𝑡   

(𝑉𝑓)𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =

(𝜎𝑚)𝑢𝑙𝑡 − 𝐸𝑚 ∙
(𝜎𝑓)𝑢𝑙𝑡
𝐸𝑓

(𝜎𝑓)𝑢𝑙𝑡 −
(𝜎𝑓)𝑢𝑙𝑡

𝐸𝑚
𝐸𝑓
 

 

If 𝑉𝑓 < (𝑉𝑓)𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 
(𝜎1

𝑇)𝑢𝑙𝑡 = (𝜎𝑚)𝑢𝑙𝑡 

If 𝑉𝑓 ≥ (𝑉𝑓)𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 use (𝐸𝑞. 𝐶) 

3.4.2 Longitudinal Compressive Strength ( 𝝈𝟏
𝑪)
𝒖𝒍𝒕

 

1. Modes of failure (3 or 4) 

1) Tensile Failure: 

• Excessive tensile strain in the matrix 

o Matrix fractures or fiber-matrix bonding fractures 

• Common with thermoset 

2) Microbuckling: refers to fibers buckling “inside” the matrix 

• Common with Kevlar 

• Two possible microbucklng modes 

o In-phase or shear mode 

o Out-of-phase or extensional mode 

 



3) Kinging/Shearing: refers to direct shear failure of fibers, or kinking of fibers if not sheared. 

 

2. Tensile failure  

 

3. Microbuckling  

Extensional mode: 

 

Shear mode: 

 

4. Shearing/kinking: 

 

5. Conclusion: 

4 values of (𝜎1
𝐶)
𝑢𝑙𝑡

 by (𝐸𝑞. 3.169), (𝐸𝑞. 3.173𝑎), (𝐸𝑞. 3.173𝑏), and (𝐸𝑞. 3.175) 

Choose the smallest value. 

Example 3.14 for detail. 



 

3.4.3 Transverse Tensile Strength (𝝈𝟐
𝑻)
𝒖𝒍𝒕

 

 
Example 3.15 for detail. 

3.4.4 Transverse Compressive Strength (𝝈𝟐
𝑪)
𝒖𝒍𝒕

 

 
Example 3.17 for detail. 

 

 

 

 



3.4.5 In-Plane Shear Strength (𝝉𝟏𝟐)𝒖𝒍𝒕  

 
Example 3.17 for detail. 

A few notes regarding equation in subsections 3.4.2 ~ 3.4.4: 

1) 𝑆1
𝐶  and 𝑆2

𝐶  are by buckling analysis (or eigenvalue analysis) 

2) All other equations are mostly results of doing simple mechanics of materials analyses; the RVEs are 

similar or identical to those used in 3.3.1 

3) Where (𝜀2
𝑇)𝑢𝑙𝑡  is needed, it should be the lesser of 

• Empirical formula, (𝐸𝑞. 3.170) 

• Mechanics of materials approach (𝐸𝑞. 3.171) 

4) ROM is applied a few times. 

(𝜀2
𝑇)𝑢𝑙𝑡: mechanics of materials formula: 

 

 

 

 

 

 

 

 

 

 

 

 

Transverse-direction deformations 

Fiber: 𝛿𝑓 = 𝜀𝑓 ∙ 𝑑 

Matrix: 𝛿𝑚 = 𝜀𝑚 ∙ (𝑠 − 𝑑) 

Composite: 𝛿𝑐 = 𝜀𝑐 ∙ 𝑠 

 

But, 𝛿𝑐 = 𝛿𝑓 + 𝛿𝑚 



∴  𝜀𝑐 ∙ 𝑠 = 𝜀𝑓 ∙ 𝑑 + 𝜀𝑚 ∙ (𝑠 − 𝑑) 

𝜀𝑐 =
𝑑

𝑠
𝜀𝑓 + (1 −

𝑑

𝑠
) 𝜀𝑚  

𝐸𝑓𝜀𝑓 = 𝐸𝑚𝜀𝑚 (𝑠𝑎𝑚𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 𝑖𝑛 𝑓𝑖𝑏𝑒𝑟𝑠 𝑎𝑛𝑑 𝑖𝑛 𝑚𝑎𝑡𝑟𝑖𝑥) 

∴ 𝜀𝑐 = 𝜀𝑚 [
𝑑

𝑠

𝐸𝑚
𝐸𝑓

+ (1 −
𝑑

𝑠
)] 

If 𝜀𝑚  reaches (𝜀𝑚
𝑇 )𝑢𝑙𝑡 , 𝜀𝑐  reaches its ultimate value (𝜀2

𝑇)𝑢𝑙𝑡; that is: 

(𝜀2
𝑇)𝑢𝑙𝑡 = [

𝑑

𝑠

𝐸𝑚
𝐸𝑓

+ (1 −
𝑑

𝑠
)] (𝜀𝑚

𝑇 )𝑢𝑙𝑡 

Where, 
(𝜀𝑚)𝑢𝑙𝑡 = ultimate tensile strain of the matrix 

𝑑 = diameter of the fibers 

𝑠 = center-to-center spacing between fibers 
𝑑

𝑠
 depends on packing and 𝑉𝑓  

And, (𝜀2
𝑇)𝑢𝑙𝑡  the empirical formula 

 
State-of-the-art in terms of predicting or evaluating ultimate strengths 

a) With the availability of new (and newer) materials, there are composites with combinations of 

brittle fibers and brittle matrix, brittle fibers and ductile matrix, in addition to ductile fibers plus 

brittle matrix as discussed in class. 

b) In terms of the combination of ductile fibers plus brittle matrix, the trend seems to be moving away 

from assuming linear 𝜎 − 𝜀 up to failure for matrix; Various approaches are seen to deal with the 

non-linearity, and to various degree of success. 

c) It is known that predicting elastic moduli remains a challenge. It is an even bigger challenge for 

predicting ultimate strengths. 

 

Chapter 2: Macromechanical Analysis of a Lamina 

2.1 

2.2 

2.3 – done before chapter 3 (previously covered) 

2.4 

2.5 

2.6 

2.7 – stiffness matrix, compliance matrix, and their applications 

2.8 – failure theories of a lamina  

2.9 – hydrothermal situation (not covered) 

 

Basics 

Contacted notation, [𝐶] and [𝑆] 



Stress vector 

{𝜎} =

{
 
 

 
 
𝜎1
𝜎2
𝜎3
𝜏23
𝜏31
𝜏12}
 
 

 
 

=

{
 
 

 
 
𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6}
 
 

 
 

 

Strain vector 

{𝜀} =

{
 
 

 
 
𝜀1
𝜀2
𝜀3
𝛾23
𝛾31
𝛾12}
 
 

 
 

=

{
 
 

 
 
𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6}
 
 

 
 

 

Stiffness matrix  [𝐶]: 

{𝜎} = [𝐶]{𝜀} 

Compliance matrix [𝑆]: 

{𝜀} = [𝑆]{𝜎} 

And: 

[𝑆] = [𝐶]−1 
[𝐶] = [𝑆]−1 

Shear strains are the so-called engineering shear strains instead of torsional shear strains 

  



Example 1: 

A fiber-reinforced lamina of unidirectional continuous fibers consists of the high-strength graphite fiber 

and epoxy. The lamina has 𝑉𝑓 = 0.45 and zero void content. Find (𝜎1
𝑇)𝑢𝑙𝑡  of the lamina, given the 

following: 

𝐸𝑓 = 280 𝐺𝑃𝑎  

(𝜎𝑓)𝑢𝑙𝑡 = 5700 𝑀𝑃𝑎  

𝐸𝑚 = 3.45 𝐺𝑃𝑎  
(𝜎𝑚)𝑢𝑙𝑡 = 60 𝑀𝑝𝑎  

(𝜀𝑓)𝑢𝑙𝑡 =
(𝜎𝑓)𝑢𝑙𝑡
𝐸𝑓

= 0.020 

(𝜀𝑚)𝑢𝑙𝑡 =
(𝜎𝑚)𝑢𝑙𝑡
𝐸𝑚

= 0.017 

Therefore, matrix fails first, and Eq. (B) is used to determine (𝜎1
𝑇)𝑢𝑙𝑡: 

(𝜎1
𝑇)𝑢𝑙𝑡 = (𝜎𝑚)𝑢𝑙𝑡 (𝑉𝑚 + 𝑉𝑓

𝐸𝑓

𝐸𝑚
) = 2,224 𝑀𝑃𝑎  

Example 2: 

A fiber-reinforced lamina of unidirectional continuous fibers consists of the high-modulus graphite fiber 

and epoxy. The lamina has 𝑉𝑓 = 0.45 and zero void content. Find (𝜎1
𝑇)𝑢𝑙𝑡  of the lamina, given the 

following: 

𝐸𝑓 = 530 𝐺𝑃𝑎  

(𝜎𝑓)𝑢𝑙𝑡 = 1900 𝑀𝑃𝑎  

𝐸𝑚 = 3.45 𝐺𝑃𝑎  
(𝜎𝑚)𝑢𝑙𝑡 = 60 𝑀𝑝𝑎  

(𝜀𝑓)𝑢𝑙𝑡 =
(𝜎𝑓)𝑢𝑙𝑡
𝐸𝑓

= 0.0036 

(𝜀𝑚)𝑢𝑙𝑡 =
(𝜎𝑚)𝑢𝑙𝑡
𝐸𝑚

= 0.017 

Therefore, fiber fails first, and we need to decide what equation to use. 

(𝐸𝑞. 3.165): 𝑉𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = 0.0244 = 2.44% 

(𝐸𝑞. 3.166): 𝑉𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 0.0252 = 2.52% 

So, use Eq. (C) or (𝐸𝑞. 3.164) 

(𝜎1
𝑇)𝑢𝑙𝑡 = (𝜎𝑓)𝑢𝑙𝑡 (𝑉𝑓 + 𝑉𝑚

𝐸𝑚
𝐸𝑓
) = 861.8 𝑀𝑃𝑎  

 

 



Example 3: 

For the lamina in Example 2, evaluate (𝜎1
𝑇)𝑢𝑙𝑡 , (𝜎1

𝐶)
𝑢𝑙𝑡

, (𝜎2
𝑇)𝑢𝑙𝑡 , (𝜎2

𝐶)
𝑢𝑙𝑡

 and (𝜏12
 )𝑢𝑙𝑡, given the 

following: 

𝐸𝑓 = 530 𝐺𝑃𝑎  

𝑣𝑓 = 0.23 

𝐺𝑓 = 215 𝐺𝑃𝑎 

(𝜎𝑓)𝑢𝑙𝑡 = 1900 𝑀𝑃𝑎  

(𝜏𝑓)𝑢𝑙𝑡 = 36 𝑀𝑃𝑎  

𝐸𝑚 = 3.45 𝐺𝑃𝑎  

𝑣𝑚 = 0.30 

𝐺𝑚 = 1.33 𝐺𝑃𝑎 
(𝜎𝑚)𝑢𝑙𝑡 = 72 𝑀𝑃𝑎  
(𝜏𝑚)𝑢𝑙𝑡 = 34 𝑀𝑃𝑎  

𝐸1 = 240.4 𝐺𝑃𝑎  

𝐸2 = 11.66 𝐺𝑃𝑎  

𝑣12 = 0.2685 

𝐺12 = 3.472 𝐺𝑃𝑎 

𝐻𝑒𝑥𝑎𝑔𝑜𝑛𝑎𝑙 𝑝𝑎𝑐𝑘𝑖𝑛𝑔 

Solution: 

(𝜎1
𝑇)𝑢𝑙𝑡 = 861.8 𝑀𝑃𝑎   

(𝜎1
𝐶)
𝑢𝑙𝑡
= 69.80 𝑀𝑃𝑎   

(𝜎2
𝑇)𝑢𝑙𝑡 = 56.87 𝑀𝑃𝑎  

(𝜎2
𝐶)
𝑢𝑙𝑡
= 103.5 𝑀𝑃𝑎 

(𝜏12
 )𝑢𝑙𝑡 = 26.63 𝑀𝑃𝑎 

 

 

 

 

 

 

 

 

 



 

  



Textbook changes (errors in equations): 

 

 

 
Bottom line should be -16.00° 



 
Bottom line should be 𝑤𝑚 = 𝜌𝑚𝑣𝑚  

 
Bottom line should be 𝑣12 = 𝑣𝑓𝐿𝑉𝑓 + 𝑣𝑚𝑉𝑚  



 
Highlighted areas should be zero.  



Midterm Review 

Chapter 1 

Definition of composite materials: 

Reinforcing phase: purpose, shapes, types of fibers 

matrix: purpose, materials choices for matrix 

Manufacture of Fibers 

Applications 

Chapter 2 

2.3: Independent mechanical properties vs. Types of materials 

(and why we use those constants as well) 

e.g. orthotropic materials, 9 transversely isotropic materials (what do we need to determine 9 

transversely isotropic materials, what is the plane of symmetry),  resulting 5… 

Chapter 3 

3.2: 𝑉𝑓 , 𝑉𝑚 ,𝑊𝑓 ,𝑊𝑚 , void content  

a few fibers + a few matrices + voids 

𝑉𝑓
′, 𝑉𝑚

′ ; 𝑉𝑓𝑚𝑎𝑥 , 𝑅𝑉𝐸 

When an equation in the text is only valid for zero void content 

3.3: Isotropic fibers + isotropic matrix 

transversely isotropic fibers + isotropic matrix 

mech. of mat’ls 

Halpin-Tsai 

elasticity (𝐸1, 𝐸2, 𝑣12 won’t appear on midterm, too long – but 𝐺12 could) 

 



2.4 Hooke’s Law for a 2D Unidirectional Lamina 

1. Plane stress 

𝜎3 = 𝜏23 = 𝜏31 = 0 

𝛾23 = 𝛾31 = 0 

However, 𝜀 ≠ 0 (See Eq. 2.76) 

2. [C] and [S] for plane stress situation 

[𝐶]6𝑥6  → [𝑄]3𝑥3 Reduced stiffness/compliance matrix 

[𝑆]6𝑥6  → [𝑆]3𝑥3 

{

𝜎1

𝜎2

𝜎6

} = [𝑄] {

𝜀1

𝜀2

𝜀6

}     (𝐸𝑞𝑛. 2. 78 ∗) 

{

𝜀1

𝜀2

𝜀6

} = [𝑆] {

𝜎1

𝜎2

𝜎6

}     (𝐸𝑞𝑛. 2. 77 ∗) 

[𝑄] = [
𝑄11 𝑄12 0

 𝑄22 0
𝑠𝑦𝑚.  𝑄66

]      (𝐸𝑞𝑛. 2. 78) 

[𝑆] = [
𝑆11 𝑆12 0

 𝑆22 0
𝑠𝑦𝑚.  𝑄66

]      (𝐸𝑞𝑛. 2. 77) 

3. 𝑄𝑖𝑗 (2.93 𝑎~𝑑)– in terms of 𝐸1 𝐸2 𝐺12 𝑎𝑛𝑑 𝑣12 

𝑆𝑖𝑗(2.92 𝑎~𝑑) – in terms of 𝐸1 𝐸2 𝐺12 𝑎𝑛𝑑 𝑣12 

𝑖, 𝑗 = 1, 2, 6 

2.5 Hooke’s Law for a 2D Unidirectional Angle Lamina (off-axis stiffness and compliance) 

In 2.4, we have: 

{

𝜎1

𝜎2

𝜎6

} = [𝑄] {

𝜀1

𝜀2

𝜀6

}       𝑜𝑟     {

𝜀1

𝜀2

𝜀6

} = [𝑆] {

𝜎1

𝜎2

𝜎6

}      

[Q], [S]: used with 1-2-3 coordinates, or local coordinates. 

For application, more than 1 lamina will be used; and the laminas are typically placed at various angles, 

hence angle lamina.  

 

{

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

} = [𝑄̅] {

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

}       𝑜𝑟     {

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

} = [𝑆̅] {

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

}      

[𝑄] → [𝑄̅]?     [𝑆] → [𝑆̅]? 



Step 1: Transformation Matrix [T] 

 

Global stresses: 𝜎𝑥, 𝜎𝑦 , 𝜏𝑥𝑦 

Local stresses: 𝜎1, 𝜎2, 𝜎6 = 𝜏12 

Define 𝑐 = 𝑐𝑜𝑠𝜃,   𝑠 = 𝑠𝑖𝑛𝜃 

Then: 

[𝑇] = [
𝑐2 𝑠2 2𝑠𝑐
𝑠2 𝑐2 −2𝑠𝑐

−𝑠𝑐 𝑠𝑐 𝑐2 − 𝑠2

] 

[𝑇] is orthogonal, i.e., [𝑇]−1 = [𝑇(−𝜃)] 

∴ {

𝜎1

𝜎2

𝜎6

} = [𝑇] {

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

} 

𝑜𝑟 {

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

} = [𝑇]−1 {

𝜎1

𝜎2

𝜎6

} 

Where: 

{

𝜎1

𝜎2

𝜎6

} = [𝑄] {

𝜀1

𝜀2

𝜀6

} 

∴ {

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

} = [𝑇−1][𝑄] {

𝜀1

𝜀2

𝜀6

} 

Step 2: [T] is applicable to tensorial strains, i.e. 

{

𝜀1

𝜀2

1

2
𝜀6

} = [𝑇] {

𝜀𝑥

𝜀𝑦

1

2
𝛾𝑥𝑦

} 



Step 3: Reuter’s matrix 

[𝑅] = [
1 0 0
0 1 0
0 0 2

] 

∴  {

𝜀1

𝜀2

𝜀6

} = [𝑅] {

𝜀1

𝜀2

1

2
𝜀6

} 

= [𝑅][𝑇] {

𝜀𝑥

𝜀𝑦

1

2
𝛾𝑥𝑦

} 

= [𝑅][𝑇][𝑅−1]  {

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

} 

Step 4: Subs into (A) 

{

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

} = [𝑇]−1[𝑄][𝑅][𝑇][𝑅]−1 {

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

} 

Where: 

[𝑄̅] = [𝑇]−1[𝑄][𝑅][𝑇][𝑅]−1 

And it can be shown that: 

[𝑆̅] = [𝑅][𝑇]−1[𝑅]−1[𝑆][𝑇] 

[𝑆̅] = [𝑄̅]−1 

[𝑄] = [
𝑄11 𝑄12 0

 𝑄22 0
𝑠𝑦𝑚.  𝑄66

] 

[𝑄̅] = full matrix symmetric (𝐸𝑞𝑛. 2.104 𝑎~𝑓) 

[𝑆] = [
𝑆11 𝑆12 0

 𝑆22 0
𝑠𝑦𝑚.  𝑆66

] 

[𝑆̅] = full matrix symmetric (𝐸𝑞𝑛. 2.104 𝑎~𝑓) 

2.6 Engineering Constants of an Angle Lamina 

Elastic moduli in the 𝑥 and 𝑦 directions: 

𝐸𝑥 = 1/ 𝑆11
̅̅ ̅̅  

𝐸𝑦 = 1/ 𝑆22
̅̅ ̅̅  

Shear modulus in the 𝑥 − 𝑦 plane: 

𝐺𝑥𝑦 = 1/𝑆66
̅̅ ̅̅  

 

 



Poisson’s ratios: 

𝑣𝑥𝑦 = −𝑆12
̅̅ ̅̅ /𝑆11

̅̅ ̅̅  

𝑣𝑦𝑥 = −𝑆12
̅̅ ̅̅ /𝑆22

̅̅ ̅̅  

Shear coupling factors: 

Unlike isotropic materials, an angle lamina may develop shear strains when subject to normal stresses; or 

when being stretched/compressed, shear stress may be developed. 

𝑚𝑥 = −𝑆16
̅̅ ̅̅ ∙ 𝐸1 (non-dimensional quantity) 

 relating 𝜀𝑥  to 𝜏𝑥𝑦 , or 𝜎𝑥 to 𝛾𝑥𝑦  

𝑚𝑦 = −𝑆26
̅̅ ̅̅ ∙ 𝐸1 (non-dimensional quantity) 

 relating 𝜀𝑥  to 𝜏𝑥𝑦 , or 𝜎𝑦 to 𝛾𝑥𝑦  

 
No shear strain (deformation) if angle is 0° or 90° 

2.8 Strength Failure Theories of an Angle Lamina 

7 sub-sections 

Overview: 

2.8.7 - Comparing theories, and with experimental data 

 

2.8.2 – Strength ratio 

2.8.3 – Failure envelopes 

 

2.8.1 – 4 theories (Note: 𝜏12 and 𝜎6 are interchangeable, so are 𝛾12 and 𝜀6) 

2.8.4  

2.8.5 

2.8.6 

  



Overview on Strength Theories 

A) Purpose of strength theories 

Similar to isotropic materials such as metals, strength theories are to allow for determination of when 

failure occurs if a component is in 2- or 3- dimensional state of stress. 

B) Strength theories available to isotropic materials 

Ductile materials 

• Max. shear stress theory 

• Distortion energy theory (von Mises theory) 

Brittle materials 

• Max. normal stress theory 

• Coulomb-Mohr theory 

• Modified Coulomb-Mohr theory 

C) Challenges when dealing with unidirectional laminas 

• They are direction/orientation dependent 

• Tensile and compressive strengths are different in both the longitudinal and transverse directions; 

e.g., (𝜎1
𝑇)𝑢𝑙𝑡 > (𝜎1

𝐶)
𝑢𝑙𝑡

, but (𝜎2
𝑇)𝑢𝑙𝑡 < (𝜎2

𝐶)
𝑢𝑙𝑡

 

• They retain part of ductile behavior; at the same time , they retain part of brittle behavior 

D) List of strength theories 

Unidirectional Laminas Isotropic Materials 

Max. stress Max. normal stress 

Max. strain Max. normal strain 

Tsai-Hill Distortion energy 

Tsai-Wu (Quadratic) Total strain energy 

 

  



2.8.7 Comparison of Experimental Results with Failure Theories 

1) Max. stress & max strain theories don’t compare well with experimental results. 

2) Tsai-Hill and Tsai-Wu theories don’t compare well with experimental results. 

3) Tsai-Hill or Tsai-Wu theory, however, doesn’t indicate the specific mode of failure, which max. stress 

and max. strain theories do. 

Failure Mode Shorthand Notation 

1: Tensile failure in longitudinal direction  
(or fiber direction) 

1T 

2: Compressive failure in longitudinal direction 1C 

3: Tensile failure in transverse failure 2T 

4: Compressive failure in the transverse direction 2C 

5: in-plane shear 6S 

 

  



Transformation between local (1-2-3) axes and global (x-y-z) axes: 

{𝜎}𝑙𝑜𝑐𝑎𝑙      {𝜎}𝑙𝑜𝑐𝑎𝑙

{𝜀}𝑙𝑜𝑐𝑎𝑙       {𝜀}𝑙𝑜𝑐𝑎𝑙

{𝜎}𝑔𝑙𝑜𝑏𝑎𝑙      {𝜎}𝑔𝑙𝑜𝑏𝑎𝑙

{𝜀}𝑔𝑙𝑜𝑏𝑎𝑙      {𝜀}𝑔𝑙𝑜𝑏𝑎𝑙

 

Example 1: 

A unidirectional graphite/epoxy lamina (𝜃 = 50°) is subject to 𝜎𝑥 = 0, 𝜎𝑦 = −3 𝑀𝑃𝑎, 𝜏𝑥𝑦 = 4 𝑀𝑃𝑎. 

Find the local stresses and local strains. Given, for the lamina, 𝐸1 = 181 𝐺𝑃𝑎, 𝐸2 = 10.3 𝐺𝑃𝑎, 𝑣12 =

0.28, and 𝐺12 = 7.2 𝐺𝑃𝑎. 

Solution: 

Global stresses → (𝑣𝑖𝑎 [𝑇])  Local stresses → (𝑣𝑖𝑎 [𝑆]) Local strains 

[𝑇] = [
0.4132 0.5868 0.9848
0.5868 0.4131 −0.9848

−0.4924 0.4924 −0.1736
] 

[𝑆] = [
0.5525 −0.1547 0

 9.709 0
𝑠𝑦𝑚.   13.89

] (10−9) (
1

𝑃𝑎
) 

Local stress = [𝑇] ∗global stress = {
2.179

−5.179
−2.172

} (𝑀𝑃𝑎) 

Local strain = [𝑆] ∗global stress = {
−0.0200
−0.505
−0.302

} (10−3) 

Example 2: 

A unidirectional graphite/epoxy lamina (𝜃 = 50°) is subject to 𝜎𝑥 = 𝜎1, 𝜎𝑦 = −𝜎, and 𝜏𝑥𝑦 = 0 (where 𝜎 

is in 𝑃𝑎). Find the local stresses and local strains in terms of 𝜎. Given, for the lamina, 𝐸1 = 181 𝐺𝑃𝑎, 

𝐸2 = 10.3 𝐺𝑃𝑎, 𝑣12 = 0.28, 𝐺12 = 7.2 𝐺𝑃𝑎. 

Solution: 

Global stresses → (𝑣𝑖𝑎 [𝑇])  Local stresses → (𝑣𝑖𝑎 [𝑆]) Local strains 

Local stress = [𝑇] ∗global stress 

[𝑇] {
𝜎

−𝜎 
0

} = 𝜎 {
−0.1736
0.1736

−0.9848
}   

Local strain = [𝑆] ∗local stress 

𝜎[𝑆] {
−0.1736
0.1736

−0.9848
} = 𝜎 {

−0.001228
0.01713
−0.1368

} (10−9) 

 

 



2.8.1 Max. Stress Failure Theory 

Given 𝜎!, 𝜎2, 𝑎𝑛𝑑 𝜏12 , failure of the lamina occurs when any one of the following is true, 

𝜎1 > (𝜎1
𝑇)𝑢𝑙𝑡 if 𝜎1 ≥ 0 

𝜎1 < −(𝜎1
𝐶)
𝑢𝑙𝑡

 if 𝜎1 < 0 

𝜎2 > (𝜎2
𝑇)𝑢𝑙𝑡 if 𝜎2 ≥ 0 

𝜎2 < −(𝜎2
𝐶)
𝑢𝑙𝑡

 if 𝜎2 < 0 

In terms of SR (strength ratio), the theory reads 

𝑆𝑅1 = (𝜎1
𝑇)𝑢𝑙𝑡/𝜎1 𝜎1 ≥ 0 

𝑆𝑅1 = −(𝜎1
𝐶)
𝑢𝑙𝑡
/𝜎1 𝜎1 < 0 

𝑆𝑅2 = (𝜎2
𝑇)𝑢𝑙𝑡/𝜎2 𝜎2 ≥ 0 

𝑆𝑅2 = −(𝜎2
𝐶)
𝑢𝑙𝑡
/𝜎2 𝜎2 < 0 

𝑆𝑅6 = (𝜏12)𝑢𝑙𝑡/|𝜏12|       

The minimum of all SR’s is the SR of the lamina.  

e.g. if 𝑆𝑅6 is the minimum, then the ST of the lamina is 𝑆𝑅6, and mode of failure is 6𝑆. 

2.8.4 Max Strain Failure Theory 

Given 𝜎1, 𝜎2 𝑎𝑛𝑑 𝜏12, then 

{

𝜀1
𝜀2
𝛾12
} = [𝑆] {

𝜎1
𝜎2
𝜏12
} 

And failure occurs when any of the following is true, 

𝜀1 > (𝜀1
𝑇)𝑢𝑙𝑡  𝜀1 ≥ 0 

𝜀1 < −(𝜀1
𝐶)
𝑢𝑙𝑡

 𝜀1 < 0 

𝜀2 > (𝜀2
𝑇)𝑢𝑙𝑡  𝜀2 ≥ 0 

𝜀2 < −(𝜀2
𝐶)
𝑢𝑙𝑡

 𝜀2 < 0 

|𝛾12| > (𝛾12)𝑢𝑙𝑡   

In terms of 𝑆𝑅, 

𝑆𝑅1 = (𝜀1
𝑇)𝑢𝑙𝑡/𝜀1 𝜀1 ≥ 0 

𝑆𝑅1 = −(𝜀1
𝐶)
𝑢𝑙𝑡
/𝜀1 𝜀1 < 0 

𝑆𝑅2 = (𝜀2
𝑇)𝑢𝑙𝑡/𝜀2 𝜀2 ≥ 0 

𝑆𝑅2 = −(𝜀2
𝐶)
𝑢𝑙𝑡
/𝜀2 𝜀2 < 0 

𝑆𝑅6 = (𝛾12)𝑢𝑙𝑡/|𝛾12|   

Where  

(𝜀1
𝑇)𝑢𝑙𝑡 = (𝜎1

𝑇)𝑢𝑙𝑡/𝐸1 

(𝜀1
𝐶)
𝑢𝑙𝑡
= (𝜎1

𝐶)
𝑢𝑙𝑡
/𝐸1 

(𝜀2
𝑇)𝑢𝑙𝑡 = (𝜎2

𝑇)𝑢𝑙𝑡/𝐸2 

(𝜀2
𝐶)
𝑢𝑙𝑡
= (𝜎2

𝐶)
𝑢𝑙𝑡
/𝐸2 

(𝛾12)𝑢𝑙𝑡 = (𝜏12)𝑢𝑙𝑡/𝐺12 

 

 



2.8.5 Tsai-Hill Theory (Distortion Energy) 

Given 𝜎1, 𝜎2, and 𝜏12, and they are increased proportionally to 𝜎1
𝑓
, 𝜎2

𝑓
 and 𝜏12

𝑓
 then failure occurs when  

(
𝜎1
𝑓

𝐹1
)

2

− (
𝜎1
𝑓

𝐹2
)(
𝜎2
𝑓

𝐹2
) + (

𝜎2
𝑓

𝐹3
)

2

+ (
𝜏12
𝑓

𝐹4
)

2

≥ 1 

To find 𝑆𝑅, 

𝜎1
𝑓
= 𝑆𝑅 ∙ 𝜎1 

𝜎2
𝑓
= 𝑆𝑅 ∙ 𝜎2 

𝜏12
𝑓
= 𝑆𝑅 ∙ 𝜏12 

Such that, 

𝑆𝑅 =
1

√(
𝜎1
𝑓

𝐹1
)

2

− (
𝜎1
𝑓

𝐹2
)(
𝜎2
𝑓

𝐹2
) + (

𝜎2
𝑓

𝐹3
)

2

+ (
𝜏12
𝑓

𝐹4
)

2
 

Original Tsai-Hill (Eq. 2.150): 

𝐹1 = 𝐹2 = (𝜎1
𝑇)𝑢𝑙𝑡  

𝐹3 = (𝜎2
𝑇)𝑢𝑙𝑡  

𝐹4 = (𝜏12)𝑢𝑙𝑡  

Modified Tsai-Hill (Eq. 2.151): 

𝐹1 = (𝜎1
𝑇)𝑢𝑙𝑡  𝜎1 ≥ 0 

𝐹1 = (𝜎1
𝐶)
𝑢𝑙𝑡

 𝜎1 < 0 

𝐹2 = (𝜎1
𝑇)𝑢𝑙𝑡  𝜎2 ≥ 0 

𝐹2 = (𝜎1
𝐶)
𝑢𝑙𝑡

 𝜎2 < 0 

𝐹3 = (𝜎2
𝑇)𝑢𝑙𝑡  𝜎2 ≥ 0 

𝐹3 = (𝜎2
𝐶)
𝑢𝑙𝑡

 𝜎2 < 0 

𝐹4 = (𝜏12)𝑢𝑙𝑡     

Modified Tsai-Hill takes into account: 

a) The different strengths in tension and under compression 

b) The interaction between 𝜎1 and 𝜎2 

∴ (
𝜎1
𝐹2
) (
𝜎2
𝐹2
) 

and choices for 𝐹2 

2.8.6 Tsai-Wu Failure Theory (Total Strain Energy) 

Define: 

𝐻1 =
1

(𝜎1
𝑇)𝑢𝑙𝑡

−
1

(𝜎1
𝐶)𝑢𝑙𝑡

 

𝐻2 =
1

(𝜎2
𝑇)𝑢𝑙𝑡

−
1

(𝜎2
𝐶)𝑢𝑙𝑡

 

𝐻11 =
1

(𝜎1
𝑇)𝑢𝑙𝑡(𝜎1

𝐶)𝑢𝑙𝑡
 



𝐻22 =
1

(𝜎2
𝑇)𝑢𝑙𝑡(𝜎2

𝐶)𝑢𝑙𝑡
 

𝐻66 =
1

[(τ12)𝑢𝑙𝑡]
2

 

And Tsai-Hill: 

𝐻12 = −(
1

2
)

1

[(σ1
𝑇)𝑢𝑙𝑡]

2
 

Hoffman: 

𝐻12 = −(
1

2
)

1

(𝜎1
𝑇)𝑢𝑙𝑡(𝜎1

𝐶)𝑢𝑙𝑡
 

von Mises-Hencky: 

𝐻12 = −(
1

2
)

1

√(𝜎1
𝑇)𝑢𝑙𝑡(𝜎1

𝐶)𝑢𝑙𝑡(𝜎2
𝑇)𝑢𝑙𝑡(𝜎2

𝐶)𝑢𝑙𝑡  

  

Then given 𝜎1, 𝜎2, and 𝜏12, and assuming they are to be increased proportionally to 𝜎1
𝑓 , 𝜎2

𝑓 , and 𝜏12
𝑓 ,  

failure occurs when: 

𝐻1𝜎1
𝑓
+ 𝐻2𝜎2

𝑓
+𝐻11(𝜎1

𝑓)
2
+ 𝐻22(𝜎2

𝑓)
2
+ 2𝐻12(𝜎1

𝑓
𝜎2
𝑓) + 𝐻66(𝜎6

𝑓)
2
≥ 1 

In terms of 𝑆𝑅: 

𝑎(𝑆𝑅)2 + 2𝑏(𝑆𝑅) − 1 = 0 

Where: 

𝑎 = 𝐻11𝜎1
2 +𝐻22𝜎2

2 + 2𝐻12𝜎1𝜎2 + 𝐻66𝜎6
2 

𝑏 = (
1

2
) (𝐻1𝜎1 + 𝐻1𝜎2) 

𝑆𝑅 is the root (one of the roots) of the quadratic equation. 

Compared with Tsai-Hill theory, Tsai-Wu theory considers: 

a) The so-called 1st order effects; 

b) The interaction between 𝜎1 and 𝜎2 with more sophistication. 

  



Example 3 

A unidirectional graphite/epoxy lamina (𝜃 = 50°) is subject to 𝜎𝑥 = 𝜎, 𝜎𝑦 = −𝜎, and 𝜏𝑥𝑦 = 0 (where 𝜎 

is in 𝑃𝑎). Find the allowable 𝜎, using (1) the max. stress theory; (2) the max strain theory; (3) the Tsai-Hill 

theory; and (4) the Tsai-Wu theory. Also indicate the mode of failure where available. Set 𝑆𝑅 = 2. 

Given, for the lamina,  

𝐸1 = 181 𝐺𝑃𝑎 

𝐸2 = 10.3 𝐺𝑃𝑎 

𝑣12 = 0.28 

𝐺12 = 7.2 𝐺𝑃𝑎 
(𝜎1

𝑇)𝑢𝑙𝑡 = 1500 𝑀𝑃𝑎 

(𝜎1
𝐶)
𝑢𝑙𝑡
= 500 𝑀𝑃𝑎 

(𝜎2
𝑇)𝑢𝑙𝑡 = 40 𝑀𝑃𝑎 

(𝜎2
𝐶)
𝑢𝑙𝑡
= 245 𝑀𝑃𝑎 

(𝜏12)𝑢𝑙𝑡 = 70 𝑀𝑃𝑎  

Solution: 

From Example 2, local stresses and strains are, 

{
−0.1736𝜎
0.1736𝜎
−0.9848𝜎

} and {
−0.001228𝜎
0.01713𝜎
−0.1368𝜎

} (10−9) 

(1) Maximum stress theory 

𝑆𝑅1 = −
(𝜎1

𝐶)
𝑢𝑙𝑡

𝜎1
= −

500(106)

(−0.1736𝜎)
= 2 

So, 𝜎 = 1440 𝑀𝑃𝑎 

𝑆𝑅2 =
(𝜎2

𝑇)𝑢𝑙𝑡
𝜎2

= −
40(106)

(0.1736𝜎)
= 2 

So, 𝜎 = 115.2 𝑀𝑃𝑎 

𝑆𝑅3 =
(𝜏12
 )𝑢𝑙𝑡
|𝜏12|

= −
70(106)

(0.9848𝜎)
= 2 

So, 𝜎 = 35.54 𝑀𝑃𝑎 

Therefore, 𝜎𝑎𝑙𝑙 = 35.54 𝑀𝑃𝑎 and the lamina’s mode of failure is 6𝑆. 

(2) Maximum strain theory 

(𝜀1
𝐶)
𝑢𝑙𝑡
=
(𝜎1

𝐶)
𝑢𝑙𝑡

𝐸1
= 0.00276 

𝑆𝑅1 = −
(𝜀1
𝐶)
𝑢𝑙𝑡

𝜀1
= −

0.00276

−0.001228𝜎(10−9)
= 2 

So, 𝜎 = 1124 𝑀𝑃𝑎 

 

 

 



(𝜀2
𝑇)𝑢𝑙𝑡 =

(𝜎2
𝑇)𝑢𝑙𝑡
𝐸2

= 0.00388 

𝑆𝑅2 =
(𝜀2
𝑇)𝑢𝑙𝑡
𝜀2

= −
0.00388

0.01713𝜎(10−9)
= 2 

So, 𝜎 = 113.3 𝑀𝑃𝑎 

(𝛾12)𝑢𝑙𝑡 =
(𝜏12
 )𝑢𝑙𝑡
|𝐺12|  

= 0.00972 

𝑆𝑅6 =
(𝛾12)𝑢𝑙𝑡
|𝛾12|

= −
0.00972

0.1368𝜎(10−9)
= 2 

So, 𝜎 = 35.53 𝑀𝑃𝑎 

Therefore, 𝜎𝑎𝑙𝑙 = 35.53 𝑀𝑃𝑎 and the mode of failure of the lamina is 6𝑆. 

(3) Tsai-Hill theory 

Modified Tsai-Hill: 

2 =
1

√2.16935(10−16)𝜎2
 

𝜎𝑎𝑙𝑙 = 33.95 𝑀𝑃𝑎 

(4) Tsai-Wu theory 

Tsai-Hill form: 

𝑎 = 2.01058(10−16)𝜎2 

𝑏 = 1.93198(10−9)𝜎 

The quadratic equation is: 

𝑎(22) + 2𝑏(2) − 1 = 0 

 

And 𝜎𝑎𝑙𝑙 = 30.78 𝑀𝑃𝑎 

 

 

  



Chapter 4: Macromechanical Analysis of Laminates 
4.1 Introduction 

4.2 Laminate Code 

4.3 Stress-Strain Relations for a Laminate 

(or CLPT – Classical Laminated Plates Theory, and [ABD]) 

4.4 In-Plane and Flexural Modulus of a Laminate  

(or application of [ABD]) 

4.5 Hygrothermal Effects in a Laminate 

4.1 Introduction 

Why laminate? 

1. A single lamina (or layer, ply) 

• 0.005” or 0.125 mm thick → not suitable as an engineering component; 

• 750-lb per inch of width along fiber direction → not high enough for engineering application; 

 

2. Unidirectional laminate (which has many layers, but fibers take the same direction) 

• Transverse direction: rather weak; 

• Fiber direction: compressive strength is low; 

• Laminate be loaded along fiber direction by tensile load, which limits its applicaions 

3. Optimal solutions 

Having layers stacked with different 

• Angles 

• Thickness  

• Position (top, …, middle, …, bottom) 

• Constituents 

4.2 Laminate Code 

Laminate code, also known as Layup Sequence, or Stacking Sequence, is a set of notation or convention 

to describe how layers (or piles, laminas) are stacking on top of one another. 

The notation or convention is yet to be standardized. 

 

 



1. Reference Axis  

CCW angles (from 𝑥) are considered positive. 

 

2. Layer Numbering 

Top to bottom  more common 

Bottom to top  easier for manual layup 

3. Layers with Identical Constituents and Uniform Thickness 

A) Long hand notation 

[ 𝜃1/ 𝜃2/ 𝜃3/… /𝜃𝑁] where the 𝜃’s are in degrees. 

For example, [0 / 90 / 45 / 90 / 0 ] 

The commonly used angles are, starting with the most preferred to the least 0°, 90° 

±45° 
±30°,   ± 60° 
±15°,   ± 75° 

B) Repeated orientation 

[0 / 0 / 90 / 90 ] → [02/ 902] 
[0 / 90 / 0 / 90] → [(0 / 90)2] 
[0 / 0  / 90 / 45 / 90 / 90 / 45 / 90 / 0 / 0] → [02 / (90 / 45 / 90)2 / 02] 

C) Balanced laminate 

For every occurrence of " + 𝜃"  (other than 0°  and 90°), a " − 𝜃" is placed, either adjacent to the " + 𝜃" 

layer, or separated by some layers. 

[ 45 / 45 / 0 / 45 / −45] → [452 / 0 / −452] 

[45 / −45 / 0 / 45/ −45] → [±45 / 0  / ±45] 

[45 / −45 / 0 / −45 / 45] 
[45 / −45 / −45 / 45 / 45 / −45 ] → [± ∓±45] 

D) Symmetry 

Symmetry means fiber orientations of the top half of the laminate are mirror image of the bottom half. 

A symmetric laminate can have even or odd number of layers. 

D.1) Even number of layers. 

[0 / 0 / 90 / 45 / 90 / 90 / 45 / 90 / 0 / 0 ] → [0 / 0 / 90 / 45 / 90 ]𝑠 → [02 / 90 / 45 / 90]𝑠 

Notes: 

• Only the top half of the sequence is notated 

• 𝑠 (subscript) is to indicate only a symmetric half of the entire sequence is given 



D.2) Odd number of layers 

[0 / 90 / 0] → [0 / 90̅̅̅̅ ] 

Note: the overbar indicates the layer about whose mid-plane the laminate is symmetric. 

[0 / 90 / 45 / 90 / 0] → [0 / 90 / 45̅̅̅̅ ]   

[0 / 0 / 90 / 45 / 90 / 90 / 45 / 90 / 0 / 0] → [02 / 90 / 45 / 90]𝑠 → [02 /( 90 / 45̅̅̅̅  )]𝑠   

[45 / −45 / 0 / −45 / 45] → [±45 / 0̅ ]  

Anti-symmetry means that fiber orientations of the top half of the laminate are opposite those of the 

bottom half. 

In the context of laminate code, 90° is considered “opposite” of 0°, and vice verse. 

An anti-symmetric laminate always has even number of layers. 

[0 / 90 / 0 / 90] → [(0 / 90)2]  
[45 / −45 / 45 / −45] → [±452]  
[45 / 30 / 35 / −45 / −30 / −45] → ±[(45 / 30̅̅̅̅ )]  
[45 / −45 / −45 / 45 / 45 / −45] → [± ∓±45]   

4. Layers with Identical Constituents but Non-uniform Thickness 

Two options: 

• Long-hand notation, with thickness as subscript 

• Spelling out the detail, in English 

For example, 

The laminate code is [(0 / 90)2 / 0̅] where the 0° layers have a thickness of 0.2 𝑚𝑚 each, and the 90° 

layers have a thickness of 0.25 𝑚𝑚 each. 

Where: 

[(0 / 90)2 / 0̅] → [0 / 90 / 0 / 90 / 0 / 0 /90 / 0 / 90]  

0.2 𝑚𝑚 ∙ 5 = 1 𝑚𝑚 

0.25 𝑚𝑚 ∙ 4 = 1 𝑚𝑚 

Then total thickness is 2 𝑚𝑚 

5. Hybrid Laminates  

These are laminates whose layers are of different constituent materials. 

[0K / 0𝐾 / 45𝐶  / −45𝐶 /90G / −45𝐶 / 45𝐶 / 0^K / 0^K] → [02
𝐾 / ±45𝐶 / 90̅̅ ̅

𝐺
  ] 

[0K / 0K  / 45𝐶  / −45𝐺  / 90𝐺  / −45𝐺  / 45𝐶  / 0K / 0K ] → [02
𝐾   / 45𝐶  / −45𝐺  / 90𝐺̅̅ ̅̅ ̅]  

6. Brain Teaser 

Given the following 22-later sequence, write the shortest possible code. 

[45 / −45 / 0 / 0 / 45 / −45 / 0 / 0 / 90 / 0 / 0 / 0 / 0  / 90 / 0 / 0 / −45 / 45 / 0 / 0 / −45 / 45 ]  

Solution: 

[ (±45 / 02)2 / 90 / 02]𝑠  ` 



7. More Terminologies  

A) Unidirectional laminates: laminates in which all layers have the same 𝜃. 

For example, [06] or [0]6 and [45]10 

B) Cross-ply laminates: laminates in which the layers take angles of 0° and 90° only. 

For example, [0 / 90̅̅̅̅ ], [0 / 90 / 0 / 90] → [(0 / 90)2 ] 

C) Angle-ply laminates: laminates that consist of pairs of layers of same material (that is, same fiver and 

matrix, and same mixture) and thickness, and oriented at +𝜃 and −𝜃. 

For example, 

[45 / −45 / 45 / −45]  
[45 / −45 / −45 / 45 / 45 / −45]  
[45 / 30 / 45 / −45 / −30 − 45]  

4.3 Stress-Strain Relations for a Laminate 

4.3.1: 𝝈 − 𝜺 relation for a one-dimensional isotropic beam 

4.3.2 ~ 4.3.4: Classical laminated plates theory (CLPT) 

Key features: 

- Membrane stretching is considered 

- Bending is considered 

- The two actions are not kinematically coupled, but kinetically coupled 

- Transverse shear is not considered 

Other laminated plate theories: 

Membrane & bending actions are coupled  

Transverse shear is considered 

{
 
 

 
 

1𝑠𝑡 𝑜𝑟𝑑𝑒𝑟 𝑡ℎ𝑒𝑜𝑟𝑦
2𝑛𝑑 𝑜𝑟𝑑𝑒𝑟 𝑡ℎ𝑒𝑜𝑟𝑦
ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡ℎ𝑒𝑜𝑟𝑦

𝑧𝑖𝑔𝑧𝑎𝑔 𝑡ℎ𝑒𝑜𝑟𝑦
… }

 
 

 
 

 



2) Coordinate setup 

𝑥 − 𝑦 − 𝑧: global coordinates 

𝑥 − 𝑦 plan coincides with the mid-plane of the laminate; 

 

ℎ: thickness of laminate 

ℎ0 = −ℎ/2 

ℎ1 = ℎ0 + 𝑡1 

ℎ2 = ℎ1 + 𝑡2 

… 

ℎ𝑁 = ℎ/2  

3) Mid-plane Displacements (unknowns to be solved) 

𝑢𝑜(𝑥, 𝑦): membrane stretches 

𝑣𝑜(𝑥, 𝑦): membrane stretches 

𝑤𝑜(𝑥, 𝑦): lateral deflection 

4) “Slopes” and Curvatures 

𝜙𝑦(𝑥, 𝑦) =
𝛿𝑤𝑜

𝛿𝑥
:  rotation about 𝑥 

𝜙𝑥(𝑥, 𝑦) =
𝛿𝑤𝑜

𝛿𝑦
:  rotation about 𝑦 

𝜅𝑥(𝑥, 𝑦) = −
𝛿2𝑤𝑜

𝛿𝑥2
: curvature 

𝜅𝑦(𝑥, 𝑦) = −
𝛿2𝑤𝑜

𝛿𝑦2
: curvature 

𝜅𝑥𝑦(𝑥, 𝑦) = −2
𝛿2𝑤𝑜

𝛿𝑥𝛿𝑦
: twisting curvature 

 

 

 



5) Membrane strain vector and curvature vector 

{𝜀0} =  

 

{𝜅} = 

 

Note: Both 𝜀0 and 𝜅 are based on the midplane. 

6 Global displacements and strains at points off the midplane  

On midplane where 𝑧 = 0: 

𝑢0(𝑥, 𝑦),   𝑣0(𝑥, 𝑦),   𝑤𝑜(𝑥, 𝑦)  

Off the midplane (𝑧 ≠ 0): 

 

 
𝑤(𝑥, 𝑦, 𝑧) = 𝑤0                              

 

 

 

 

 



And: 

 

 

7) Resultant Forces and Moments 

Sign conventions: Figure 4.3 

 

Definitions: 

Membrane forces (per unit length) 



 

Which can be simplified as: 

 

(∗) Unit: 𝑁/𝑚, 𝑙𝑏/𝑖𝑛, … (𝑓𝑜𝑟𝑐𝑒/𝑙𝑒𝑛𝑔𝑡ℎ) 

(∗) Integral is broken into sum over layers due to “jumps” at lamina interfaces, as per Figure 4.5. 

 



𝑁𝑥, 𝑁𝑦: Normal forces per unit length 

𝑁𝑥𝑦: shear force per unit length 

Moments (per unit length) 

 

Which can be simplified as:  

 

(∗) Unit: 𝑁 ∙ 𝑚/𝑚, 𝑙𝑏 ∙ 𝑖𝑛/𝑖𝑛, … (𝑚𝑜𝑚𝑒𝑛𝑡/𝑙𝑒𝑛𝑔𝑡ℎ) 

(∗) 𝑀𝑥, 𝑀𝑦 : bending moments per unit length 

𝑀𝑥𝑦 : twisting moment per unit length 

8) Stiffness and compliance of a laminated plate 

 



[𝐴]: membrane (extensional) stiffness matrix 

𝑃𝑎 ∙ 𝑚, or 𝑝𝑠𝑖 − 𝑖𝑛 (𝑠𝑡𝑟𝑒𝑠𝑠 − 𝑙𝑒𝑛𝑔𝑡ℎ) 

symmetric 

[𝐵]: membrane-bending coupling stiffness matrix 

𝑃𝑎 ∙ 𝑚2, or 𝑝𝑠𝑖 ∙ 𝑖𝑛2 (𝑠𝑡𝑟𝑒𝑠𝑠 − 𝑙𝑒𝑛𝑔𝑡ℎ2) 

symmetric 

[𝐷]: bending stiffness matrix 

𝑃𝑎 ∙ 𝑚3, or 𝑝𝑠𝑖 ∙ 𝑖𝑛3 (𝑠𝑡𝑟𝑒𝑠𝑠 − 𝑙𝑒𝑛𝑔𝑡ℎ3) 

symmetric 

Derivation: 𝑝𝑝. 328~331 

 

[𝐴𝐵𝐷]: “stiffness matrix” of the laminate plate 

[𝐴𝐵𝐷]−1: “compliance matrix” of the laminate plate obtained numerically (by inversion) 

both are symmetric 

As long as [𝐵] ≠ 0, membrane and bending are kinetically coupled. 

(Eqn. 4-29) is typically written in the compact form: 

{
𝑁
𝑀
} = [𝐴𝐵𝐷] {𝜀

0

𝜅
} 

9) Applications 

10-step procedure on p. 332 

the main steps are: 

a. evaluate [ABD] matrix 

𝑘 = 1,… ,𝑁 
[𝑄]𝑘 ,   [𝑄̅]𝑘 

ℎ𝑘−1,   ℎ𝑘 

(Eq. 4.28a,b,c) 



b. determine {𝜀
0

𝜅
} 

find 𝑁𝑥, 𝑁𝑦 , … ,𝑀𝑦 , 𝑀𝑥𝑦  

inverse [𝐴𝐵𝐷] 

[𝐴𝐵𝐷]−1 {
𝑁
𝑀
} 

c. evaluate global strains {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

} via (Eqn. 4.16) 

for a given 𝑧, then evaluate global stresses → local stresses (and local strains is necessary)→ 𝑆𝑅 

Examples 4.2 

Examples 4.3 (the above procedure) 

Example: A laminate has the layup sequence of [30 / 45]. The top and bottom layers are 0.4 𝑚𝑚 and 

0.5 𝑚𝑚 thick. Both layers have: 𝐸1 = 170 𝐺𝑃𝑎, 𝐸2 = 20 𝐺𝑃𝑎, 𝐺12 = 5.5 𝐺𝑃𝑎 and 𝑣!2 = 0.26. 

Determine global stresses 𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦  at the top and bottom surfaces of the layers for the following 

loading: 

𝑁𝑥 = 𝑁𝑦 = 1000 𝑁/𝑚; and 

Plot stress distributions of 𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦  across the thickness. 

Solution: 

(1) Need [ABD] matrix, [𝐴𝐵𝐷]−1 matrix: 

 

ℎ0 = −0.00045 𝑚 

ℎ1 = −0.00005 𝑚 

ℎ2 = 0.00045 𝑚 

Then, 

[𝑄] → [𝑄̅]1   (𝜃 = 30°) 
[𝑄] → [𝑄̅]2   (𝜃 = 45°) 

Applying (Eq. 4.28) 

[𝐴] = [
6.950 3.653 3.888
 3.926 2.511

𝑠𝑦𝑚  3.676
] ∙ (107)                      (𝑃𝑎 ∙ 𝑚) 

[𝐵] = [
−4.774 0.9940 −1.215

 2.786 2.228
𝑠𝑦𝑚  0.9940

] ∙ (103)            (𝑃𝑎 ∙ 𝑚2) 



[𝐷] = [
4.850 2.432 2.665
 2.557 1.621

𝑠𝑦𝑚  2.448
]                                  (𝑃𝑎 ∙ 𝑚3) 

And [𝐴𝐵𝐷]−1 = [
𝐴∗ 𝐵∗

𝐵∗ 𝐷∗
] 

[𝐴∗] = [
5.164 −2. .786 −3.426
 6.251 −1.260

𝑠𝑦𝑚  7.731
] ∙ (10−8)                (

1

𝑃𝑎 ∙ 𝑚
) 

[𝐵∗] = [
3.687 −1. .832 3.689
 0.01186 −4.574

𝑠𝑦𝑚  −4.680
] ∙ (10−5)                (

1

𝑃𝑎 ∙ 𝑚2
) 

[𝐷∗] = [
7.468 −4.037 −5.257
 9.260 −1.641

𝑠𝑦𝑚  11.68
] ∙ (10−1)                 (

1

𝑃𝑎 ∙ 𝑚3
) 

 (2) Loading is 𝑁𝑥 = 𝑁𝑦 = 1000 𝑁/𝑚 

{
𝜀0

𝜅
} = [𝐴𝐵𝐷]−1

{
 
 

 
 
1000
1000
0
0
0
0 }
 
 

 
 

=

{
  
 

  
 
23.78 ∙ 10−6 𝑚/𝑚

34.65 ∙ 10−6 𝑚/𝑚

−46.86 ∙ 10−6 𝑚/𝑚

18.55 ∙ 10−3 1/𝑚

−18.20 ∙ 10−3 1/𝑚

−8.855 ∙ 10−3 1/𝑚}
  
 

  
 

 

Normal forces can cause shear deformation, bending and twisting. 

Top layer: [𝑄̅] = [𝑄̅] ↑ 

Top surface 𝜁 = ℎ0 = −0.00045 𝑚 

{𝜀} = {𝜀0} + 𝜁[𝜅] = {
15.43
42.83
−42.88

} ∙ 10−6 

{𝜎] = [𝑄̅]{𝜀} = {
960.6
1081
−78.91

}  𝑘𝑃𝑎 

Bottom surface 𝜁 = ℎ1 = −0.00005 𝑚 

{𝜀} = {
22.85
35.56
−46.42

} ∙ 10−6 

{𝜎] = {
1298
1265
53.70

}  𝑘𝑃𝑎 

Bottom layer: [𝑄̅] = [𝑄̅] ↓ 

Top surface 𝜁 = ℎ1 = −0.00005 𝑚 



{𝜀} = {
22.85
35.56
−46.42

} ∙ 10−6 

{𝜎] = {
1125
1265
106.9

}  𝑘𝑃𝑎 

Bottom surface 𝜁 = ℎ2 = 0.00045 𝑚 

{𝜀} = {
31.13
26.46
−50.84

} ∙ 10−6 

{𝜎] = {
1068
1005
−86.76

}  𝑘𝑃𝑎 

 
 

4.4 In-Plane and Flexural Modulus of a Laminate  

[𝐴𝐵𝐷] = [
𝐴 𝐵
𝐵 𝐷

] 

Which is a symmetric matrix. ([A], [B] and [D] are inverse as well) 

[𝐴𝐵𝐷]−1 = [
𝐴 𝐵
𝐵 𝐷

]
−1

= [
𝐴∗ 𝐵∗

𝐶∗ 𝐷∗
] 



Where [𝐴∗], [𝐷∗] are symmetric 

and [𝐵∗] may not be symmetric 

and [𝐶∗] = [𝐵∗]𝑇  

In-plane constants: 

𝐸𝑥 =
1

ℎ𝐴11
∗ ;      𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑛 − 𝑝𝑙𝑎𝑛𝑒 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 

𝐸𝑦 =
1

ℎ𝐴22
∗ ;      𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑛 − 𝑝𝑙𝑎𝑛𝑒 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑚𝑜𝑑𝑙𝑢𝑠 

𝐺𝑥𝑦 =
1

ℎ𝐴66
∗ ;      𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑛 − 𝑝𝑙𝑎𝑛𝑒 𝑠ℎ𝑒𝑎𝑟 𝑚𝑜𝑑𝑢𝑙𝑢𝑠  

𝑣𝑥𝑦 = −
𝐴12
∗

𝐴11
∗ ;      𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑛 − 𝑝𝑙𝑎𝑛𝑒 𝑃𝑜𝑖𝑠𝑠𝑜𝑛′𝑠 𝑟𝑎𝑡𝑖𝑜  

𝑣𝑦𝑥 = −
𝐴12
∗

𝐴22
∗ ;      𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑛 − 𝑝𝑙𝑎𝑛𝑒 𝑃𝑜𝑖𝑠𝑠𝑜𝑛′𝑠 𝑟𝑎𝑡𝑖𝑜  

Note: 

The larger Poisson’s ratio is the major, and the other one is the minor 
𝑣𝑥𝑦

𝐸𝑥
=
𝑣𝑦𝑥

𝐸𝑦
 

Flexural constants: 

𝐸𝑥
𝑓 =

12

ℎ3𝐷11
∗ ;      𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 

𝐸𝑦
𝑓
=

12

ℎ3𝐷22
∗  
;      𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 

𝐺𝑥𝑦
𝑓
=

12

ℎ3𝐷66
∗ ;      𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙 𝑠ℎ𝑒𝑎𝑟 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 

𝑣𝑥𝑦
𝑓 = −

𝐷12
∗

𝐷11
∗ ;      𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙 𝑃𝑜𝑖𝑠𝑠𝑜𝑛

′𝑠 𝑟𝑎𝑡𝑖𝑜 

𝑣𝑦𝑥
𝑓 = −

𝐷12
∗

𝐷22
∗ ;      𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙 𝑃𝑜𝑖𝑠𝑠𝑜𝑛

′𝑠 𝑟𝑎𝑡𝑖𝑜 

Note: 

The larger Poisson’s ratio is the major, and the other one is the minor 

𝑣𝑥𝑦
𝑓

𝐸𝑥
=
𝑣𝑦𝑥
𝑓

𝐸𝑦
 

- Example 4.4 goes through the steps above 

Consider that you were given a completed [ABD] matrix, then you can use the following tools to analyze 

it further. 

Measures used to gauge how close a laminate is to an equivalent orthotropic material: 

In terms of membrane action: 

𝑟𝑁 = √(
𝐴26
𝐴11

)
2

+ (
𝐴26
𝐴22

)
2

 



In terms of bending action: 

𝑟𝑀 = √(
𝐷16
𝐷11

)
2

+ (
𝐷26
𝐷22

)
2

 

It is desired that 𝑟𝑁 → 0, 𝑟𝑀 → 0 

Measures used to gauge symmetry of a laminate: 

𝑟𝐵 =
3

(𝐴11 + 𝐴22 + 𝐴66)ℎ
√∑ 

𝑖

∑ (𝐵𝑖𝑗)
2

𝑗

 

The closer 𝑟𝐵 is to zero, the more symmetry there is 

Summary: 

𝑟𝑁 ,   𝑟𝑀 ,   𝑟𝐵: the closer they are to zero, the more accurate it is to use 𝐸𝑥, 𝐸𝑦, …, 𝐺𝑥𝑦
𝑓

 and 𝑣𝑥𝑦
𝑓

 to 

represent the entire laminate, and to treat the laminate as an orthotropic material.  



Chapter 5: Failure, Analysis and Design of Laminates 
5.1: Introduction 

 

5.2: Special Cases of Laminates 

In 4.2, laminate codes were introduced. From mainly the perspective of layer orientations, cross-ply 

laminates, angle-ply laminates, balanced laminates, symmetric laminates, and anti-symmetric laminates 

were defined. 

In this section, the above laminates will be defined from the perspectives of constituents and mixtures, 

and thicknesses, in addition to layer orientations. The effect on the [𝐴𝐵𝐷] matrix will be dealt with as 

well. 

1. Symmetric Laminates 

These are laminates in which fiber orientations, constituents and mixtures, and thicknesses of the top 

half of the laminate are mirror image of the bottom half. 

A symmetric laminate can have even or odd number of layers. 

→ [𝐵] = [0]; as a result, membrane and bending actions are uncoupled, kinetically. 

2. Cross-Ply Laminates 

They are laminates in which the layers take angles of 0° and 90° only. 

→ 𝐴16 = 𝐴26 = 𝐵16 = 𝐵26 = 𝐷16 = 𝐷26 = 0 

For example, a symmetric cross-ply has, [𝐵] = [0]  

and 𝐴16 = 𝐴26 = 𝐷16 = 𝐷26 = 0; 



3. Angle-Ply Laminates 

They are laminates that consist of pairs of layers of the same constituents and mixture, and thickness, 

but oriented at +𝜃 and −𝜃. 

→ 𝐴16 = 𝐴26 = 0 

4. Anti-Symmetric Laminates 

In 4.2, anti-symmetric laminates are defined as those in which fiber orientations of the top half of the 

laminate are opposite those of the bottom half. 

In terms of constituents and mixtures, and thicknesses, the top half and bottom half are mirror images 

of each other. 

An anti-symmetric laminate always has even number of layers. 

→ 𝐴16 = 𝐴26 = 𝐷16 + 𝐷26 = 0 

5. Balanced Laminates 

In 4.2, balanced laminates are defined as having pairs of “+𝜃” and “−𝜃” layers (𝜃 cannot be 0° or 90°). 

Further, the pair of “+𝜃” and “−𝜃” layers must have the same constituents and mixture and thickness 

for a laminate to be balanced 

→ 𝐴16 = 𝐴26 = 0 

 

  

6. Quasi-Isotropic Laminates 

Quasi-isotropic means behaving like an isotropic material, or independent of orientation. However, being 

quasi-isotropic does not mean being isotropic. 

• Quasi-isotropic in terms of membrane action: 

(a) [𝐵] = [0]; and 

(b) 𝐴11 = 𝐴22 ; 𝐴16 = 𝐴26 = 0 ; 𝐴66 = (𝐴11 − 𝐴12)/2 

• Quasi-isotropic in terms of bending action: 

(a) [𝐵] = 0; and 

(b) 𝐷11 = 𝐷22; 𝐷16 = 𝐷26 = 0;𝐷66 = (𝐷11 −𝐷12)/2 

 

 



• Quasi-isotropic in terms of both membrane and bending actions: 

(a) [B]=[0]; and 

(b) 𝐴11 = 𝐴22 ; 𝐴16 = 𝐴26 = 0 ; 𝐴66 = (𝐴11 − 𝐴12)/2 ; and 

(c) 𝐷11 = 𝐷22; 𝐷16 = 𝐷26 = 0;𝐷66 = (𝐷11 −𝐷12)/2; or  

[𝐷] = (
ℎ2

12
) ∗ [𝐴] 

See Example 5.1 for a laminate that is quasi-isotropic in terms of membrane action. 

How to make a quasi-isotropic laminate: 

(1) Number of layers 𝑁 ≥ 3 

(2) Orientations of two adjacent layers differ by 180°/𝑁. 

For example, if 𝑁 = 3, layups may be [ 60 / 0 / −80 ] and [ 45 / −15 / −75 ] 

5.3 Failure Criterion of a Laminate 

1. Basic concepts and terminologies 

Under the combined action of membrane and bending loads, layers will have different levels of stress, 

not to mention different constituents and mixtures, and giver orientations. That is, layers will have 

different SR’s and different modes of failure. 

Failure of a single layer does not lead to failure of the laminate. This is a huge advantage of lamiantes 

over isotropic materials. 

First-ply failure (FPF) and first-ply failure load: 

FPF refers to the phenomenon that one layer (or some layers) fails (or fail) before others. 

FPF Load refers to the load level that causes FPF. This load equals the applied load times the SR of the 

laminate at FPF. 

In general, the laminate will be able to continue to take on increased load, and more layers will fail, in a 

sequence (hence second-ply failure, …, and so on), unit the laminate fails, based on some pre-selected 

failure criteria.  

Ultimate-ply failure (UPF) and ultimate-ply failure load: 

UPF refers to when the load on the laminate is at such level that the laminate is considered failed, based 

on the pre-selected failure criterion. The load level that causes UPF is known as the UPF Load. 

The process of layers in a laminate fail in some sequence as the load is increased is known as 

progressive failure. 

Last-ply failure (LPF) and last-ply failure load: 

If the progressive failure continues until the last ply (or plied) fails (or fail), the phenomenon is known as 

LPF and the corresponding load level is the LPF Load. 

2. What determines “a laminate fails” 

Termination criterion is used to determine if a laminate fails. A termination criterion can be, 

• If fibers fail in tension (1T); 



• If fibers fail (in tension or under compression 1T or 1C); or 

• If a certain number of layers fail. Typical choice is 50% of layers, but it can be of a higher value, say 

100%. Setting the value to 100% in fact gives rise to LPF. 

3. What to do with a failed lamina? 

• Originally occupied space by a failed lamina remains occupied by it; that is, the z coordinates of 

layers are unchanged during the progressive failure analysis. 

• The failed lamina’s stiffness and strengths will be discounted; the discount can be a total discount 

(e.g., 𝐸2 = 0) or partial discount (e.g., 𝐸2 = 10% of before-failure value). 

It should be noted that answers to, (1) what termination criterion to use; and (2) how to discount a 

failed lamina, are not entirely technical, and far from definitive. 

 

 

 

 



a) determine [𝐴𝐵𝐷] matrix; see Section 4.3 

 

b) determine 𝑁𝑥, 𝑁𝑦, …, 𝑀𝑦, 𝑀𝑥𝑦  

 

c) for al plies 

• for top and bottom surface of a ply 

o 𝑧 → global strains → global stresses → local stresses (→ local strains is using max. strain 

theory)→ SR of the surface. 

• SR of a ply 

for top and bottom surface of a ply 

SR of the laminate; also, the ply (plies) that would fail. 

d) FPF load = applied loads ∙ SR of laminate 

e) Discount failed ply on plies set load level to FPF load 

f) Go back to step a) 

For Step c), only loop over all remaining plies for step d) 

If SR of laminate ≥ 1 

• 2nd ply failure load = FPF load ∙ SR for step e), set load level to 2nd ply failure load 

Otherwise 

• Keep load level at FPF load discount failed plies (with SR < 1) 

g) repeat step f) by progressively updating failure load and discounting failed ply or plies, until 

termination criterion is met, and UPF load has been determined. 

Example 1: A laminate has the layup sequence of [30 / 45]. The top land bottom layers are 0.4 mm and 

0.5 mm thick. Both layers have: 𝐸1 = 170 𝐺𝑃𝑎, 𝐸2 = 20 𝐺𝑃𝑎, 𝐺12 = 5.5 𝐺𝑃𝑎 and 𝑣12 = 0.26. 

Given: 

(𝜎1
𝑇)𝑢𝑙𝑡 = 2990 𝑀𝑃𝑎 

(𝜎1
𝐶)
𝑢𝑙𝑡
= 88 𝑀𝑃𝑎 

(𝜎2
𝑇)𝑢𝑙𝑡 = 45 𝑀𝑃𝑎 

(𝜎2
𝐶)
𝑢𝑙𝑡
= 148 𝑀𝑃𝑎 

(𝜏12)𝑢𝑙𝑡 = 21.5 𝑀𝑃𝑎 

𝑁𝑥 = 𝑁𝑦 = 1000 𝑁/𝑚 

Determine the failure sequence of the laminate. Termination criterion is when all plies fail. Use 

maximum stress theory to determine SR. Discount totally the failed ply (or plies). What is the FPF (first 

ply failure) load? What is the LPF (last ply failure) load? 

1) FPF analysis 

Steps a), b): see Example in 4.3 

 

 



Step c) 

TOP LAYER 

Top surface 

global stress = {
960.6
1081
−78.91

} (𝑘𝑃𝑎) 

Local stress = [𝑇] ∙ {
960.6
1081
−78.91

} = {
922.3
1119
12.63

} (𝑘𝑃𝑎) 

∴ 𝑆𝑅1 = 3241  

𝑆𝑅2 = 40.2 

𝑆𝑅6 = 1701 

∴ 𝑆𝑅 = 40.2 (2𝑇) 

Bottom surface 

Local stress = [𝑇] ∙ {
1291
1089
−67.12

} (𝑘𝑃𝑎) 

∴ 𝑆𝑅1 = 2316  

𝑆𝑅2 = 41.3 

𝑆𝑅6 = 320 

∴ 𝑆𝑅 = 41.3 (2𝑇) 

∴ 𝑆𝑅 for top layer is 40.2 (2T) 

BOTTOM LAYER 

Top surface 

𝑆𝑅 = 41.4 (2𝑇) 
Bottom surface 

𝑆𝑅 = 40.1 (2𝑇) 

∴ SR for bottom later is 40.1 (2T) 

d) FPF load = (40.1) ∙

{
 
 

 
 
1000
1000
0
0
0
0 }

 
 

 
 

=

{
 
 

 
 
40.1
40.1
0
0
0
0 }
 
 

 
 

(
𝑘𝑁

𝑚
)

(
𝑁𝑚

𝑚
)
 

e) Only top layer will be included in then next round of analysis; 𝑁𝑥 = 𝑁𝑦 = 40.1 𝑘𝑁/𝑚 

2) UPF analysis 

Step b):  

{𝜀0} = {
8.762
21.35
−21.78

} ∙ (10−3) (𝑚/𝑚) 

{𝜅} = {
28.88
70.38
−71.82

} (1/𝑚) 

 



Step c): 

TOP LAYER 

Top surface 

Local stress = {
−275.7
−275.7
0

} (𝑀𝑃𝑎) 

∴ 𝑆𝑅1 = 0.32 

𝑆𝑅2 = 0.54 

𝑆𝑅6 => 10
13 

∴ 𝑆𝑅 = 0.32 (1𝐶) 

Bottom surface 

Local stress = [𝑇] ∙ {
476.2
476.2
0

} (𝑀𝑃𝑎) 

∴ 𝑆𝑅1 = 6.3 

𝑆𝑅2 = 0.095 

𝑆𝑅6 => 10
13 

∴ 𝑆𝑅 = 0.095 (2𝑇) 

∴ 𝑆𝑅 for top layer is 0.095 (2T) 

FPF analysis:  

𝑇𝑜𝑝 𝑙𝑎𝑦𝑒𝑟: 
40.2(2𝑇)

41.3(2𝑇)
 

𝐵𝑜𝑡𝑡𝑜𝑚 𝑙𝑎𝑡𝑒𝑟:
41.4(2𝑇)

40.1(2𝑇)
  

Example 2 (probably on final): A three-layered laminate is subject to an applied load of  

𝑀𝑥 = 10 𝑁 ∙ 𝑚/𝑚. Progressive failure analysis results in the following: 

Failure # Failed Layer(s) SR Mode of Failure 

1 3 15.9 2T 

2 2 1.07 2T 

3 1 1.24 1T 

 

(1) What is the UPF load? 

𝑀𝑥 = (15.9)(10) = 159
𝑁𝑚

𝑚
 

(2) What is the UPF load, if termination criterion is fiber failure? 

𝑀𝑥 = (15.9)(1.07)(1.24)(10) = 210.9612 
𝑁𝑚

𝑚
  

(3) What is the UPF load, if termination criterion is as long as 50% of the plies have failed? 

𝑀𝑥 = (15.9)(1.07)(10) = 170.13 
𝑁𝑚

𝑚
  

 



Example 3: A 12-playered laminate has the following results from the progressive failure analysis: 

Failure # Failed Layer(s) SR Mode of Failure 

1 1 13.9 1C 

2 10 1.08 2T 

3 12 0.97 6S 

4 
11 0.84 2T 

3 0.93 1C 

5 
8 0.49 2T 

9 0.54 1T 

 

(1) What is the termination criterion used? 

1T (the last failure) 

(2) What is the SR (with respect to the original load) at UPF? 
(13.9)(1.08) = 15.012 

(3) Physically, in what sequence did layers fail up to the UPF? 

Layer 1, 10,  followed immediately by 12, 11, 3, 8 and 9; 

(4) What is the LPF load? 

N/A 

  



Chapter 6 
6.1: Introduction 

Review of theory of isotropic beams 

 

6.2 Symmetric beams 

6.3: Non-symmetric beams 

Beams are treated as special cases of plates, mainly, membrane loads are absent. Or: 

𝑁𝑥 = 𝑁𝑦 = 𝑁𝑥𝑦 = 0 

 

The other simplifications will depend on that problem at hand. e.g.:  

Symmetric beams: 𝜀𝑥
0 = 𝜀𝑦

0 = 𝛾𝑥𝑦
0 = 0 

Nonsymmetric beams: 𝜀𝑥
0 ≠ 0, 𝜀𝑦

0 ≠ 0, 𝛾𝑥𝑦
0 ≠ 0  

 

Nonsymmetric beams won’t be discussed.  

They bend and warp; they are also stretched or compressed, and sheared. 

 

Symmetric beams: 

{
𝑁
𝑀
} = [

𝐴 𝐵
𝐵 𝐷

] {𝜀
0

𝜅
} 

 

Due to symmetry, [𝐵] = 0 

∴ {𝑁} = [𝐴]{𝜀0} 

∴ {𝑀} = [𝐷]{𝜅} 

 

That is, because of symmetry, membrane action and bending action are decoupled.  

∵ {𝑁} = {0} 

∴ {𝜀0} = {0} 

 

Nonsymmetric Beams: 

{𝑁} = [𝐴]{𝜀0} + {𝐵}{𝜅} = {0} 

∴ {𝜀0} = −[𝐴]−1[𝐵]{𝜅} 

∵ {𝜅} ≠ {0} 

∴ {𝜀0} ≠ {0} 

 

Narrow Beams versus Wide Beams 

If cross-sectional dimensions are 𝑏 ∙ ℎ then 𝑏/ℎ ≥ 5 is considered wide beams. 



 

∴ 𝜅𝑦 ≠ 0 

𝜅𝑥𝑦 ≠ 0 

Poisson ratio effect  
(Observed in isotropic beams too) 

 
pp. 433~440  

(Beginning of 6.2 → end of Example 6.1) 

∴ 𝜅𝑦 = 0 

𝜅𝑥𝑦 = 0 

Edge effect 
(Less in isotropic beams) 

 
pp. 440~444  
(Example 6.2) 

 

Wide Beams 

Loading: 𝑀𝑥 = ±𝑀/𝑏 (sign convention) 

Curvatures: 𝜅𝑦 = 𝜅𝑥𝑦 = 0 

{

𝑀𝑥
𝑀𝑦
𝑀𝑥𝑦

} = [𝐷] {
𝜅𝑥
0
0
} 

∵ 𝑀𝑥 = 𝐷11𝜅𝑥 

∴ 𝜅𝑥 =
𝑀𝑥
𝐷11

 

𝑀𝑦 = 𝐷12𝜅𝑥 =
𝐷12
𝐷11

𝑀𝑥  

𝑀𝑥𝑦 = 𝐷16𝜅𝑥 =
𝐷16
𝐷11

𝑀𝑥   

Global strains at 𝜁: 

[𝜀} = 𝜁 {
𝜅
0
0
} 

Global stresses at 𝜁 of layer 𝜅: 

{𝜎}𝜅 = [𝑄̅]𝜅{𝜀} 

Flexural modulus of beam: 

𝐸𝑥
𝑤𝑖𝑑𝑒 =

12𝐷11
ℎ3

 

𝐸𝑥
𝑤𝑖𝑑𝑒𝐼 replaces 𝐸𝐼 in deflection and/or slope determination 



Narrow Beams 

Loading: 𝑀𝑥 = ±𝑀/𝑏 (sign convention) 

Curvatures: 𝑀𝑦 = 𝑀𝑥𝑦 = 0 

∴ {

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

} = [𝐷]−1 {
𝑀𝑥
0
0
} 

Or: 

𝜅𝑥 = 𝐷11
∗ 𝑀𝑥  

𝜅𝑦 = 𝐷12
∗ 𝑀𝑥  

𝜅𝑥𝑦 = 𝐷16
∗ 𝑀𝑥  

Global strains at 𝜁: 

{𝜀} = 𝜁{𝜅} 

Global stresses at 𝜁 of layer 𝜅 

{𝜎}𝜅 = [𝑄̅]𝜅{𝜀} 

Flexural modulus of beams (same as 𝐸𝑥
𝑓  in 4.4): 

𝐸𝑥
𝑛𝑎𝑟𝑟𝑜𝑤 =

12

ℎ3𝐷11
∗  

𝐸𝑥
𝑛𝑎𝑟𝑟𝑜𝑤𝐼 replaces 𝐸𝐼 in deflection and/or slope determination 

Example: A cantilever beam has the layup sequence of [ 0 / 90 / 0  ]s. The beam is 8” long and 3” wide. A 

load of 100 lb is applied at the free end of the beam. Each lamina is 0.1” thick, with 𝐸1 = 5.5 𝑀𝑝𝑠𝑖, 𝐸2 =

1.5 𝑀𝑝𝑠𝑖, 𝐺12 = 0.95 𝑀𝑝𝑠𝑖, and 𝑣12 = 0.275.  

Determine, 

(1) The maximum stress developed in the laminated beam; 

(2) The deflection and slope at the free end of the beam. 

 

Bending moment at the clamped end: 

𝑀 = 800 𝑙𝑏 ∙ 𝑖𝑛 

𝑀𝑥 = 𝑀/𝑏 = 266.67 𝑙𝑏 ∙ 𝑖𝑛/𝑖𝑛, (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 



𝐼 =
𝑏ℎ3

12
= 0.054 𝑖𝑛4 

𝛿𝑡𝑖𝑝 =
𝑃𝐿3

3𝐸𝐼
 

𝜃𝑡𝑖𝑝 =
𝑃𝐿2

2𝐸𝐼
 

𝑏 = 3.0" 

ℎ = 0.6" 

∴ narrow beam ([𝐷]−1 needed ) 

or wide beam ( [D] needed ) 

[𝑄] 

[𝑄̅] for 0° & 90° 

 

[𝑄] = [
5.616 0.4212 0
 1.523 0

𝑠𝑦𝑚.  0.9500
] ∙ 106 (𝑝𝑠𝑖) 

 

[𝐷] = [
82.03 7.581 0
 46.63 0

𝑠𝑦𝑚.  11.71
] ∙ 103 (𝑝𝑠𝑖 ∙ 𝑖𝑛3) 

 

[𝐷]1 = [
1.238 −0.2012 0
 2.177 0

𝑠𝑦𝑚.  5.848
] ∙ 10−5 (

1

𝑝𝑠𝑖 ∙ 𝑖𝑛3
) 

𝐷11
∗ = 1.238 ∙ 10−5 (

1

𝑝𝑠𝑖∙𝑖𝑛3
) 

𝐸𝑥
𝑛𝑎𝑟𝑟𝑜𝑤 =

12

ℎ3𝐷11
∗ = 4.488 ∙ 106 (𝑝𝑠𝑖) 

𝜅𝑥 = 𝐷11
∗ 𝑀𝑥 = 0.003301 (1/𝑖𝑛) 

𝜅𝑦 = 𝐷12
∗ 𝑀𝑥 = −0.0005365 (1/𝑖𝑛) 



𝜅𝑥𝑦 = 𝐷16
∗ = 𝐷16

∗ 𝑀𝑥 = 0 

[𝜅} = {
3.301
−0.5365

0
} ∙ 10−3  (

1

𝑖𝑛
) 

Bottom surface of laminate, 𝜁 = 0.3" 

{𝜀} = {
+0.9903
−0.1610

0
} ∙ 103  (

𝑖𝑛

𝑖𝑛
) 

{𝜎}6
𝑏 = {

+5.494
+0.1705

0
} (𝑘𝑠𝑖) 

𝛿𝑡𝑖𝑝 =
𝑃𝐿3

3 ∙ 𝐸𝑥
𝑛𝑎𝑟𝑟𝑜𝑤𝐼

= 0.0704" 

𝜃𝑡𝑖𝑝 =
𝑃𝐿2

2 ∙ 𝐸𝑥
𝑛𝑎𝑟𝑟𝑜𝑤𝐼

= 0.0132 𝑟𝑎𝑑  

𝐷11 = 82.03 ∙ 10
3 (𝑝𝑠𝑖 ∙ 𝑖𝑛3) 

𝐸𝑥
𝑤𝑖𝑑𝑒 =

12𝐷11

ℎ3
= 4.557 ∙ 106 (𝑝𝑠𝑖) 

𝜅𝑥 =
𝑀𝑥
𝐷11

= 0.003251 (
1

𝑖𝑛
) 

{𝜅} = {
3.251
0
0

} ∙ 10−3  (
1

𝑖𝑛
) 

Bottom surface of laminate, 𝜁 = 0.3" 

{𝜀} = {
+0.9753

0
0

} ∙ 103  (
𝑖𝑛

𝑖𝑛
) 

{𝜎}6
𝑏 = {

+5.494
+0.4108

0
} (𝑘𝑠𝑖) 

𝛿𝑡𝑖𝑝 =
𝑃𝐿3

3 ∙ 𝐸𝑥
𝑤𝑖𝑑𝑒𝐼

= 0.0693" 

𝜃𝑡𝑖𝑝 =
𝑃𝐿2

2 ∙ 𝐸𝑥
𝑤𝑖𝑑𝑒𝐼

= 0.0130 𝑟𝑎𝑑  

 



Emerging Composites 
1. Carbon-carbon composites 

2. Bio-composites 

3. Nano-composites 

4. Functionally graded materials (FGMs) 

1. Carbon-carbon composites 

1) Carbon fibers in a carbon matrix, hence an ultra-high temperature (up to 3300 °C) composite 

2) Abrasion resistant 

3) Self-lubricating 

4) Aircraft brakes, steam and gas turbine engines, heat shields, rocket nozzles, nose cones, etc. 

5) Can be machines, drilled, sawed 

6) Lightweight  

2. Bio-composites 

1) By definition, a bio-product is one that is derived from renewable resources, stable in its 

intended lifetime, and bio-degradable after disposal in composting condition.  

2) A bio-composite consists of biofibers and biomatrix, and is expected to be bio-degradable. 

3) Biofibers 

• Wood “fibers”: short fibers typically, or wood flour 

• Non-wood fibers: kenaf, flax, jute, hemp coir, and sisal (and straw and grass) 

Ranking of non-wood fibers in terms of tensile modulus and tensile strength: 

Flax (about 33% of E-glass’s) 

Kenaf 

Hemp 

Sisal 

Jute  

Coir (about 5% of E-glass’s) 

4) Bio-polymers (Bio-resins) 

Bio-polyester (microbial polyester) 

Soy-based plastics 

Starch plastics 

3. Nano-composites 

1) Composite filled with nano-sized (10−9 𝑚) particles 

2) Platelets and nanotubes 

3) Carbon nanotubes (CNTs): 

Young’s modulus ~1000 𝐺𝑃𝑎 

Tensile strength >  30 𝐺𝑃𝑎 

Compared with PAN-based Carbon fibers:  

Young’s modulus 250~550 𝐺𝑃𝑎 

Tensile strength 1.9~6 𝐺𝑃𝑎 

 



4) Small amount of nano-particles will provide significant improvement in a variety of properties. 

5) Applications: 

Structural components of electronic portable devices 

Auto accessories, both interior and exterior 

4. Functionally Graded Materials  

• First conceptualized in mid-1980 when a thermal barrier capable of withstanding a surface 

temperature of 2000 𝐾 (~1727 °𝐶) and a surface temperature gradient of 1000 𝐾 (~727 °𝐶) 

across a section of less than 10 𝑚𝑚 was needed. 

• Achieved by varying volume (or weight) fractions gradually over the volume of material. 

• FGMs are not homogeneous, nor are they isotropic; in other words, 𝐸𝑥 depends on location (𝑥, 𝑦, 𝑧) 

and angle 𝜃, for instance. 

• Almost ready for commercialization. 

• Applications: 

Aerospace: high thermal gradient  

  



Final Exam Review 
 

Chapter 1 

Same as midterm (even though the course outline says it’s not on the final exam…) 

Chapter 2 

2.3 Independent mechanical properties vs. Types of materials 

e.g. Orthotropic materials, 9 constants 

transversely isotropic materials, 5 constants 

Chapter 3 

3.2 𝑉𝑓  𝑉𝑚  𝑊𝑓   𝑊𝑚 void content 

a few fibers + a few matrices + voids  

𝑉𝑓
′  𝑉𝑚

′   𝑉𝑓𝑚𝑎𝑥  𝑅𝑉𝐸 

When an equation in the text is only valid for zero void content 

3.3 Isotropic fibers + isotropic matrix 

Transversely isotropic fibers + isotropic matrix 

 Mechanics of materials approach 

 Halpin-Tsai 

 Elasticity 

3.4 (𝜎1
𝑇)𝑢𝑙𝑡: fibers-fail-first 

matrix-fails-first 

equations to use, the if’s 

(𝜎1
𝐶)

𝑢𝑙𝑡
: failure modes 

(𝜎2
𝑇)𝑢𝑙𝑡   (𝜎2

𝐶)
𝑢𝑙𝑡

  (𝜏12
 )𝑢𝑙𝑡 

 

Chapter 2 (again) 

2.4 [𝑄], [𝑆] 

2.5 [𝑇], [𝑄̅], [𝑆̅] 

2.6 𝐸𝑥  𝐸𝑦   𝐺𝑥𝑦   𝑣𝑥𝑦   𝑚𝑥   𝑚𝑦 

Evaluation 

Application 

e.g. Given any one, find one of the remaining 

Global stresses 

Global strains 

Local stresses 

Local strains 

Physical meanings of engineering constants (probably 𝑚𝑥 and 𝑚𝑦) 

2.8 Strength/Failure Theories of a Lamina 

Based on local stresses (𝜀1 , 𝜀2, 𝛾12) or local strains (𝜎1, 𝜎2, 𝜏12) 

Max stress – don’t’ compare well with experimental data, but indicate mode of failure 

Max strain – same as above 

Tsai-Hill:  



• Original 

• Modified 

 

Tsai-Wu: 

• 3 forms on 𝐻12 

• Tsai-Hill, Hoffman, von Mises-Hencky (we probably get to pick what we want to use) 

Tsai-Hill and Tsai-Wu: 

• Compare well with experimental data but don’t indicate mode of failure 

 

Chapter 4 

4.2 laminate code – shortest possible notation description of a laminate 

4.3 [𝐴𝐵𝐷] 

membrane and bending coupled 

membrane and bending uncoupled 

Given [𝐴𝐵𝐷]−1 and {
𝑁
𝑀

} 

→ {𝜀0}  {𝜅} 

→ {𝜀}𝑔𝑙𝑜𝑏𝑎𝑙  at certain location (i.e. 𝜁) 

→ {𝜎}𝑔𝑙𝑜𝑏𝑎𝑙 → plots of stresses across the thickness direction 

→ {𝜎}𝑔𝑙𝑜𝑏𝑎𝑙 → 𝑆𝑅 

4.4 Given [𝐴𝐵𝐷]−1 

→ 𝐸𝑥  𝐸𝑦  …  𝐸𝑥
𝑓   𝐸𝑦

𝑓 …  

(Engineering constants of a laminate) 

given [𝐴𝐵𝐷] 

→ 𝑟𝑁   𝑟𝑀  𝑟𝐵 

 

Chapter 5 

5.2 [𝐴𝐵𝐷] matrix when laminate is, for example 

1) symmetric 

2) quasi-isotropic 

3) specially orthotropic 

5.3 Progressive failure 

FPF, UPF, LPF 

Termination criteria 

Discount on failed ply (plies) 

 

Chapter 6 

6.2 narrow vs. wide beams 

Bending moment 𝑀 (units, signs) 

Moment resultant 𝑀𝑥   

𝐸𝑥
𝑤𝑖𝑑𝑒𝐼 (to replaced EI [for isotropic beams] for deflection, and slope evaluations) 

𝐸𝑥
𝑛𝑎𝑟𝑟𝑜𝑤𝐼 

Plates: differential elements for ∑ 𝐹𝑦 = 0 

differential elements for∑ 𝑀𝑥 = 0; ∑ 𝑀𝑧 = 0  



(g) (h) 

essential boundary conditions (satisfied?) 

natural boundary conditions (satisfied?) 

Given 𝑤𝑜(𝑥, 𝑦) → 𝑀𝑥   𝑀𝑦   𝑀𝑥𝑦  

[𝐴𝐵𝐷]−1 ∶ given if needed 

Beam deflection table given from Shigley’s 

 

Emerging Composites 

Material from class notes  (shouldn’t be anything too crazy) 

 

 


